[1]

Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, et al. 1983. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America 80:4803−4807

doi: 10.1073/pnas.80.15.4803
[2]

Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209−213

doi: 10.1038/303209a0
[3]

Zhou GY, Weng J, Zeng Y, Huang J, Qian S, et al. 1983. Introduction of exogenous DNA into cotton embryos. Methods in Enzymol 101:433−481

doi: 10.1016/0076-6879(83)01032-0
[4]

Mohammed S, Samad AA, Rahmat Z. 2019. Agrobacterium-mediated transformation of rice: constraints and possible solutions. Rice Science 26:133−146

doi: 10.1016/j.rsci.2019.04.001
[5]

Steinberger AR, Voytas DF. 2025. Virus-induced gene editing free from tissue culture. Nature Plants 11:1241−1251

doi: 10.1038/s41477-025-02025-6
[6]

Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, et al. 1990. Transformation of maize cells and regeneration of rertile transgenic plants. The Plant Cell 2:603−618

doi: 10.2307/3869124
[7]

Wu M, Chen A, Li X, Li X, Hou X, et al. 2024. Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation. Advanced Biotechnology 2:34

doi: 10.1007/s44307-024-00041-9
[8]

Morikawa H, Yamada Y. 1985. Capillary Microinjection into Protoplasts and Intranuclear Localization of Injected Materials. Plant and Cell Physiology 26:229−236

doi: 10.1093/oxfordjournals.pcp.a076901
[9]

Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, et al. 1984. Direct gene transfer to plants. The EMBO Journal 3:2717−2722

doi: 10.1002/j.1460-2075.1984.tb02201.x
[10]

Wang P, Si H, Li C, Xu Z, Guo H, et al. 2025. Plant genetic transformation: achievements, current status and future prospects. Plant Biotechnology Journal 23:2034−2058

doi: 10.1111/pbi.70028
[11]

Kaeppler HF, Somers DA, Rines HW, Cockburn AF. 1992. Silicon carbide fiber-mediated stable transformation of plant cells. Theoretical and Applied Genetics 84:560−566

doi: 10.1007/BF00224152
[12]

Zhao X, Meng Z, Wang Y, Chen W, Sun C, et al. 2017. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants 3:956−964

doi: 10.1038/s41477-017-0063-z
[13]

Su W, Xu M, Radani Y, Yang L. 2023. Technological development and application of plant genetic transformation. International Journal of Molecular Sciences 24:10646

doi: 10.3390/ijms241310646
[14]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut−dip−budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345

doi: 10.1016/j.xinn.2022.100345
[15]

Tamizi AA, Md-Yusof AA, Mohd-Zim NA, Nazaruddin NH, Sekeli R, et al. 2023. Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice. Molecular Biology Reports 50:9353−9366

doi: 10.1007/s11033-023-08842-2
[16]

Zhong H, Li C, Yu W, Zhou HP, Lieber T, et al. 2024. A fast and genotype-independent in planta Agrobacterium-mediated transformation method for soybean. Plant Communications 5:101063

doi: 10.1016/j.xplc.2024.101063
[17]

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015

doi: 10.1105/tpc.16.00124
[18]

Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, et al. 2018. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology - Plant 54:240−252

doi: 10.1007/s11627-018-9905-2
[19]

Wang N, Arling M, Hoerster G, Ryan L, Wu E, et al. 2020. An efficient gene excision system in maize. Frontiers in Plant Science 11:1298

doi: 10.3389/fpls.2020.01298
[20]

Che P, Wu E, Simon MK, Anand A, Lowe K, et al. 2022. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Communications Biology 5:344

doi: 10.1038/s42003-022-03308-w
[21]

Chen J, Tomes S, Gleave AP, Hall W, Luo Z, et al. 2022. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor. Horticulture Research 9:uhab014

doi: 10.1093/hr/uhab014
[22]

Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, et al. 2015. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research 128:389−397

doi: 10.1007/s10265-015-0714-y
[23]

Zhao Y, Cheng P, Liu Y, Liu C, Hu Z, et al. 2025. A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein. Journal of Integrative Plant Biology 67:3−6

doi: 10.1111/jipb.13767
[24]

Kong J, Martin-Ortigosa S, Finer J, Orchard N, Gunadi A, et al. 2020. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Frontiers in Plant Science 11:572319

doi: 10.3389/fpls.2020.572319
[25]

Liu X, Bie XM, Lin X, Li M, Wang H, et al. 2023. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nature Plants 9:908−925

doi: 10.1038/s41477-023-01406-z
[26]

Wang K, Shi L, Liang X, Zhao P, Wang W, et al. 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants 8:110−117

doi: 10.1038/s41477-021-01085-8
[27]

