| [1] |
Santos A, Teixeira S. 2020. Panorama nacional do amendoal. |
| [2] |
FAO. 2023. FAOSTAT: statistics division food and agriculture organization of the United Nations. www.fao.org/faostat/en/#rankings/countries_by_commodity (Accessed 7 July 2025) |
| [3] |
López-Moral A, Raya-Ortega MC, Agustí-Brisach C, Roca LF, Lovera M, et al. 2017. Morphological, pathogenic, and molecular characterization of Colletotrichum acutatum isolates causing almond anthracnose in Spain. |
| [4] |
López-Moral A, Agustí-Brisach C, Lovera M, Luque F, Roca LF, et al. 2019. Effects of cultivar susceptibility, fruit maturity, leaf age, fungal isolate, and temperature on infection of almond by Colletotrichum spp. |
| [5] |
Damm U, Cannon PF, Woudenberg JHC, Crous PW. 2012. The Colletotrichum acutatum species complex. |
| [6] |
de Silva DD, Mann RC, Kaur J, Ekanayake PN, Sawbridge TI, et al. 2021. Revisiting the Colletotrichum species causing anthracnose of almond in Australia. |
| [7] |
Varjas V, Szilágyi S, Lakatos T. 2022. First report of Colletotrichum nymphaeae causing anthracnose on almond in Hungary. |
| [8] |
Ramos M, Arsénio PMR, Baroncelli R, Talhinhas P. 2023. Caracterização genética e epidemiológica da antracnose da amendoeira no Alentejo. |
| [9] |
Talhinhas P, Baroncelli R. 2023. Hosts of Colletotrichum. |
| [10] |
Ramos M, Maurício R, Sousa V, Talhinhas P. 2025. Spontaneous flora as reservoir for the survival and spread of the almond anthracnose pathogen (Colletotrichum godetiae) in intensive almond orchards. |
| [11] |
Yin Y, Miao J, Shao W, Liu X, Zhao Y, et al. 2023. Fungicide resistance: progress in understanding mechanism, monitoring, and management. |
| [12] |
Whipps JM, Hand P, Pink D, Bending GD. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. |
| [13] |
Vorholt JA. 2012. Microbial life in the phyllosphere. |
| [14] |
Preto G, Martins F, Pereira JA, Baptista P. 2017. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. |
| [15] |
van der Heijden MGA, Hartmann M. 2016. Networking in the plant microbiome. |
| [16] |
Rastogi G, Coaker GL, Leveau JHJ. 2013. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. |
| [17] |
Mercado-Blanco J. 2015. Life of microbes inside the plant. In Principles of Plant-Microbe Interactions, ed. Lugtenberg B. Cham: Springer. pp. 15–32 doi: 10.1007/978-3-319-08575-3_5 |
| [18] |
Schulz B, Haas S, Junker C, Andrée N, Schobert M. 2015. Fungal endophytes are involved in multiple balanced antagonisms. Current Science 109:39−45 |
| [19] |
De Silva NI, Lumyong S, Hyde KD, Bulgakov T, Phillips AJL, et al. 2016. Defining biotrophs and hemibiotrophs. |
| [20] |
Rai M, Agarkar G. 2016. Plant–fungal interactions: what triggers the fungi to switch among lifestyles? |
| [21] |
De Silva NI, Brooks S, Lumyong S, Hyde KD. 2019. Use of endophytes as biocontrol agents. |
| [22] |
Freeman S, Rodriguez RJ. 1993. Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. |
| [23] |
Wang X, Radwan MM, Taráwneh AH, Gao J, Wedge DE, et al. 2013. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. |
| [24] |
Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. 2019. Biocontrol yeasts: mechanisms and applications. |
| [25] |
Heydari A, Pessarakli M. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. |
| [26] |
Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, et al. 2014. Diversity and biocontrol potential of endophytic fungi in Brassica napus. |
| [27] |
Muñoz-Guerrero J, Guerra-Sierra BE, Alvarez JC. 2021. Fungal endophytes of Tahiti Lime (Citrus citrus × latifolia) and their potential for control of Colletotrichum acutatum J. H. Simmonds causing anthracnose. |
| [28] |
Torres JMO, dela Cruz TE. 2015. Antibacterial activities of fungal endophytes associated with the Philippine endemic tree, Canarium ovatum. |
| [29] |
Thiep NV, Soytong K. 2015. Chaetomium spp. as biocontrol potential to control tea and coffee pathogens in Vietnam. International Journal of Agricultural Technology 11(6):1381−1392 |
| [30] |
Rahman MA, Razvy MA, Alam MF. 2013. Antagonistic activities of Trichoderma strains against chili anthracnose pathogen. International Journal of Microbiology and Mycology 1(1):7−22 |
