[1]

Wong WL, Su X, Li X, Cheung CMG, Klein R, et al. 2014. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2:e106−e116

doi: 10.1016/S2214-109X(13)70145-1
[2]

Tham YC, Li X, Wong TY, Quigley HA, Aung T, et al. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081−2090

doi: 10.1016/j.ophtha.2014.05.013
[3]

Solano AGR, de Fátima Pereira A, de Faria LGA, Fialho SL, de Oliveira Patricio PS, et al. 2018. Etoposide-loaded poly(lactic-co-glycolic acid) intravitreal implants: in vitro and in vivo evaluation. AAPS PharmSciTech 19:1652−1661

doi: 10.1208/s12249-018-0978-3
[4]

McAvoy K, Jones D, Thakur RRS. 2018. Synthesis and characterisation of photocrosslinked poly(ethylene glycol) diacrylate implants for sustained ocular drug delivery. Pharmaceutical Research 35:36

doi: 10.1007/s11095-017-2298-9
[5]

Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, et al. 2016. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Advanced Healthcare Materials 5:108−118

doi: 10.1002/adhm.201500005
[6]

Komez A, Baran ET, Erdem U, Hasirci N, Hasirci V. 2016. Construction of a patterned hydrogel—fibrous mat bilayer structure to mimic choroid and Bruch's membrane layers of retina. Journal of Biomedical Materials Research Part A 104:2166−2177

doi: 10.1002/jbm.a.35756
[7]

Zhao X, Li S, Du X, Li W, Wang Q, et al. 2022. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty. Bioactive Materials 8:196−209

doi: 10.1016/j.bioactmat.2021.07.001
[8]

Luo Z, Sun W, Fang J, Lee K, Li S, et al. 2019. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Advanced Healthcare Materials 8:e1801054

doi: 10.1002/adhm.201801054
[9]

Mamidi N, Ijadi F, Norahan MH. 2024. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: an assessment of challenges and opportunities. Biomacromolecules 25:2075−2113

doi: 10.1021/acs.biomac.3c00279
[10]

Liu Y, Chan-Park MB. 2010. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31:1158−1170

doi: 10.1016/j.biomaterials.2009.10.040
[11]

Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, et al. 2015. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254−271

doi: 10.1016/j.biomaterials.2015.08.045
[12]

Noshadi I, Hong S, Sullivan KE, Shirzaei Sani E, Portillo-Lara R, et al. 2017. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomaterials Science 5:2093−2105

doi: 10.1039/C7BM00110J
[13]

Kresloff MS, Castellarin AA, Zarbin MA. 1998. Endophthalmitis. Survey of Ophthalmology 43:193−224

doi: 10.1016/S0039-6257(98)00036-8
[14]

Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. 2025. Current nanocomposite advances for biomedical and environmental application diversity. Medicinal Research Reviews 45:576−628

doi: 10.1002/med.22082
[15]

Yang C, Gao L, Liu X, Yang T, Yin G, et al. 2019. Injectable Schiff base polysaccharide hydrogels for intraocular drug loading and release. Journal of Biomedical Materials Research Part A 107:1909−1916

doi: 10.1002/jbm.a.36677
[16]

Pawar P, Kashyap H, Malhotra S, Sindhu R. 2013. Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. BioMed Research International 2013:341218

doi: 10.1155/2013/341218
[17]

Cuming RS, Abarca EM, Duran S, Wooldridge AA, Stewart AJ, et al. 2017. Development of a sustained-release voriconazole-containing thermogel for subconjunctival injection in horses. Investigative Ophthalmology & Visual Science 58:2746−2754

doi: 10.1167/iovs.16-20899
[18]

Shen C, Zhao X, Ren Z, Yang B, Wang X, et al. 2023. In situ formation of injectable gelatin methacryloyl (GelMA) hydrogels for effective intraocular delivery of triamcinolone acetonide. International Journal of Molecular Sciences 24:4957

doi: 10.3390/ijms24054957
[19]

Zhang P, Wang H, Wang P, Zheng Y, Liu L, et al. 2021. Lightweight 3D bioprinting with point by point photocuring. Bioactive Materials 6:1402−1412

doi: 10.1016/j.bioactmat.2020.10.023
[20]

Zhang H, Yu R, Xia Y, Liu J, Tu R, et al. 2024. Effect of magnesium and calcium ions on the strength and biofunctionality of GelMA/SAMA composite hydrogels. Journal of Materials Chemistry 12:10692−10704

doi: 10.1039/D4TB00666F
[21]

Chen YC, Lin RZ, Qi H, Yang Y, Bae H, et al. 2012. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Advanced Functional Materials 22:2027−2039

doi: 10.1002/adfm.201101662
[22]

ARVO. 2024. ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Rockville, MD: Association for Research in Vision and Ophthalmology. pp. 1−6 www.arvo.org/uploads/files/general/2024-arvo-statement-for-the-use-of-animals-in-ophthalmic-and-vision-research.pdf

[23]

Worthington KS, Wiley LA, Bartlett AM, Stone EM, Mullins RF, et al. 2014. Mechanical properties of murine and porcine ocular tissues in compression. Experimental Eye Research 121:194−199

doi: 10.1016/j.exer.2014.02.020
[24]

Arya AD, Hallur PM, Karkisaval AG, Gudipati A, Rajendiran S, et al. 2016. Gelatin methacrylate hydrogels as biomimetic three-dimensional matrixes for modeling breast cancer invasion and chemoresponse in vitro. ACS Applied Materials & Interfaces 8:22005−22017

doi: 10.1021/acsami.6b06309
[25]