Liu K, Yang A, Yan J, Liang Z, Yuan G, et al. 2023. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes. Horticulture Research 10:uhad198

doi: 10.1093/hr/uhad198
[28]

Kang M, Lee K, Finley T, Chappell H, Veena V, et al. 2022. An improved Agrobacterium-mediated transformation and genome-editing method for maize inbred B104 using a ternary vector system and immature embryos. Frontiers in Plant Science 13:860971

doi: 10.3389/fpls.2022.860971
[29]

Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, et al. 2022. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nature Communications 13:2581

doi: 10.1038/s41467-022-30180-3
[30]

Yang F, Li G, Felix G, Albert M, Guo M. 2023. Engineered Agrobacterium improves transformation by mitigating plant immunity detection. New Phytologist 237:2493−2504

doi: 10.1111/nph.18694
[31]

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, et al. 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology 14:456−464

doi: 10.1038/s41565-019-0382-5
[32]

Wang ZP, Zhang ZB, Zheng DY, Zhang TT, Li XL, et al. 2022. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. Journal of Integrative Plant Biology 64:1145−1156

doi: 10.1111/jipb.13263
[33]

Liu Z, Zhang J, Cai Y, Wang H, Luo M, et al. 2024. Improving seed shattering resistance in wild O. alta rice with mesoporous silica nanoparticle delivery systems. Nano Letters 24:11823−11830

doi: 10.1021/acs.nanolett.4c02297
[34]

She L, Cheng X, Jiang P, Shen S, Dai F, et al. 2025. Modified carbon dot-mediated transient transformation for genomic and epigenomic studies in wheat. Plant Biotechnology Journal 23:1139−1152

doi: 10.1111/pbi.14573
[35]

Wu H, Sparks C, Amoah B, Jones HD. 2003. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports 21:659−668

doi: 10.1007/s00299-002-0564-7
[36]

Udayabhanu J, Huang T, Xin S, Cheng J, Hua Y, et al. 2022. Optimization of the transformation protocol for increased efficiency of genetic transformation in Hevea brasiliensis. Plants 11:1067

doi: 10.3390/plants11081067
[37]

Zhang M, Wang Y, Chen X, Xu F, Ding M, et al. 2021. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nature Communications 12:735

doi: 10.1038/s41467-021-20964-4
[38]

Wei S, Li X, Lu Z, Zhang H, Ye X, et al. 2022. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 377:eabi8455

doi: 10.1126/science.abi8455
[39]

Tao K, Li Y, Hu Y, Li Y, Zhang D, et al. 2023. Overexpression of ZmEXPA5 reduces anthesis-silking interval and increases grain yield under drought and well-watered conditions in maize. Molecular Breeding 43:84

doi: 10.1007/s11032-023-01432-x
[40]

Wang L, Yang Y, Yang Z, Li W, Hu D, et al. 2023. GmFtsH25 overexpression increases soybean seed yield by enhancing photosynthesis and photosynthates. Journal of Integrative Plant Biology 65:1026−1040

doi: 10.1111/jipb.13405
[41]

Gao C, Yuan J, Lu J, Ye W, Zhi J, et al. 2025. COL3a simultaneously regulates flowering and branching to improve grain yield in soybean. Plant Biotechnology Journal 23:201−203

doi: 10.1111/pbi.14489
[42]

Zhong Y, Wang Y, Pan X, Wang R, Li D, et al. 2025. ZmCCD8 regulates sugar and amino acid accumulation in maize kernels via strigolactone signalling. Plant Biotechnology Journal 23:492−508

doi: 10.1111/pbi.14513
[43]

Zhang X, Jia H, Li T, Wu J, Nagarajan R, et al. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376:180−183

doi: 10.1126/science.abm0717
[44]

Zhou Y, Chen M, Guo J, Wang Y, Min D, et al. 2020. Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany 71:1842−1857

doi: 10.1093/jxb/erz569
[45]

Maeda S, Yokotani N, Oda K, Mori M. 2020. Enhanced resistance to fungal and bacterial diseases in tomato and Arabidopsis expressing BSR2 from rice. Plant Cell Reports 39:1493−1503

doi: 10.1007/s00299-020-02578-0
[46]

Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. 2021. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean. Plant Biotechnology Journal 19:502−516

doi: 10.1111/pbi.13479
[47]

Yuan H, Cheng M, Fan F, Zheng X, Wang R, et al. 2024. OsGRF6-OsYUCCA1/OsWRKY82 signaling cascade upgrade grain yield and bacterial blight resistance in rice. Advanced Science 11:e2407733

doi: 10.1002/advs.202407733
[48]