| [31] |
Es-Soufi R, Tahiri H, Azaroual L, El Oualkadi A, Martin P, et al. 2020. In vitro antagonistic activity of Trichoderma harzianum and Bacillus amyloliquefaciens against Colletotrichum acutatum. |
| [32] |
Sharma A, Sharma IM, Sharma M, Sharma K, Sharma A. 2021. Effectiveness of fungal, bacterial and yeast antagonists for management of mango anthracnose (Colletotrichum gloeosporioides). |
| [33] |
Shi XC, Wang SY, Duan XC, Wang YZ, Liu FQ, et al. 2021. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. |
| [34] |
Yadav M, Dubey MK, Upadhyay RS. 2021. Systemic resistance in chilli pepper against anthracnose (caused by Colletotrichum truncatum) induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. |
| [35] |
Hartati S, Wiyono S, Hidayat SH, Sinaga MS. 2015. Mode of action of yeast-like fungus Aureobasidium pullulans in controlling anthracnose of postharvest chili. International Journal of Sciences: Basic and Applied Research 20(2):253−263 |
| [36] |
Sdiri Y, Lopes T, Rodrigues N, Silva K, Rodrigues I, et al. 2022. Biocontrol ability and production of volatile organic compounds as a potential mechanism of action of olive endophytes against Colletotrichum acutatum. |
| [37] |
Iqbal M, Broberg A, Andreasson E, Stenberg JA. 2023. Biocontrol potential of beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum. |
| [38] |
Pimenta RS, Moreira da Silva JF, Buyer JS, Janisiewicz WJ. 2012. Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola. |
| [39] |
Saeed M, Mukhtar T, Ahmed R, Ahmad T, Iqbal MA, et al. 2023. Suppression of Meloidogyne javanica infection in peach (Prunus persica (L.) Batsch) using fungal biocontrol agents. |
| [40] |
López-González RC, Gómez-Cornelio S, de la Rosa-García SC, Garrido E, Oropeza-Mariano O, et al. 2017. The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. |
| [41] |
Santos CMP. 2018. Etiologia e epidemiologia associadas à mortalidade da amendoeira em pomares super-intensivos no Alentejo. Thesis. Universidade de Évora, Portugal |
| [42] |
Antón-Domínguez BI, López-Moral A, Raya MC, Lovera M, Melgar S, et al. 2023. Fungal pathogens associated with almond decline syndrome, an emerging disease complex in intensive almond crops in southern Spain. |
| [43] |
Felipe A. 1977. Almendro Estado fenológicos. Información Técnica Económica Agraria 27:8−9 |
| [44] |
Barnett HL, Hunter BB. 1998. Book Illustrated genera of imperfect fungi. Minneapolis: APS Press |
| [45] |
Dhingra OD, Sinclair JB. 1995. Basic plant pathology methods. Volume 2. Boca Raton: CRC Press |
| [46] |
Cenis JL. 1992. Rapid extraction of fungal DNA for PCR amplification. |
| [47] |
White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, eds Innis MA, Gelfand DH, Sninsky JJ, White TJ. US: Academic Press. pp. 315–322 doi: 10.1016/B978-0-12-372180-8.50042-1 |
| [48] |
de Hoog GS, van den Gerrits AHG. 1998. Molecular diagnostics of clinical strains of filamentous basidiomycetes. |
| [49] |
O'Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. |
| [50] |
Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. |
| [51] |
Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. 2007. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. |
| [52] |
Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. |
| [53] |
Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L. 2019. Culturable plant pathogenic fungi associated with sugarcane in Southern China. |
| [54] |
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. |
| [55] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. |
| [56] |
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2−approximately maximum-likelihood trees for large alignments. |
| [57] |
Magurran AE. 2021. Measuring biological diversity. |
| [58] |
Frari GD, Cabral A, Nascimento T, Ferreira RB, Oliveira H. 2019. Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine. |
| [59] |
Boddy L. 2000. Interspecific combative interactions between wood-decaying basidiomycetes. |
| [60] |
Talhinhas P, Mota-Capitão C, Martins S, Ramos AP, Neves-Martins J, et al. 2011. Epidemiology, histopathology and aetiology of olive anthracnose caused by Colletotrichum acutatum and C. gloeosporioides in Portugal. |
