[1]

Liao GL, Liu Q, Li YQ, Zhong M, Huang CH, et al. 2020. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). Journal of Plant Research 133(5):715−726

doi: 10.1007/s10265-020-01206-y
[2]

Chaturvedi S, Khan S, Bhunia RK, Kaur K, Tiwari S. 2022. Metabolic engineering in food crops to enhance ascorbic acid production: crop biofortification perspectives for human health. Physiology and Molecular Biology of Plants 28(4):871−884

doi: 10.1007/s12298-022-01172-w
[3]

Maruta T. 2022. How does light facilitate vitamin C biosynthesis in leaves? Bioscience, Biotechnology, and Biochemistry 86(9):1173−1182

doi: 10.1093/bbb/zbac096
[4]

Smirnoff N. 2018. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology & Medicine 122:116−129

doi: 10.1016/j.freeradbiomed.2018.03.033
[5]

Kakan X, Yu Y, Li S, Li X, Huang R, et al. 2021. Ascorbic acid modulation by ABI4 transcriptional repression of VTC2 in the salt tolerance of Arabidopsis. BMC Plant Biology 21(1):112

doi: 10.1186/s12870-021-02882-1
[6]

Liu X, Bulley SM, Varkonyi-Gasic E, Zhong C, Li D. 2023. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress. Plant Physiology 192(2):982−999

doi: 10.1093/plphys/kiad121
[7]

Arabia A, Munné-Bosch S, Muñoz P. 2024. Ascorbic acid as a master redox regulator of fruit ripening. Postharvest Biology and Technology 207:112614

doi: 10.1016/j.postharvbio.2023.112614
[8]

Fenech M, Amaya I, Valpuesta V, Botella MA. 2019. Vitamin C Content in Fruits: Biosynthesis and Regulation. Frontiers in Plant Science 9:2006

doi: 10.3389/fpls.2018.02006
[9]

Liao G, Chen L, He Y, Li X, Lv Z, et al. 2021. Three metabolic pathways are responsible for the accumulation and maintenance of high AsA content in kiwifruit (Actinidia eriantha). BMC Genomics 22(1):13

doi: 10.1186/s12864-020-07311-5
[10]

Valpuesta V, Botella MA. 2004. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science 9(12):573−577

doi: 10.1016/j.tplants.2004.10.002
[11]

Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, et al. 2007. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. The New Phytologist 175(3):462−471

doi: 10.1111/j.1469-8137.2007.02120.x
[12]

Yahia EM, Contreras-Padilla M, Gonzalez-Aguilar G. 2001. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. LWT - Food Science and Technology 34(7):452−457

doi: 10.1006/fstl.2001.0790
[13]

Leng X, Wang H, Zhang S, Qu C, Yang C, et al. 2021. Identification and characterization of the APX gene family and its expression pattern under phytohormone treatment and abiotic stress in Populus trichocarpa. Genes 12(3):334

doi: 10.3390/genes12030334
[14]

Liang Z, Xu H, Qi H, Fei Y, Cui J. 2024. Genome-wide identification and analysis of ascorbate peroxidase (APX) gene family in hemp (Cannabis sativa L.) under various abiotic stresses. PeerJ 12:e17249

doi: 10.7717/peerj.17249
[15]

Shen L, Zhou Y, Yang X. 2024. Genome-wide identification of ascorbate peroxidase (APX) gene family and the function of SmAPX2 under high temperature stress in eggplant. Scientia Horticulturae 326:112744

doi: 10.1016/j.scienta.2023.112744
[16]

Pang X, Chen J, Xu Y, Liu J, Zhong Y, et al. 2023. Genome-wide characterization of ascorbate peroxidase gene family in pepper (Capsicum annuum L.) in response to multiple abiotic stresses. Frontiers in Plant Science 14:1189020

doi: 10.3389/fpls.2023.1189020
[17]

Wang J, Wu B, Yin H, Fan Z, Li X, et al. 2017. Overexpression of CaAPX induces orchestrated reactive oxygen scavenging and enhances cold and heat tolerances in tobacco. BioMed Research International 2017(1):4049534

doi: 10.1155/2017/4049534
[18]

Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, et al. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256(5):1217−1227

doi: 10.1007/s00709-019-01354-6
[19]

Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, et al. 2013. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One 8(2):e57472

doi: 10.1371/journal.pone.0057472
[20]

Pan Z, Chen L, Wang F, Song W, Cao A,et al. 2019. Genome-wide identification and expression analysis of the ascorbate oxidase gene family in Gossypium hirsutum reveals the critical role of GhAO1A in delaying dark-induced leaf senescence. International Journal of Molecular Sciences 20(24):6167

doi: 10.3390/ijms20246167
[21]

Skorupa M, Szczepanek J, Yolcu S, Mazur J, Tretyn A, et al. 2022. Characteristic of the ascorbate oxidase gene family in Beta vulgaris and analysis of the role of AAO in response to salinity and drought in beet. International Journal of Molecular Sciences 23(21):12773

doi: 10.3390/ijms232112773
[22]

Zhang Y, Li H, Shu W, Zhang C, Zhang W, et al. 2011. Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Molecular Biology Reporter 29(3):638−645

doi: 10.1007/s11105-010-0271-4
[23]

Lu XM, Yu XF, Li GQ, Qu MH, Wang H, et al. 2024. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits. Plant Communications 5(6):100856

doi: 10.1016/j.xplc.2024.100856
[24]

Pinto D, Delerue-Matos C, Rodrigues F. 2020. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: a review. Food Research International 136:109449

doi: 10.1016/j.foodres.2020.109449
[25]

Hu YK, Kim SJ, Jang CS, Lim SD. 2024. Antioxidant activity analysis of native Actinidia arguta cultivars. International Journal of Molecular Sciences 25(3):1505

doi: 10.3390/ijms25031505
[26]

