[1]

Neupane P, Bhatta S, Kafle A, Adhikari M. 2025. Evaluation of foliar application of zinc at different doses on potato (Solanum tuberosum L.) growth, yield, and economic feasibility in Dolpa of Nepal. Technology in Horticulture 5:e011

doi: 10.48130/tihort-0025-0006
[2]

Bradshaw JE, Bonierbale M. 2010. Potatoes. In Root and Tuber Crops. Handbook of Plant Breeding, ed. Bradshaw JE. New York, NY: Springer New York. pp. 1−52 doi: 10.1007/978-0-387-92765-7_1

[3]

Vilvert E, Stridh L, Andersson B, Olson Å, Aldén L, et al. 2022. Evidence based disease control methods in potato production: a systematic map protocol. Environmental Evidence 11:6

doi: 10.1186/s13750-022-00259-x
[4]

Hameed A, Zeeshan M, Binyamin R, Alam MW, Ali S, et al. 2024. Molecular characterization of Pectobacterium atrosepticum infecting potato and its management through chemicals. PeerJ 12:e17518

doi: 10.7717/peerj.17518
[5]

van der Wolf JM, Acuña I, De Boer SH, Brurberg MB, Cahill G, et al. 2021. Diseases caused by Pectobacterium and Dickeya species around the world. In Plant Diseases Caused by Dickeya and Pectobacterium Species, eds. Van Gijsegem F, van der Wolf JM, Toth IK. Cham: Springer International Publishing. pp. 215−261 doi: 10.1007/978-3-030-61459-1_7

[6]

van der Wolf J, Krijger M, Mendes O, Kurm V, Gros J. 2022. Natural infections of potato plants grown from minitubers with blackleg-causing soft rot Pectobacteriaceae. Microorganisms 10:2504

doi: 10.3390/microorganisms10122504
[7]

Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant pathology 60:999−1013

doi: 10.1111/j.1365-3059.2011.02470.x
[8]

van der Wolf JM, De Boer SH, Czajkowski R, Cahill G, Van Gijsegem F, et al. 2021. Management of diseases caused by Pectobacterium and Dickeya species. In Plant Diseases Caused by Dickeya and Pectobacterium Species, eds. Van Gijsegem F, van der Wolf JM, Toth IK. Cham: Springer International Publishing. pp. 175−214 doi: 10.1007/978-3-030-61459-1_6

[9]

Dye DW. 1981. A numerical taxonomic study of the genus Erwinia. New Zealand Journal of Agricultural Research 24:223−229

doi: 10.1080/00288233.1981.10420894
[10]

Gardan L, Gouy C, Christen R, Samson R. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. International Journal of Systematic and Evolutionary Microbiology 53:381−391

doi: 10.1099/ijs.0.02423-0
[11]

Wasendorf C, Schmitz-Esser S, Eischeid CJ, Leyhe MJ, Nelson EN, et al. 2022. Genome analysis of Erwinia persicina reveals implications for soft rot pathogenicity in plants. Frontiers in microbiology 13:1001139

doi: 10.3389/fmicb.2022.1001139
[12]

Guttman Y, Joshi JR, Chriker N, Khadka N, Kleiman M, et al. 2021. Ecological adaptations influence the susceptibility of plants in the genus Zantedeschia to soft rot Pectobacterium spp. Horticulture Research 8:13

doi: 10.1038/s41438-020-00446-2
[13]

Raoul des Essarts Y, Cigna J, Quêtu-Laurent A, Caron A, Munier E, et al. 2016. Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied and Environmental Microbiology 82:268−278

doi: 10.1128/AEM.02525-15
[14]

Bisht VS, Bains PS, Letal JR. 1993. A simple and efficient method to assess susceptibility of potato to stem rot by Erwinia carotovora subspecies. American Potato Journal 70:611−616

doi: 10.1007/BF02850850
[15]

Rietman H, Finkers R, Evers L, van der Zouwen PS, van der Wolf JM, et al. 2014. A stringent and broad screen of Solanum spp. tolerance against Erwinia bacteria using a petiole test. American Journal of Potato Research 91:204−214

doi: 10.1007/s12230-013-9339-7
[16]

Zhang P, Yuan Z, Wei L, Qiu X, Wang G, et al. 2022. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Science 314:111127

doi: 10.1016/j.plantsci.2021.111127
[17]

Qiu X, Wang G, Abou-Elwafa SF, Fu J, Liu Z, et al. 2022. Genome-wide identification of HD-ZIP transcription factors in maize and their regulatory roles in promoting drought tolerance. Physiology and Molecular Biology of Plants 28:425−437

doi: 10.1007/s12298-022-01147-x
[18]

