[1]

Blaser MJ. 2016. Antibiotic use and its consequences for the normal microbiome. Science 352(6285):544−545

doi: 10.1126/science.aad9358
[2]

Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, et al. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America 115(15):E3463−E3470

doi: 10.1073/pnas.1717295115
[3]

Li S, Liu Y, Wu Y, Hu J, Zhang Y, et al. 2022. Antibiotics in global rivers. National Science Open 1(2):20220029

doi: 10.1360/nso/20220029
[4]

Guo ZF, Boeing WJ, Xu YY, Borgomeo E, Liu D, et al. 2023. A systematic workflow of data mining confirms widespread occurrence of antibiotic contamination in freshwater reservoirs. Exposure and Health 15(4):889−901

doi: 10.1007/s12403-022-00529-6
[5]

Zainab SM, Junaid M, Xu N, Malik RN. 2020. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Research 187:116455

doi: 10.1016/j.watres.2020.116455
[6]

Wu J, Wang J, Li Z, Guo S, Li K, et al. 2023. Antibiotics and antibiotic resistance genes in agricultural soils: a systematic analysis. Critical Reviews in Environmental Science and Technology 53(7):847−864

doi: 10.1080/10643389.2022.2094693
[7]

Deng J, Zhang W, Zhang L, Qin C, Wang H, et al. 2024. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: a review. Environment International 191:108972

doi: 10.1016/j.envint.2024.108972
[8]

Shao Y, Wang Y, Yuan Y, Xie Y. 2021. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Science of The Total Environment 798:149205

doi: 10.1016/j.scitotenv.2021.149205
[9]

Hernando-Amado S, Coque TM, Baquero F, Martínez JL. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology 4:1432−1442

doi: 10.1038/s41564-019-0503-9
[10]

Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110(9):3435−3440

doi: 10.1073/pnas.1222743110
[11]

Wang Y, Liu Y, Yang J, Geng M, Jia H, et al. 2025. Antibiotics at environmentally relevant concentrations can promote the dissemination of antibiotic resistance via both vertical and horizontal gene transfer. Biocontaminant 1:e005

doi: 10.48130/biocontam-0025-0005
[12]

Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, et al. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7(7):e1002158

doi: 10.1371/journal.ppat.1002158
[13]

Li H, Li B, Ma J, Ye J, Guo P, et al. 2018. Fate of antibiotic-resistant bacteria and antibiotic resistance genes in the electrokinetic treatment of antibiotic-polluted soil. Chemical Engineering Journal 337:584−594

doi: 10.1016/j.cej.2017.12.154
[14]

Li H, Li B, Zhang Z, Zhu C, Tian Y, et al. 2018. Evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil. Ecotoxicology and Environmental Safety 148:842−850

doi: 10.1016/j.ecoenv.2017.11.057
[15]

Zhao R, Yu K, Zhang J, Zhang G, Huang J, et al. 2020. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Research 186:116318

doi: 10.1016/j.watres.2020.116318
[16]

Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nature Reviews Genetics 16:472−482

doi: 10.1038/nrg3962
[17]

Zhao Y, Li L, Huang Y, Xu X, Liu Z, et al. 2025. Global soil antibiotic resistance genes are associated with increasing risk and connectivity to human resistome. Nature Communications 16:7141

doi: 10.1038/s41467-025-61606-3
[18]

Gothwal R, Shashidhar T. 2015. Antibiotic pollution in the environment: a review. CLEAN – Soil, Air, Water 43(4):479−489

doi: 10.1002/clen.201300989
[19]

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399(10325):629−655

doi: 10.1016/S0140-6736(21)02724-0
[20]

Kadeřábková N, Mahmood AJS, Mavridou DAI. 2024. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. npj Antimicrobials and Resistance 2(1):37

doi: 10.1038/s44259-024-00051-6
[21]

Bard JD, Lee F. 2018. Why can't we just use PCR? The role of genotypic versus phenotypic testing for antimicrobial resistance testing. Clinical Microbiology Newsletter 40(11):87−95

doi: 10.1016/j.clinmicnews.2018.05.003
[22]

Tringe SG, Rubin EM. 2005. Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics 6(11):805−814

doi: 10.1038/nrg1709
[23]

World Health Organization (WHO). 1961. Standardization of methods for conducting microbic sensitivity tests: second report of the Expert Committee on antibiotics. WHO technical report series no. 210, WHO, Geneva, Switzerland https://iris.who.int/handle/10665/40480

[24]

Jorgensen JH, Turnidge JD. 2015. Susceptibility test methods: dilution and disk diffusion methods. In Manual of Clinical Microbiology, eds. Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry LM, et al. Washington, DC, USA: ASM Press. pp. 1253−1273 doi: 10.1128/9781555817381.ch71