Mo H, Chang H, Zhao G, Hu G, Luo X, et al. 2024. iJAZ-based approach to engineer lepidopteran pest resistance in multiple crop species. Nature Plants 10:771−784

doi: 10.1038/s41477-024-01682-3
[49]

Qiu D, Hu W, Zhou Y, Xiao J, Hu R, et al. 2021. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. Plant Biotechnology Journal 19:1588−1601

doi: 10.1111/pbi.13572
[50]

Zhang H, Mao L, Xin M, Xing H, Zhang Y, et al. 2022. Overexpression of GhABF3 increases cotton(Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biology 22:313

doi: 10.1186/s12870-022-03705-7
[51]

Yu TF, Hou ZH, Wang HL, Chang SY, Song XY, et al. 2024. Soybean steroids improve crop abiotic stress tolerance and increase yield. Plant Biotechnology Journal 22:2333−2347

doi: 10.1111/pbi.14349
[52]

Shang C, Liu X, Chen G, Li G, Hu S, et al. 2024. SlWRKY81 regulates Spd synthesis and Na+/K+ homeostasis through interaction with SlJAZ1 mediated JA pathway to improve tomato saline-alkali resistance. The Plant Journal 118:1774−1792

doi: 10.1111/tpj.16709
[53]

Liao M, Ma Z, Kang Y, Zhang B, Gao X, et al. 2023. ENHANCED DISEASE SUSCEPTIBILITY 1 promotes hydrogen peroxide scavenging to enhance rice thermotolerance. Plant Physiology 192:3106−3119

doi: 10.1093/plphys/kiad257
[54]

Mishra D, Shekhar S, Subba P, Keshava Prasad TS, Chakraborty S, et al. 2024. Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery. The Plant Journal 119:2217−2235

doi: 10.1111/tpj.16913
[55]

He F, Xu J, Jian Y, Duan S, Hu J, et al. 2023. Overexpression of galactinol synthase 1 from Solanum commersonii (ScGolS1) confers freezing tolerance in transgenic potato. Horticultural Plant Journal 9:541−552

doi: 10.1016/j.hpj.2022.05.005
[56]

Goralogia GS, Willig C, Strauss SH. 2025. Engineering Agrobacterium for improved plant transformation. The Plant Journal 121:e70015

doi: 10.1111/tpj.70015
[57]

Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, et al. 2005. Gene transfer to plants by diverse species of bacteria. Nature 433:629−633

doi: 10.1038/nature03309
[58]

Dong OX, Ronald PC. 2021. Targeted DNA insertion in plants. Proceedings of the National Academy of Sciences of the United States of America 118:e2004834117

doi: 10.1073/pnas.2004834117
[59]

Vejlupkova Z, Warman C, Sharma R, Scheller HV, Mortimer JC, et al. 2020. No evidence for transient transformation via pollen magnetofection in several monocot species. Nature Plants 6:1323−1324

doi: 10.1038/s41477-020-00798-6
[60]

Horstman A, Li M, Heidmann I, Weemen M, Chen B, et al. 2017. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiology 175:848−857

doi: 10.1104/pp.17.00232
[61]

Jha P, Ochatt SJ, Kumar V. 2020. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Reports 39:431−444

doi: 10.1007/s00299-020-02511-5
[62]

Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, et al. 2017. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell 29:54−69

doi: 10.1105/tpc.16.00623
[63]

Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, et al. 2017. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology 175:1158−1174

doi: 10.1104/pp.17.01035
[64]

Feng Q, Xiao L, He Y, Liu M, Wang J, et al. 2021. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene. Journal of Integrative Plant Biology 63:2038−2042

doi: 10.1111/jipb.13199
[65]

Raman V, Mysore KS. 2023. Engineering Agrobacterium tumefaciens with a type III secretion system to express type III effectors. Bio-Protocol 13:e4726

doi: 10.21769/bioprotoc.4726
[66]

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749−760

doi: 10.1016/j.cell.2006.03.037
[67]

Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology 36:882−897

doi: 10.1016/j.tibtech.2018.03.009
[68]

Shivashakarappa K, Marriboina S, Dumenyo K, Taheri A, Yadegari Z. 2025. Nanoparticle-mediated gene delivery techniques in plant systems. Frontiers in Nanotechnology 7:1516180

doi: 10.3389/fnano.2025.1516180
[69]

Huynh J, Hotton SK, Chan R, Syed Y, Thomson J. 2022. Evaluation of novel surfactants for plant transformation. BMC Research Notes 15:360

doi: 10.1186/s13104-022-06251-5
[70]