Miri AK, Hosseinabadi HG, Cecen B, Hassan S, Zhang YS. 2018. Permeability mapping of gelatin methacryloyl hydrogels. Acta Biomaterialia 77:38−47

doi: 10.1016/j.actbio.2018.07.006
[26]

Mamidi N, De Silva FF, Vacas AB, Gutiérrez Gómez JA, Montes Goo NY, et al. 2024. Multifaceted hydrogel scaffolds: bridging the gap between biomedical needs and environmental sustainability. Advanced Healthcare Materials 13:e2401195

doi: 10.1002/adhm.202401195
[27]

Chen L, Li L, Mo Q, Zhang X, Chen C, et al. 2023. An injectable gelatin/sericin hydrogel loaded with human umbilical cord mesenchymal stem cells for the treatment of uterine injury. Bioengineering & Translational Medicine 8:e10328

doi: 10.1002/btm2.10328
[28]

Wang J, Zheng X, Wang X, He Y, Xiao X, et al. 2025. Development of a gelatin methacryloyl double-layer membrane incorporated with nano-hydroxyapatite for guided bone regeneration. Biomaterials Science 13:4739−4756

doi: 10.1039/d5bm00610d
[29]

Altunbek M, Gezek M, Buck P, Camci-Unal G. 2024. Development of human-derived photocrosslinkable gelatin hydrogels for tissue engineering. Biomacromolecules 25:165−176

doi: 10.1021/acs.biomac.3c00894
[30]

Lotfi R, Dolatyar B, Zandi N, Tamjid E, Pourjavadi A, et al. 2025. Electrically conductive and photocurable MXene-modulated hydrogel conduits for peripheral nerve regeneration: in vitro and in vivo studies. Biomaterials Advances 170:214197

doi: 10.1016/j.bioadv.2025.214197
[31]

Mohseni-Motlagh SF, Dolatabadi R, Baniassadi M, Baghani M. 2023. Application of the quality by design concept (QbD) in the development of hydrogel-based drug delivery systems. Polymers 15:4407

doi: 10.3390/polym15224407
[32]

Karimi M, Abrishami M, Farzadnia M, Kamali H, Malaekeh-Nikouei B. 2024. In-situ forming biodegradable implants for sustained Fluocinolone acetonide release to the posterior eye: in-vitro and in-vivo investigations in rabbits. International Journal of Pharmaceutics 654:123973

doi: 10.1016/j.ijpharm.2024.123973
[33]

Zu H, Zhang K, Zhang H, Qian X. 2023. An inverse method to determine mechanical parameters of porcine vitreous bodies based on the indentation test. Bioengineering 10:646

doi: 10.3390/bioengineering10060646
[34]

Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, et al. 2024. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: a review. International Journal of Biological Macromolecules 254:127708

doi: 10.1016/j.ijbiomac.2023.127708
[35]

Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. 2025. Advanced disease therapeutics using engineered living drug delivery systems. Nanoscale 17:7673−7696

doi: 10.1039/D4NR05298F
[36]

Holekamp NM, Yaqub M, Ranade SV, Cantrell RA, Singh S, et al. 2024. Systematic literature reviews comparing the long-term safety outcomes for the port delivery system with ranibizumab (PDS) versus other ocular implants. Ophthalmology and Therapy 13:2303−2329

doi: 10.1007/s40123-024-01001-1
[37]

Mulkutkar M, Damani M, Sawarkar S. 2024. Polymeric microneedles for the eye: an overview of advances and ocular applications for minimally invasive drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 197:114209

doi: 10.1016/j.ejpb.2024.114209
[38]

Li Y, Rodrigues J, Tomás H. 2012. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews 41:2193−2221

doi: 10.1039/C1CS15203C
[39]

Vigata M, Meinert C, Pahoff S, Bock N, Hutmacher DW. 2020. Gelatin methacryloyl hydrogels control the localized delivery of albumin-bound paclitaxel. Polymers 12:501

doi: 10.3390/polym12020501
[40]

Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, et al. 2013. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromolecular Bioscience 13:551−561

doi: 10.1002/mabi.201200471
[41]

Shen F, Ge W, Ling H, Yang Y, Chen R, et al. 2024. Hemicellulose-based nanoaggregate-incorporated biocompatible hydrogels with enhanced mechanical properties and sustained controlled curcumin release behaviors. International Journal of Biological Macromolecules 259:129445

doi: 10.1016/j.ijbiomac.2024.129445
[42]

Wang SY, Tohti M, Zhang JQ, Li J, Li DQ. 2023. Acylhydrazone-derived whole pectin-based hydrogel as an injectable drug delivery system. International Journal of Biological Macromolecules 251:126276

doi: 10.1016/j.ijbiomac.2023.126276
[43]

Fernandes-Cunha GM, Fialho SL, da Silva GR, Silva-Cunha A, Zhao M, et al. 2017. Ocular safety of intravitreal clindamycin hydrochloride released by PLGA implants. Pharmaceutical Research 34:1083−1092

doi: 10.1007/s11095-017-2118-2
[44]

Zolnik BS, Burgess DJ. 2007. Effect of acidic pH on PLGA microsphere degradation and release. Journal of Controlled Release 122:338−344

doi: 10.1016/j.jconrel.2007.05.034
[45]

Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, et al. 2007. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials 28:5137−5143

doi: 10.1016/j.biomaterials.2007.08.014
[46]

Li DQ, Tohti M, Fu YS, Zhang Y, Xiong ZW, et al. 2024. Aldehyde group pendant-grafted pectin-based injectable hydrogel. International Journal of Biological Macromolecules 264:130453

doi: 10.1016/j.ijbiomac.2024.130453