| [61] |
Gao Y, Wang Y, Li J, Shang S, Song Z. 2018. Improved application of natural forest product terpene for discovery of potential botanical fungicide. |
| [62] |
Nawade B, Yahyaa M, Reuveny H, Shaltiel-Harpaz L, Eisenbach O, et al. 2019. Profiling of volatile te-rpenes from almond (Prunus dulcis) young fruits and characterization of seven terpene synthase genes. |
| [63] |
Martins F, Pereira JA, Bota P, Bento A, Baptista P. 2016. Fungal endophyte communities in above-and belowground olive tree organs and the effect of season and geographic location on their structures. |
| [64] |
Al-Shuaibi BK, Kazerooni EA, Al-Maqbali D, Al-Kharousi M, Al-Yahya'ei MN, et al. 2024. Biocontrol potential of Trichoderma ghanense and Trichoderma citrinoviride toward Pythium aphanidermatum. |
| [65] |
Pokhrel A, Adhikari A, Oli D, Paudel B, Pandit S, et al. 2022. Biocontrol potential and mode of action of Trichoderma against fungal plant diseases. |
| [66] |
Oliveira RS, Chagas LFB, Martins ALL, Souza MC, Luz LL, et al. 2022. Trichoderma in the phytopathogenic biocontrol. Bulgarian Journal of Agricultural Science 28(4):717−724 |
| [67] |
Pandit A, Maheshwari R. 1996. Life-history of Neurospora intermedia in a sugar cane field. |
| [68] |
Joel EL, Bhimba BV. 2013. Biological activity of secondary metabolites isolated from mangrove fungi Neurospora crassa. Journal of Environmental Biology 34(4):729−732 |
| [69] |
El-Zawawy NA, Ali SS, Khalil MA, Sun J, Nouh HS. 2022. Exploring the potential of benzoic acid derived from the endophytic fungus strain Neurospora crassa SSN01 as a promising antimicrobial agent in wound healing. |
| [70] |
Huaman-Pilco AF, Quispe-Sanchez L, Caetano AC, Mena-Chacon LM, Llanos-Gómez KJ, et al. 2025. Physicochemical properties of the endophytic fungus Neurospora sitophila and its interaction with Botrytis cinerea. |
| [71] |
Sun ZB, Li SD, Ren Q, Xu JL, Lu X, et al. 2020. Biology and applications of Clonostachys rosea. |
| [72] |
Abbas A, Ali S, Mubeen M, Hussain A, Gutumsary KA, et al. 2024. Talaromyces spp. are promising biocontrol agents for sustainable agriculture. In Microbial Biocontrol Techniques, eds Kumar A, Solanki MK. Volume 54. Singapore: Springer. pp. 245–280 doi: 10.1007/978-981-97-8739-5_13 |
| [73] |
Sajeena A, Nair DS, Sreepavan K. 2020. Non-pathogenic Fusarium oxysporum as a biocontrol agent. |
| [74] |
González AJ, Estefanía T. 2020. Strains of Neopestalotiopsis sp. are in vitro antagonists of Cryphonectria parasitica. |
| [75] |
Martins F, Mina D, Pereira JA, Baptista P. 2021. Endophytic fungal community structure in olive orchards with high and low incidence of olive anthracnose. |
| [76] |
Butler MJ, Gardiner RB, Day AW. 2009. Melanin synthesis by Sclerotinia sclerotiorum. |
| [77] |
Landum MC, do Rosário Félix M, Alho J, Garcia R, Cabrita MJ, et al. 2016. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. |
| [78] |
Kurjogi M, Basavesha KN, Savalgi VP. 2021. Impact of potassium solubilizing fungi as biopesticides and its role in crop improvement. In Biocontrol Agents and Secondary Metabolites: Applications and Immunization for Plant Growth and Protection, ed. Jogaiah S. Amsterdam: Elsevier. pp. 23–39 doi: 10.1016/B978-0-12-822919-4.00002-8 |
| [79] |
Di Francesco A, Di Foggia M, Corbetta M, Baldo D, Ratti C, et al. 2021. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains. |
| [80] |
Palacio-Bielsa A, Cambra M, Martínez C, Olmos A, Pallás V, et al. 2017. Almond diseases. In Almonds: Botany, Production and Uses, eds Company RS, Gradziel TM. UK: CABI, Wallingford. pp. 321–374 doi: 10.1079/9781780643540.0321 |
| [81] |
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. 2019. Fusarium-produced mycotoxins in plant-pathogen interactions. |
| [82] |
Perrone G, Gallo A. 2017. Aspergillus species and their associated mycotoxins. In Mycotoxigenic Fungi, eds Moretti A, Susca A. New York: Humana Press. pp. 33–49 doi: 10.1007/978-1-4939-6707-0_3 |
| [83] |
Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, et al. 2005. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. |