Hwang HH, Yu M, Lai EM. 2017. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book 15:e0186

doi: 10.1199/tab.0186
[71]

Guan S, Kang X, Ge J, Fei R, Duan S, et al. 2022. An efficient Agrobacterium-mediated transient transformation system and its application in gene function elucidation in Paeonia lactiflora Pall. Frontiers in Plant Science 13:999433

doi: 10.3389/fpls.2022.999433
[72]

Liu Y, Yang H, Sakanishi A. 2006. Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnology Advances 24:1−16

doi: 10.1016/j.biotechadv.2005.04.002
[73]

Zhang LJ, Cheng LM, Xu N, Zhao NM, Li CG, et al. 1991. Efficient Transformation of Tobacco by Ultrasonication. Bio/Technology 9:996−997

doi: 10.1038/nbt1091-996
[74]

Király A, Farkas D, Dobránszki J. 2025. Ultrasound in plant life and its application perspectives in horticulture and agriculture. Horticulturae 11:318

doi: 10.3390/horticulturae11030318
[75]

Wang W, Zhang D, Chu C. 2023. OsDREB1C, an integrator for photosynthesis, nitrogen use efficiency, and early flowering. Science China Life Sciences 66:191−193

doi: 10.1007/s11427-022-2183-5
[76]

Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S, et al. 2012. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology 160:1303−1317

doi: 10.1104/pp.112.204503
[77]

Zhao X, He Y, Liu Y, Wang Z, Zhao J. 2024. JAZ proteins: key regulators of plant growth and stress response. The Crop Journal 12:1505−1516

doi: 10.1016/j.cj.2024.11.001
[78]

Guo W, Zhang J, Zhang N, Xin M, Peng H, et al. 2015. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS One 10:e0135667

doi: 10.1371/journal.pone.0135667
[79]

Abdul Aziz M, Brini F, Rouached H, Masmoudi K. 2022. Genetically engineered crops for sustainably enhanced food production systems. Frontiers in Plant Science 13:1027828

doi: 10.3389/fpls.2022.1027828
[80]

Bekele-Alemu A, Dessalegn-Hora O, Safawo-Jarso T, Ligaba-Osena A. 2025. Rethinking progress: harmonizing the discourse on genetically modified crops. Frontiers in Plant Science 16:1547928

doi: 10.3389/fpls.2025.1547928
[81]

Cheng X, Li H, Tang Q, Zhang H, Liu T, et al. 2024. Trends in the global commercialization of genetically modified crops in 2023. Journal of Integrative Agriculture 23:3943−3952

doi: 10.1016/j.jia.2024.09.012
[82]

MacDonald JM, Dong X, Fuglie K. 2023. Concentration and competition in U.S. agribusiness. Washington, DC, United States: Department of Agriculture, Economic Research Service. 57 pp. doi: 10.32747/2023.8054022.ers

[83]

Sun Z, Scherer L, Tukker A, Behrens P. 2020. Linking global crop and livestock consumption to local production hotspots. Global Food Security 25:100323

doi: 10.1016/j.gfs.2019.09.008
[84]

Hu N, Tian H, Li Y, Li X, Li D, et al. 2025. pHNRhCas9NG, single expression cassette-based dual-component dual-transcription unit CRISPR/Cas9 system for plant genome editing. Trends in Biotechnology 43:1788−1808

doi: 10.1016/j.tibtech.2025.03.016
[85]

He Y, Han Y, Ma Y, Liu S, Fan T, et al. 2024. Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. Plant Biotechnology Journal 22:2488−2503

doi: 10.1111/pbi.14363
[86]

Li B, Shang Y, Wang L, Lv J, Wu Q, et al. 2025. Efficient genome editing in dicot plants using calreticulin promoter-driven CRISPR/Cas system. Molecular Horticulture 5:9

doi: 10.1186/s43897-024-00128-w
[87]

Liu Q, Zhao C, Sun K, Deng Y, Li Z. 2023. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Molecular Plant 16:616−631

doi: 10.1016/j.molp.2023.02.003
[88]

Qiao JH, Zang Y, Gao Q, Liu S, Zhang XW, et al. 2025. Transgene- and tissue culture-free heritable genome editing using RNA virus-based delivery in wheat. Nature Plants 11:1252−1259

doi: 10.1038/s41477-025-02023-8
[89]

Nagy B, Öktem A, Ferenc G, Ungor D, Kalac A, et al. 2023. CRISPR/Cas9 mutagenesis through introducing a nanoparticle complex made of a cationic polymer and nucleic acids into maize protoplasts. International Journal of Molecular Sciences 24:16137

doi: 10.3390/ijms242216137