[25]

Hombach M, Zbinden R, Böttger EC. 2013. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiology 13:225

doi: 10.1186/1471-2180-13-225
[26]

Murray PR. 1983. Antibiotic susceptibility testing. Part I. Laboratory Medicine 14(6):345−350

doi: 10.1093/labmed/14.6.345
[27]

Frosch M, Maiden MCJ. 2006. Handbook of Meningococcal Disease: Infection Biology, Vaccination, Clinical Management. Weinheim, Germany: Wiley. doi: 10.1002/3527608508

[28]

Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis 6(2):71−79

doi: 10.1016/j.jpha.2015.11.005
[29]

Joyce LF, Downes J, Stockman K, Andrew JH. 1992. Comparison of five methods, including the PDM Epsilometer test (E test), for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Journal of Clinical Microbiology 30(10):2709−2713

doi: 10.1128/jcm.30.10.2709-2713.1992
[30]

Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X, et al. 2018. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging. Analytical Chemistry 90(6):3737−3743

doi: 10.1021/acs.analchem.7b03382
[31]

Yang K, Li HZ, Zhu X, Su JQ, Ren B, et al. 2019. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell Raman spectroscopy in clinical samples. Analytical Chemistry 91(9):6296−6303

doi: 10.1021/acs.analchem.9b01064
[32]

Novelli-Rousseau A, Espagnon I, Filiputti D, Gal O, Douet A, et al. 2018. Culture-free antibiotic-susceptibility determination from single-bacterium Raman spectra. Scientific Reports 8(1):3957

doi: 10.1038/s41598-018-22392-9
[33]

Baltekin Ö, Boucharin A, Tano E, Andersson DI, Elf J. 2017. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proceedings of the National Academy of Sciences of the United States of America 114(34):9170−9175

doi: 10.1073/pnas.1708558114
[34]

Yang B, Xin X, Cao X, Nasifu L, Nie Z, et al. 2024. Phenotypic and genotypic perspectives on detection methods for bacterial antimicrobial resistance in a One Health context: research progress and prospects. Archives of Microbiology 206(10):409

doi: 10.1007/s00203-024-04131-z
[35]

Van de Vel E, Sampers I, Raes K. 2019. A review on influencing factors on the minimum inhibitory concentration of essential oils. Critical Reviews in Food Science and Nutrition 59(3):357−378

doi: 10.1080/10408398.2017.1371112
[36]

Kahlmeter G, Giske CG, Kirn TJ, Sharp SE. 2019. Point-counterpoint: differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute recommendations for reporting antimicrobial susceptibility results. Journal of Clinical Microbiology 57(9):e01129-19

doi: 10.1128/JCM.01129-19
[37]

Waites KB, Duffy LB, Bébéar CM, Matlow A, Talkington DF, et al. 2012. Standardized methods and quality control limits for agar and broth microdilution susceptibility testing of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum. Journal of Clinical Microbiology 50(11):3542−3547

doi: 10.1128/JCM.01439-12
[38]

Collins AM, Craig G, Zaiman E, Roy T. 1954. A comparison between disk-plate and tube-dilution methods for antibiotic sensitivity testing of bacteria. Canadian Journal of Public Health 45(10):430−439

[39]

Sarhan MS, Antonello G, Weissensteiner H, Mengoni C, Mascalzoni D, et al. 2025. Human mitochondrial DNA in public metagenomes: Opportunity or privacy threat? Cell 188:2561−2566

doi: 10.1016/j.cell.2025.03.023
[40]

Dietvorst J, Vilaplana L, Uria N, Marco MP, Muñoz-Berbel X. 2020. Current and near-future technologies for antibiotic susceptibility testing and resistant bacteria detection. TrAC Trends in Analytical Chemistry 127:115891

doi: 10.1016/j.trac.2020.115891
[41]

van Dongen JE, Segerink LI. 2025. Building the future of clinical diagnostics: an analysis of potential benefits and current barriers in CRISPR/Cas diagnostics. ACS Synthetic Biology 14:323−331

doi: 10.1021/acssynbio.4c00816
[42]

Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, et al. 2021. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. Journal of Nanobiotechnology 19(1):401

doi: 10.1186/s12951-021-01132-8
[43]

Li X, Bao N, Yan Z, Yuan XZ, Wang SG, et al. 2023. Degradation of antibiotic resistance genes by VADER with CRISPR-Cas immunity. Applied and Environmental Microbiology 89:e00053-23

doi: 10.1128/aem.00053-23
[44]

Khan ZA, Siddiqui MF, Park S. 2019. Current and emerging methods of antibiotic susceptibility testing. Diagnostics 9(2):49

doi: 10.3390/diagnostics9020049
[45]

Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases 49(11):1749−1755

doi: 10.1086/647952
[46]

Lescat M, Poirel L, Tinguely C, Nordmann P. 2019. A resazurin reduction-based assay for rapid detection of polymyxin resistance in Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Clinical Microbiology 57(3):e01563-18

doi: 10.1128/JCM.01563-18
[47]

Pujol-Vila F, Dietvorst J, Gall-Mas L, Díaz-González M, Vigués N, et al. 2018. Bioelectrochromic hydrogel for fast antibiotic-susceptibility testing. Journal of Colloid and Interface Science 511:251−258

doi: 10.1016/j.jcis.2017.09.004
[48]

Roberts AL, Joneja U, Villatoro T, Andris E, Boyle JA, et al. 2018. Evaluation of the BacterioScan 216Dx for standalone preculture screen of preserved urine specimens in a clinical setting. Laboratory Medicine 49(1):35−40

doi: 10.1093/labmed/lmx052
[49]

Idelevich EA, Hoy M, Knaack D, Görlich D, Peters G, et al. 2018. Direct determination of carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa from positive blood cultures using laser scattering technology. International Journal of Antimicrobial Agents 51(2):221−226

doi: 10.1016/j.ijantimicag.2017.10.009
[50]

Song JH, Lee SM, Park IH, Yong D, Lee KS, et al. 2019. Vertical capacitance aptasensors for real-time monitoring of bacterial growth and antibiotic susceptibility in blood. Biosensors and Bioelectronics 143:111623

doi: 10.1016/j.bios.2019.111623
[51]

Shi X, Kadiyala U, VanEpps JS, Yau ST. 2018. Culture-free bacterial detection and identification from blood with rapid, phenotypic, antibiotic susceptibility testing. Scientific Reports 8(1):3416

doi: 10.1038/s41598-018-21520-9
[52]

Huang TH, Tzeng YL, Dickson RM. 2018. FAST: rapid determinations of antibiotic susceptibility phenotypes using label-free cytometry. Cytometry Part A 93(6):639−648

doi: 10.1002/cyto.a.23370
[53]

Tang M, Chen Q, Xiao X, Lyu Y, Sun W. 2025. Differential impacts of water diversion and environmental factors on bacterial, archaeal, and fungal communities in the eastern route of the South-to-North water diversion project. Environment International 195:109280

doi: 10.1016/j.envint.2025.109280
[54]

Song T, Teng H, Li Y, Wang J, He C, et al. 2025. Exploring potential ecological risks of antibiotic–resistance genes in soil–plant systems caused by manure application. Sustainable Horizons 14:100128

doi: 10.1016/j.horiz.2024.100128
[55]

Li B, Sardar MF, Zhang X, Ye J, Tian Y, et al. 2024. Electrokinetic technology enhanced the control of antibiotic resistance and the quality of swine manure composting. Chemical Engineering Journal 484:149581

doi: 10.1016/j.cej.2024.149581
[56]

Li N, Chen J, Liu C, Yang J, Zhu C, et al. 2022. Cu and Zn exert a greater influence on antibiotic resistance and its transfer than doxycycline in agricultural soils. Journal of Hazardous Materials 423:127042

doi: 10.1016/j.jhazmat.2021.127042
[57]

Tang M, Chen Q, Zhong H, Liu S, Sun W. 2024. CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater. Water Research 251:121137

doi: 10.1016/j.watres.2024.121137
[58]

Su C, Lei L, Duan Y, Zhang KQ, Yang J. 2012. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Applied Microbiology and Biotechnology 93(3):993−1003

doi: 10.1007/s00253-011-3800-7
[59]

Pelc SE, Couillard DM, Stansell ZJ, Farnham MW. 2015. Genetic diversity and population structure of collard landraces and their relationship to other Brassica oleracea crops. The Plant Genome 8(3):plantgenome2015.04.0023

doi: 10.3835/plantgenome2015.04.0023
[60]

Ehren K, Meißner A, Jazmati N, Wille J, Jung N, et al. 2020. Clinical impact of rapid species identification from positive blood cultures with same-day phenotypic antimicrobial susceptibility testing on the management and outcome of bloodstream infections. Clinical Infectious Diseases 70(7):1285−1293

doi: 10.1093/cid/ciz406
[61]

Schneider JG, Wood JB, Schmitt BH, Emery CL, Davis TE, et al. 2019. Susceptibility provision enhances effective de-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact. Journal of Antimicrobial Chemotherapy 74(Supplement_1):i16−i23

doi: 10.1093/jac/dky531
[62]