Leontowicz H, Leontowicz M, Latocha P, Jesion I, Park YS, et al. 2016. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa 'Hayward' and Actinidia eriantha 'Bidan'. Food Chemistry 196:281−291

doi: 10.1016/j.foodchem.2015.08.127
[27]

Lin Y, Zhao B, Tang H, Cheng L, Zhang Y, et al. 2022. L-ascorbic acid metabolism in two contrasting hardy kiwifruit (Actinidia arguta) cultivars during fruit development. Scientia Horticulturae 297:110940

doi: 10.1016/j.scienta.2022.110940
[28]

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39:W29−W37

doi: 10.1093/nar/gkr367
[29]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, et al. 2020. Pfam: The protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[30]

Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, et al. 2005. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook. Ed. Walker JM. Totowa, NJ: Humana Press. pp. 571−607 doi: 10.1385/1-59259-890-0:571

[31]

Chou KC, Shen HB. 2010. Cell-PLoc 2.0: an improved package of web-servers for predicting subcelluar localization of proteins in various organisms. Natural Science 2(10):1090−1103

doi: 10.4236/ns.2010.210136
[32]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792−1797

doi: 10.1093/nar/gkh340
[33]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870−1874

doi: 10.1093/molbev/msw054
[34]

Yu G. 2020. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics 69(1):e96

doi: 10.1002/cpbi.96
[35]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant 16(11):1733−1742

doi: 10.1016/j.molp.2023.09.010
[36]

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24):4876−4882

doi: 10.1093/nar/25.24.4876
[37]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[38]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325−327

doi: 10.1093/nar/30.1.325
[39]

Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40(7):e49

doi: 10.1093/nar/gkr1293
[40]

Zhang Z, Xiao J, Wu J, Zhang H, Liu G, et al. 2012. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical Research Communications 419(4):779−781

doi: 10.1016/j.bbrc.2012.02.101
[41]

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics 8(1):77−80

doi: 10.1016/S1672-0229(10)60008-3
[42]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37(8):907−915

doi: 10.1038/s41587-019-0201-4
[43]

Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. 2022. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38(10):2943−2945

doi: 10.1093/bioinformatics/btac166
[44]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550

doi: 10.1186/s13059-014-0550-8
[45]

Wu T, Hu E, Xu S, Chen M, Guo P, et al. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2(3):100141

doi: 10.1016/j.xinn.2021.100141
[46]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498−2504

doi: 10.1101/gr.1239303
[47]

Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M, Hellens RP, et al. 2009. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. Journal of Experimental Botany 60(13):3765−3779

doi: 10.1093/jxb/erp218
[48]

Lim CK. 2012. The function of ascorbate oxidase in Arabidopsis thaliana. Doctoral thesis. University of Exeter, United Kingdom

[49]

Panchuk II, Zentgraf U, Volkov RA. 2005. Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222(5):926−932

doi: 10.1007/s00425-005-0028-8
[50]

Guo K, Du X, Tu L, Tang W, Wang P, et al. 2016. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). Journal of Experimental Botany 67(11):3289−3301

doi: 10.1093/jxb/erw146
[51]

Sami A, Haider MZ, Shafiq M, Sadiq S, Ahmad F. 2024. Genome-wide identification and in-silico expression analysis of CCO gene family in sunflower (Helianthus annuus) against abiotic stress. Plant Molecular Biology 114(2):34

doi: 10.1007/s11103-024-01433-0
[52]

Bao P, Sun J, Qu G, Yan M, Cheng S, et al. 2024. Identification and expression analysis of CCCH gene family and screening of key low temperature stress response gene CbuC3H24 and CbuC3H58 in Catalpa bungei. BMC Genomics 25(1):779

doi: 10.1186/s12864-024-10690-8
[53]

Gao R, Chen L, Chen F, Ma H. 2024. Genome-wide identification of SHMT family genes in alfalfa (Medicago sativa) and its functional analyses under various abiotic stresses. BMC Genomics 25(1):781

doi: 10.1186/s12864-024-10637-z
[54]

Wang C, Xiong S, Hu S, Yang L, Huang Y, et al. 2024. Genome-wide identification of Gα family in grass carp (Ctenopharyngodon idella) and reproductive regulation functional characteristics of Cignaq. BMC Genomics 25(1):800

doi: 10.1186/s12864-024-10717-0
[55]

Wang F, Sun F, Yu Z, Zhang Y, Liu Y, et al. 2025. Genome-wide identification of glyoxalase (PbrGLY) gene family and functional analysis of PbrGLYI-28 in response to Botryosphaeria dothidea in pear. BMC Plant Biology 25(1):349

doi: 10.1186/s12870-025-06302-6
[56]

Li ZQ, Li JT, Bing J, Zhang GF. 2019. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas 41(6):534−547

doi: 10.16288/j.yczz.19-026
[57]

Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, et al. 2015. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology 87(6):615−631

doi: 10.1007/s11103-015-0301-6
[58]

Marand AP, Eveland AL, Kaufmann K, Springer NM. 2023. cis-Regulatory elements in plant development, adaptation, and evolution. Annual Review of Plant Biology 74:111−137

doi: 10.1146/annurev-arplant-070122-030236
[59]

Aleem M, Aleem S, Sharif I, Aleem M, Shahzad R, et al. 2022. Whole-genome identification of APX and CAT gene families in cultivated and wild soybeans and their regulatory function in plant development and stress response. Antioxidants 11(8):1626

doi: 10.3390/antiox11081626
[60]

Shu P, Zhang Z, Wu Y, Chen Y, Li K, et al. 2023. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). The New Phytologist 238(5):2064−2079

doi: 10.1111/nph.18840