[1]

Carrow RN. 2006. Can we maintain turf to customers' satisfaction with less water? Agricultural Water Management 80:117−131

doi: 10.1016/j.agwat.2005.07.008
[2]

Braun RC, Straw CM, Soldat DJ, Bekken MAH, Patton AJ, et al. 2023. Strategies for reducing inputs and emissions in turfgrass systems. Crop, Forage & Turfgrass Management 9:e20218

doi: 10.1002/cft2.20218
[3]

Zhang J, Unruh JB, Kenworthy K. 2015. Turf performance of bahiagrass, centipedegrass, and St. augustinegrass cultivars under a linear gradient irrigation system. HortScience 50:491−495

doi: 10.21273/HORTSCI.50.3.491
[4]

Meyer WA, Hoffman L, Bonos SA. 2017. Breeding cool-season turfgrass cultivars for stress tolerance and sustainability in a changing environment. International Turfgrass Society Research Journal 13:3−10

doi: 10.2134/itsrj2016.09.0806
[5]

Kenworthy K, Quesenberry K, Unruh JB, Harmon P, Flor N, et al. 2025. Registration of 'FAES 1307'and 'FAES 1319' zoysiagrasses. Journal of Plant Registrations 19:e20428

doi: 10.1002/plr2.20428
[6]

Milla-Lewis SR, Gouveia BT, Carbajal EM, Miller GL, Patton AJ, et al. 2025. Registration of 'XZ 14069' zoysiagrass. Journal of Plant Registrations 19:e20430

doi: 10.1002/plr2.20430
[7]

Hanna W, Raymer P, Schwartz B. 2013. Warm-season grassses: biology and breeding. In Turfgrass: Biology, Use, and Management. eds. Stier JC, Horgan BP, Bonos SA. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. pp. 543−590 doi: 10.2134/agronmonogr56.c16

[8]

Patton AJ. 2009. Selecting zoysiagrass cultivars: turfgrass quality, growth, pest and environmental stress tolerance. Applied Turfgrass Science 6:1−18

doi: 10.1094/ats-2009-1019-01-mg
[9]

Patton AJ, Schwartz BM, Kenworthy KE. 2017. Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: a review. Crop Science 57:S37−S72

doi: 10.2135/cropsci2017.02.0074
[10]

Christians NE, Patton AJ, Law QD. 2016. Fundamentals of Turfgrass Management, 5th Edition. Hoboken, NJ: Wiley. doi: 10.1002/9781119308867

[11]

Carrow RN. 1996. Drought resistance aspects of turfgrasses in the Southeast: root-shoot responses. Crop Science 36:687−694

doi: 10.2135/cropsci1996.0011183X003600030028x
[12]

Qian YL, Engelke MC. 1999. Performance of five turfgrasses under linear gradient irrigation. HortScience 34:893−896

doi: 10.21273/HORTSCI.34.5.893
[13]

Severmutlu S, Mutlu N, Gurbuz E, Gulsen O, Hocagil M, et al. 2011. Drought resistance of warm-season turfgrasses grown in Mediterranean region of Turkey. HortTechnology 21:726−736

doi: 10.21273/HORTTECH.21.6.726
[14]

Wherley B, Heitholt J, Chandra A, Skulkaew P. 2014. Supplementary irrigation requirements of zoysiagrass and bermudagrass cultivars. Crop Science 54:1823−1831

doi: 10.2135/cropsci2013.11.0753
[15]

Zhang J, Poudel B, Kenworthy K, Unruh JB, Rowland D, et al. 2019. Drought responses of above-ground and below-ground characteristics in warm-season turfgrass. Journal of Agronomy and Crop Science 205:1−12

doi: 10.1111/jac.12301
[16]

Jespersen D, Schwartz B. 2018. Drought avoidance traits in a collection of zoysiagrasses. HortScience 53:1579−1585

doi: 10.21273/HORTSCI13427-18
[17]

Hong M, Bremer DJ. 2021. Minimum water requirements of Japanese lawngrass for survival during prolonged drought. Crop Science 61:2978−2988

doi: 10.1002/csc2.20404
[18]

Simpson E, Haverroth EJ, Taggart M, Andrade MT, Villegas DA, et al. 2024. Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass. Physiologia Plantarum 176:e14622

doi: 10.1111/ppl.14622
[19]