Xu S, Hu C, Tan Q, Qin S, Sun X. 2018. Subcellular distribution of molybdenum, ultrastructural and antioxidative responses in soybean seedlings under excess molybdenum stress. Plant Physiology and Biochemistry 123:75−80

doi: 10.1016/j.plaphy.2017.11.023
[19]

Li L, Guo B, Feng C, Liu H, Lin D. 2022. Growth, physiological, and temperature characteristics in Chinese cabbage pakchoi as affected by Cd-stressed conditions and identifying its main controlling factors using PLS model. BMC Plant Biology 22:571

doi: 10.1186/s12870-022-03966-2
[20]

Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, et al. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217−1227

doi: 10.1007/s00709-019-01354-6
[21]

Wang Q, Chen X, Chai X, Xue D, Zheng W, et al. 2019. The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of clonostachys rosea-induced resistance to gray mold disease in tomato. Phytopathology 109:1102−1114

doi: 10.1094/PHYTO-01-19-0025-R
[22]

Saeed S, Ullah S, Amin F, Al-Hawadi JS, Okla MK, et al. 2024. Salicylic acid and tocopherol improve wheat (Triticum aestivum L.) physio-biochemical and agronomic features grown in deep sowing stress: a way forward towards sustainable production. BMC Plant Biology 24:477

doi: 10.1186/s12870-024-05180-8
[23]

Feng Q, Yang S, Wang Y, Lu L, Sun M, et al. 2021. Physiological and molecular mechanisms of ABA and CaCl2 regulating chilling tolerance of cucumber seedlings. Plants 10:2746

doi: 10.3390/plants10122746
[24]

Ding H, Ma D, Huang X, Hou J, Wang C, et al. 2019. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum 41:123

doi: 10.1007/s11738-019-2918-6
[25]

Stevenson FJ. 1947. New varieties of potatoes. American Potato Journal 24:247−260

doi: 10.1007/BF02885367
[26]

Ma D, Sun D, Wang C, Ding H, Qin H, et al. 2017. Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science 8:860

doi: 10.3389/fpls.2017.00860
[27]

Qin X, Chang Y, Wang Y, Yang J, Nie S, et al. 2023. Aspergillus sp. R3, a new producer for cyclopyazonic acid, inhibits rice sheath blight fungus Rhizoctonia solani Kühn. Physiological and Molecular Plant Pathology 125:102007

doi: 10.1016/j.pmpp.2023.102007
[28]

Rai KK. 2023. Revisiting the critical role of ROS and RNS in plant defense. Journal of Plant Growth Regulation 42:6202−6227

doi: 10.1007/s00344-022-10804-0
[29]

Wang P, Liu WC, Han C, Wang S, Bai MY, et al. 2024. Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology 66:330−367

doi: 10.1111/jipb.13601
[30]

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, et al. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442−446

doi: 10.1038/nature01485
[31]

Tanou G, Molassiotis A, Diamantidis G. 2009. Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. Journal of Plant Physiology 166:1904−1913

doi: 10.1016/j.jplph.2009.06.012
[32]

Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, et al. 2022. Reactive oxygen species in plants: from source to sink. Antioxidants 11:225

doi: 10.3390/antiox11020225
[33]

Considine MJ, Foyer CH. 2021. Stress effects on the reactive oxygen species-dependent regulation of plant growth and development. Journal of Experimental Botany 72:5795−5806

doi: 10.1093/jxb/erab265
[34]

Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10:277

doi: 10.3390/antiox10020277
[35]

Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, et al. 2015. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology 87:615−631

doi: 10.1007/s11103-015-0301-6
[36]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell biology 23:663−679

doi: 10.1038/s41580-022-00499-2
[37]

Temple MD, Perrone GG, Dawes IW. 2005. Complex cellular responses to reactive oxygen species. Trends in Cell Biology 15:319−326

doi: 10.1016/j.tcb.2005.04.003
[38]

Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, et al. 2023. Lignin and its pathway-associated phytoalexins modulate plant defense against fungi. Journal of Fungi 9:52

doi: 10.3390/jof9010052
[39]

Jadhav SJ, Mazza G, Salunkhe DK. 1991. Terpenoid phytoalexins in potatoes: a review. Food Chemistry 41:195−217

doi: 10.1016/0308-8146(91)90043-N
[40]

Chaki M, Begara-Morales JC, Barroso JB. 2020. Oxidative stress in plants. Antioxidants 9:481

doi: 10.3390/antiox9060481
[41]

Jiang G, Yin D, Zhao J, Chen H, Guo L, et al. 2016. The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Scientific Reports 6:26104

doi: 10.1038/srep26104
[42]

Sheng C, Yu D, Li X, Yu H, Zhang Y, et al. 2022. OsAPX1 positively contributes to rice blast resistance. Frontiers in Plant Science 13:843271

doi: 10.3389/fpls.2022.843271