[1]

Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123−125

doi: 10.1126/science.1176985
[2]

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, et al. 2014. Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press. pp. 465−570 www.ipcc.ch/report/ar5/wg1

[3]

Tian H, Yang J, Xu R, Lu C, Canadell JG, et al. 2019. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Global Change Biology 25:640−659

doi: 10.1111/gcb.14514
[4]

Wang Y, Guo J, Vogt RD, Mulder J, Wang J, et al. 2018. Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation. Global Change Biology 24:e617−e626

doi: 10.1111/gcb.13966
[5]

Cui X, Zhou F, Ciais P, Davidson EA, Tubiello FN, et al. 2021. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food 2:886−893

doi: 10.1038/s43016-021-00384-9
[6]

Shi RY, Li JY, Jiang J, Kamran MA, Xu RK, et al. 2018. Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials. Environmental Science and Pollution Research 25:9662−9672

doi: 10.1007/s11356-018-1289-7
[7]

Yuan JH, Xu RK. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management 27:110−115

doi: 10.1111/j.1475-2743.2010.00317.x
[8]

Liu X, Shi Y, Zhang Q, Li G. 2021. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environmental Science and Pollution Research 28:6649−6663

doi: 10.1007/s11356-020-10928-4
[9]

Wu Z, Zhang X, Dong Y, Li B, Xiong Z. 2019. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis. Agricultural and Forest Meteorology 278:107625

doi: 10.1016/j.agrformet.2019.107625
[10]

He L, Zhao X, Wang S, Xing G. 2016. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols. Soil and Tillage Research 164:52−62

doi: 10.1016/j.still.2016.05.006
[11]

Čuhel J, Šimek M, Laughlin RJ, Bru D, Chèneby D, et al. 2010. Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Applied and Environmental Microbiology 76(6):1870−1878

doi: 10.1128/AEM.02484-09
[12]

Qiu Y, Zhang Y, Zhang K, Xu X, Zhao Y, et al. 2024. Intermediate soil acidification induces highest nitrous oxide emissions. Nature Communications 15:2695

doi: 10.1038/s41467-024-46931-3
[13]

Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, et al. 2014. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems & Environment 191:5−16

doi: 10.1016/j.agee.2013.10.009
[14]

Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, et al. 2019. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Science of The Total Environment 651:2354−2364

doi: 10.1016/j.scitotenv.2018.10.060
[15]

Liu Q, Liu B, Zhang Y, Hu T, Lin Z, et al. 2019. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biology 25:2077−2093

doi: 10.1111/gcb.14613
[16]

Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, et al. 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports 3:1732

doi: 10.1038/srep01732
[17]

Toyoda S, Yoshida N, Koba K. 2017. Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrometry Reviews 36:135−160

doi: 10.1002/mas.21459
[18]

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368(1621):20130122

doi: 10.1098/rstb.2013.0122
[19]

Müller C, Laughlin RJ, Spott O, Rütting T. 2014. Quantification of N2O emission pathways via a 15N tracing model. Soil Biology and Biochemistry 72:44−54

doi: 10.1016/j.soilbio.2014.01.013
[20]

Zhang Y, Zhao W, Cai Z, Müller C, Zhang J. 2018. Heterotrophic nitrification is responsible for large rates of N2O emission from subtropical acid forest soil in China. European Journal of Soil Science 69:646−654

doi: 10.1111/ejss.12557
[21]

Hu HW, Chen D, He JZ. 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews 39:729−749

doi: 10.1093/femsre/fuv021
[22]

Harter J, Guzman-Bustamante I, Kuehfuss S, Ruser R, Well R, et al. 2016. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil. Scientific Reports 6:39574

doi: 10.1038/srep39574
[23]

Yu L, Harris E, Lewicka-Szczebak D, Barthel M, Blomberg MRA, et al. 2020. What can we learn from N2O isotope data? – Analytics, processes and modelling. Rapid Communications in Mass Spectrometry 34:e8858

doi: 10.1002/rcm.8858
[24]

Lewicka-Szczebak D, Lewicki MP, Well R. 2020. N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction–validation with the 15N gas-flux method in laboratory and field studies. Biogeosciences 17:5513−5537

doi: 10.5194/bg-17-5513-2020
[25]