Levitt J. 1972. Responses of Plants to Environmental Stresses. New York: Academic Press. doi: 10.1126/science.177.4051.786.a

[20]

Meeks M, Chandra A. 2025. Drought response of zoysiagrass with varying leaf texture under progressive deficit irrigation. Crop Science 65:e21324

doi: 10.1002/csc2.21324
[21]

Beard JB. 1992. Controlled environment research methods for turfs. In Turfgrass, eds. Waddington DV, Carrow RN, Shearman RC. Madison, Wisconsin, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. pp. 615−651 doi: 10.2134/agronmonogr32.c18

[22]

Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA. 2012. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology 39:839−850

doi: 10.1071/FP12049
[23]

Dambreville A, Griolet M, Rolland G, Dauzat M, Bédiée A, et al. 2016. Phenotyping oilseed rape growth-related traits and their responses to water deficit: the disturbing pot size effect. Functional Plant Biology 44:35−45

doi: 10.1071/FP16036
[24]

Chai Q, Jin F, Merewitz E, Huang B. 2010. Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species. Journal of the American Society for Horticultural Science 135:125−133

doi: 10.21273/JASHS.135.2.125
[25]

Bristiel P, Roumet C, Violle C, Volaire F. 2019. Coping with drought: root trait variability within the perennial grass Dactylis glomerata captures a trade-off between dehydration avoidance and dehydration tolerance. Plant and Soil 434:327−342

doi: 10.1007/s11104-018-3854-8
[26]

Garbowski M, Avera B, Bertram JH, Courkamp JS, Gray J, et al. 2020. Getting to the root of restoration: considering root traits for improved restoration outcomes under drought and competition. Restoration Ecology 28:1384−1395

doi: 10.1111/rec.13291
[27]

Ingrisch J, Karlowsky S, Hasibeder R, Gleixner G, Bahn M. 2020. Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. Global Change Biology 26:4366−4378

doi: 10.1111/gcb.15131
[28]

Doguet D. 2002. Zoysiagrass plant named 'Zeon'. US Plant Patent No.13166P2

[29]

Ito M, Gurgel RGA. 2000. Zoysia grass plant named 'SS-500'. US Plant Patent No. 11466

[30]

Hanson AA. 1966. Meyer Zoysi (reg. No. 12). Crop Science 6:99

doi: 10.2135/cropsci1966.0011183X000600010046x
[31]

Youngner VB. 1986. Zoysiagrass plant 'El Toro'. US Plant Patent No. 5845

[32]

Grabow GL, Vasanth A, Bowman D, Huffman RL, Miller GL. 2008. Evaluation of evapotranspiration-based and soil-moisture-based irrigation control in turf. World Environmental and Water Resources Congress 2008, May 12−16, 2008, Honolulu, Hawaii, USA. American Society of Civil Engineers. pp. 1−9 doi: 10.1061/40976(316)117

[33]

Ramanathan SS, Gannon TW, Everman WJ, Locke AM. 2022. Atrazine, mesosulfuron-methyl, and topramezone persistence in North Carolina soils. Agronomy Journal 114:1068−1079

doi: 10.1002/agj2.21041
[34]

Gouveia BT, Kenworthy KE, Chandra A, Schwartz BM, Zhang J, et al. 2025. Enhancing drought resistance in warm-season turfgrasses: fourteen years of progress through a multistate collaborative project across the southern United States. Crop Science 65:e221393

doi: 10.1002/csc2.21393
[35]

R Core Team. 2025. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. www.R-project.org/

[36]

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2021. nlme: linear and nonlinear mixed effects models

[37]

Lenth RV. 2024. emmeans: estimated marginal means, aka least-squares means. https://cran.r-project.org/web/packages/emmeans/emmeans.pdf

[38]

Butler DG, Cullis BR, Gilmour AR, Gogel BG, Thompson R. 2017. ASReml-R reference manual version 4. VSN International Ltd., Hemel Hempstead, UK

[39]

Smith A, Cullis B, Gilmour A. 2001. Applications: the analysis of crop variety evaluation data in Australia. Australian & New Zealand Journal of Statistics 43:129−145

doi: 10.1111/1467-842X.00163
[40]