Chu C, Dai S, Meng L, Cai Z, Zhang J, et al. 2023. Biochar application can mitigate NH3 volatilization in acidic forest and upland soils but stimulates gaseous N losses in flooded acidic paddy soil. Science of The Total Environment 864:161099

doi: 10.1016/j.scitotenv.2022.161099
[26]

Buchen C, Lewicka-Szczebak D, Flessa H, Well R. 2018. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules. Rapid Communications in Mass Spectrometry 32:1053−1067

doi: 10.1002/rcm.8132
[27]

Zhang P, Wen T, Hu Y, Zhang J, Cai Z. 2021. Can N fertilizer addition affect N2O isotopocule signatures for soil N2O source partitioning? International Journal of Environmental Research and Public Health 18(9):5024

doi: 10.3390/ijerph18095024
[28]

Wang X, Han C, Zhang J, Huang Q, Deng H, et al. 2015. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biology and Biochemistry 84:28−37

doi: 10.1016/j.soilbio.2015.02.013
[29]

Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. 2018. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Science China Life Sciences 61:1451−1462

doi: 10.1007/s11427-018-9364-7
[30]

Zhao Y, Su JQ, Ye J, Rensing C, Tardif S, et al. 2019. AsChip: a high-throughput qPCR chip for comprehensive profiling of genes linked to microbial cycling of arsenic. Environmental Science & Technology 53(2):798−807

doi: 10.1021/acs.est.8b03798
[31]

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10:996−998

doi: 10.1038/nmeth.2604
[32]

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47:D259−d264

doi: 10.1093/nar/gky1022
[33]

Mothapo N, Chen H, Cubeta MA, Grossman JM, Fuller F, et al. 2015. Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biology and Biochemistry 83:160−175

doi: 10.1016/j.soilbio.2015.02.001
[34]

Yang Y, Zhang J, Cai Z. 2016. Nitrification activities and N mineralization in paddy soils are insensitive to oxygen concentration. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 66(3):272−281

doi: 10.1080/09064710.2015.1093653
[35]

Lin Y, Ding W, Liu D, He T, Yoo G, et al. 2017. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biology and Biochemistry 113:89−98

doi: 10.1016/j.soilbio.2017.06.001
[36]

Shen QR, Ran W, Cao ZH. 2003. Mechanisms of nitrite accumulation occurring in soil nitrification. Chemosphere 50:747−753

doi: 10.1016/S0045-6535(02)00215-1
[37]

Zhang A, Cui L, Pan G, Li L, Hussain Q, et al. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139(4):469−475

doi: 10.1016/j.agee.2010.09.003
[38]

Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL. 2018. Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environmental Science & Technology 52:5027−5047

doi: 10.1021/acs.est.7b06487
[39]

Yang HI, Lou K, Rajapaksha AU, Ok YS, Anyia AO, et al. 2018. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environmental Science and Pollution Research 25:25638−25647

doi: 10.1007/s11356-017-8551-2
[40]

Yang F, Cao X, Gao B, Zhao L, Li F. 2015. Short-term effects of rice straw biochar on sorption, emission, and transformation of soil NH4+-N. Environmental Science and Pollution Research 22:9184−9192

doi: 10.1007/s11356-014-4067-1
[41]

Philippot L, Andert J, Jones CM, Bru D, Hallin S. 2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology 17:1497−1504

doi: 10.1111/j.1365-2486.2010.02334.x
[42]

Chen H, Mothapo NV, Shi W. 2015. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microbial Ecology 69:180−191

doi: 10.1007/s00248-014-0488-0
[43]

Zhang Y, Zhao W, Zhang J, Cai Z. 2017. N2O production pathways relate to land use type in acidic soils in subtropical China. Journal of Soils and Sediments 17:306−314

doi: 10.1007/s11368-016-1554-7
[44]

Huang Y, Xiao X, Long X. 2017. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil. Journal of Soils and Sediments 17:1599−1606

doi: 10.1007/s11368-017-1655-y
[45]

Ji C, Han Z, Zheng F, Wu S, Wang J, et al. 2022. Biochar reduced soil nitrous oxide emissions through suppressing fungal denitrification and affecting fungal community assembly in a subtropical tea plantation. Agriculture, Ecosystems & Environment 326:107784

doi: 10.1016/j.agee.2021.107784
[46]

Shoun H, Kim DH, Uchiyama H, Sugiyama J. 1992. Denitrification by fungi. FEMS Microbiology Letters 94:277−281

doi: 10.1111/j.1574-6968.1992.tb05331.x
[47]