Brien CJ. 2025. asremlPlus: Augments ASReml-R in fitting mixed models and packages generally in exploring prediction differences. https://cran.r-project.org/web/packages/asremlPlus/asremlPlus.pdf

[41]

Qian YL, Fry JD, Upham WS. 1997. Rooting and drought avoidance of warm-season turfgrasses and tall fescue in Kansas. Crop Science 37:905−910

doi: 10.2135/cropsci1997.0011183X003700030034x
[42]

Christensen CT, Zhang J, Kenworthy KE, Erickson J, Kruse J, et al. 2017. Classification of zoysiagrass genotypes on rooting capacity and associated performance during drought. International Turfgrass Society Research Journal 13:410−420

doi: 10.2134/itsrj2016.05.0417
[43]

Bengough AG, McKenzie BM, Hallett PD, Valentine TA. 2011. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany 62:59−68

doi: 10.1093/jxb/erq350
[44]

Steinke K, Chalmers D, Thomas J, White R. 2011. Bermudagrass and buffalograss drought response and recovery at two soil depths. Crop Science 51:1215−1223

doi: 10.2135/cropsci2010.08.0469
[45]

Juenger TE, Verslues PE. 2023. Time for a drought experiment: do you know your plants' water status? The Plant Cell 35:10−23

doi: 10.1093/plcell/koac324
[46]

Moshelion M, Dietz KJ, Dodd IC, Muller B, Lunn JE. 2024. Guidelines for designing and interpreting drought experiments in controlled conditions. Journal of Experimental Botany 75:4671−4679

doi: 10.1093/jxb/erae292
[47]

Sambatti JBM, Caylor KK. 2007. When is breeding for drought tolerance optimal if drought is random? New Phytologist 175:70−80

doi: 10.1111/j.1469-8137.2007.02067.x
[48]

Jiao T, Williams CA, De Kauwe MG, Schwalm CR, Medlyn BE. 2021. Patterns of post-drought recovery are strongly influenced by drought duration, frequency, post-drought wetness, and bioclimatic setting. Global Change Biology 27:4630−4643

doi: 10.1111/gcb.15788
[49]

Ingrisch J, Umlauf N, Bahn M. 2023. Functional thresholds alter the relationship of plant resistance and recovery to drought. Ecology 104:e3907

doi: 10.1002/ecy.3907
[50]

Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, et al. 2017. Global patterns of drought recovery. Nature 548:202−205

doi: 10.1038/nature23021
[51]

Ammitzboll H, Vaillancourt RE, Potts BM, Harrison PA, Brodribb T, et al. 2020. Independent genetic control of drought resistance, recovery, and growth of Eucalyptus globulus seedlings. Plant, Cell & Environment 43:103−115

doi: 10.1111/pce.13649
[52]

Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, et al. 2013. Embolism resistance as a key mechanism to understand adaptive plant strategies. Current Opinion in Plant Biology 16:287−292

doi: 10.1016/j.pbi.2013.02.005
[53]

Cardoso AA, Batz TA, McAdam SAM. 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiology 182:547−554

doi: 10.1104/pp.19.00585
[54]

Cardoso AA, Brodribb TJ, Lucani CJ, DaMatta FM, McAdam SAM. 2018. Coordinated plasticity maintains hydraulic safety in sunflower leaves. Plant, Cell & Environment 41:2567−2576

doi: 10.1111/pce.13335
[55]

Trueba S, Pan R, Scoffoni C, John GP, Davis SD, et al. 2019. Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry. New Phytologist 223:134−149

doi: 10.1111/nph.15779
[56]

Mantova M, Cochard H, Burlett R, Delzon S, King A, et al. 2023. On the path from xylem hydraulic failure to downstream cell death. The New Phytologist 237:793−806

doi: 10.1111/nph.18578
[57]

Huang B. 2008. Mechanisms and strategies for improving drought resistance in turfgrass. Acta Horticulturae 783:221

doi: 10.17660/actahortic.2008.783.22
[58]

Harrison Day BL, Johnson KM, Tonet V, Bourbia I, Blackman C, et al. 2023. The root of the problem: diverse vulnerability to xylem cavitation found within the root system of wheat plants. New Phytologist 239:1239−1252

doi: 10.1111/nph.19017