Wei Z, Well R, Ma X, Lewicka-Szczebak D, Rohe L, et al. 2024. Organic fertilizer amendment decreased N2O/(N2O+N2) ratio by enhancing the mutualism between bacterial and fungal denitrifiers in high nitrogen loading arable soils. Soil Biology and Biochemistry 198:109550

doi: 10.1016/j.soilbio.2024.109550
[48]

Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, et al. 2014. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal 8:660−674

doi: 10.1038/ismej.2013.160
[49]

Duan P, Zhang X, Zhang Q, Wu Z, Xiong Z. 2018. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Science of The Total Environment 642:1303−1310

doi: 10.1016/j.scitotenv.2018.06.166
[50]

Liao J, Hu A, Zhao Z, Liu X, Jiang C, et al. 2021. Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission. Soil Biology and Biochemistry 156:108212

doi: 10.1016/j.soilbio.2021.108212
[51]

Zhang Y, Zhang Z, Chen Y. 2021. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environmental Science & Technology 55:8068−8078

doi: 10.1021/acs.est.1c01976
[52]

Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, et al. 2014. Recently identified microbial guild mediates soil N2O sink capacity. Nature Climate Change 4:801−805

doi: 10.1038/nclimate2301
[53]

Shan J, Sanford RA, Chee-Sanford J, Ooi SK, Löffler FE, et al. 2021. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology 27:2669−2683

doi: 10.1111/gcb.15545
[54]

Obia A, Cornelissen G, Mulder J, Dörsch P. 2015. Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils. PLoS One 10:e0138781

doi: 10.1371/journal.pone.0138781
[55]

He L, Shan J, Zhao X, Wang S, Yan X. 2019. Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition. Chemosphere 234:558−567

doi: 10.1016/j.chemosphere.2019.06.038
[56]

Yanai Y, Toyota K, Okazaki M. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition 53:181−188

doi: 10.1111/j.1747-0765.2007.00123.x
[57]

Andersson S, Nilsson SI, Saetre P. 2000. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry 32:1−10

doi: 10.1016/S0038-0717(99)00103-0
[58]

Bååth E, Anderson TH. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35:955−963

doi: 10.1016/S0038-0717(03)00154-8
[59]

Wei Z, Shan J, Well R, Yan X, Senbayram M. 2022. Land use conversion and soil moisture affect the magnitude and pattern of soil-borne N2, NO, and N2O emissions. Geoderma 407:115568

doi: 10.1016/j.geoderma.2021.115568
[60]

Šimek M, Cooper JE. 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53:345−354

doi: 10.1046/j.1365-2389.2002.00461.x
[61]

Liu B, Mørkved PT, Frostegård Å, Bakken LR. 2010. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiology Ecology 72:407−417

doi: 10.1111/j.1574-6941.2010.00856.x
[62]

Vor T, Dyckmans J, Loftfield N, Beese F, Flessa H. 2003. Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. Journal of Plant Nutrition and Soil Science 166:39−45

doi: 10.1002/jpln.200390010
[63]

Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, et al. 2013. Denitrification and N2O: N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Science of The Total Environment 465:173−195

doi: 10.1016/j.scitotenv.2012.11.050
[64]

Anderson CR, Hamonts K, Clough TJ, Condron LM. 2014. Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. Agriculture, Ecosystems & Environment 191:63−72

doi: 10.1016/j.agee.2014.02.021
[65]

Zhang K, Chen L, Li Y, Brookes PC, Xu J, et al. 2017. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biology and Fertility of Soils 53:77−87

doi: 10.1007/s00374-016-1154-0
[66]

Li M, Liu M, Li ZP, Jiang CY, Wu M. 2016. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. Journal of Integrative Agriculture 15:209−219

doi: 10.1016/s2095-3119(15)61136-4
[67]

Venterea RT, Clough TJ, Coulter JA, Breuillin-Sessoms F, Wang P, et al. 2015. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Scientific Reports 5:12153

doi: 10.1038/srep12153
[68]

Aleem MIH, Alexander M. 1960. Nutrition and physiology of Nitrobacter agilis. Applied Microbiology 8:80−84

doi: 10.1128/am.8.2.80-84.1960
[69]

Zhang J, Cai Z, Zhu T. 2011. N2O production pathways in the subtropical acid forest soils in China. Environmental Research 111:643−649

doi: 10.1016/j.envres.2011.04.005