Patrolecco L, Rauseo J, Ademollo N, Grenni P, Cardoni M, et al. 2018. Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin. Science of The Total Environment 640−641:1438−1446

doi: 10.1016/j.scitotenv.2018.06.025
[63]

Bao X, Gu Y, Chen L, Wang Z, Pan H, et al. 2024. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. Science of The Total Environment 924:171472

doi: 10.1016/j.scitotenv.2024.171472
[64]

Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, et al. 2007. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066−1069

doi: 10.1038/nature05741
[65]

Villalba MI, Stupar P, Chomicki W, Bertacchi M, Dietler G, et al. 2018. Nanomotion detection method for testing antibiotic resistance and susceptibility of slow-growing bacteria. Small 14(4):1702671

doi: 10.1002/smll.201702671
[66]

Villalba MI, Rossetti E, Bonvallat A, Yvanoff C, Radonicic V, et al. 2023. Simple optical nanomotion method for single-bacterium viability and antibiotic response testing. Proceedings of the National Academy of Sciences of the United States of America 120(18):e2221284120

doi: 10.1073/pnas.2221284120
[67]

Pilát Z, Bernatová S, Ježek J, Kirchhoff J, Tannert A, et al. 2018. Microfluidic cultivation and laser tweezers Raman spectroscopy of E. coli under antibiotic stress. Sensors 18(5):1623

doi: 10.3390/s18051623
[68]

Liu B, Liu K, Wang N, Ta K, Liang P, et al. 2022. Laser tweezers Raman spectroscopy combined with deep learning to classify marine bacteria. Talanta 244:123383

doi: 10.1016/j.talanta.2022.123383
[69]

Yi X, Song Y, Xu X, Peng D, Wang J, et al. 2021. Development of a fast Raman-assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples. Analytical Chemistry 93(12):5098−5106

doi: 10.1021/acs.analchem.0c04709
[70]

Rousseau AN, Faure N, Rol F, Sedaghat Z, Le Galudec J, et al. 2021. Fast antibiotic susceptibility testing via Raman microspectrometry on single bacteria: an MRSA case study. ACS Omega 6(25):16273−16279

doi: 10.1021/acsomega.1c00170
[71]

Feng J, Yee R, Zhang S, Tian L, Shi W, et al. 2018. A rapid growth-independent antibiotic resistance detection test by SYBR green/propidium iodide viability assay. Frontiers in Medicine 5:127

doi: 10.3389/fmed.2018.00127
[72]

Hsieh K, Zec HC, Chen L, Kaushik AM, Mach KE, et al. 2018. Simple and precise counting of viable bacteria by resazurin-amplified picoarray detection. Analytical Chemistry 90(15):9449−9456

doi: 10.1021/acs.analchem.8b02096
[73]

Ghatole M, Kashetty V, Ghule A. 2018. Resazurin assay for rapid drug susceptibility testing of Mycobacterium tuberculosis. Indian Journal of Microbiology 5:138−142

doi: 10.18231/2394-5478.2018.0028
[74]

Jia H, Fang R, Lin J, Tian X, Zhao Y, et al. 2020. Evaluation of resazurin-based assay for rapid detection of polymyxin-resistant gram-negative bacteria. BMC Microbiology 20:7

doi: 10.1186/s12866-019-1692-3
[75]

Wang Y, Lu J, Engelstädter J, Zhang S, Ding P, et al. 2020. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. The ISME Journal 14(8):2179−2196

doi: 10.1038/s41396-020-0679-2
[76]

McLain JE, Cytryn E, Durso LM, Young S. 2016. Culture-based methods for detection of antibiotic resistance in agroecosystems: advantages, challenges, and gaps in knowledge. Journal of Environmental Quality 45(2):432−440

doi: 10.2134/jeq2015.06.0317
[77]

Bywater R, Silley P, Simjee S. 2006. Antimicrobial breakpoints − definitions and conflicting requirements. Veterinary Microbiology 118(1−2):158−159

doi: 10.1016/j.vetmic.2006.09.005
[78]

Kowalska-Krochmal B, Dudek-Wicher R. 2021. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10(2):165

doi: 10.3390/pathogens10020165
[79]

Brown DFJ, Wootton M, Howe RA. 2016. Antimicrobial susceptibility testing breakpoints and methods from BSAC to EUCAST. Journal of Antimicrobial Chemotherapy 71(1):3−5

doi: 10.1093/jac/dkv287
[80]

Toutain PL, Bousquet-Mélou A, Damborg P, Ferran AA, Mevius D, et al. 2017. En route towards European clinical breakpoints for veterinary antimicrobial susceptibility testing: a position paper explaining the VetCAST approach. Frontiers in Microbiology 15(8):2344

doi: 10.3389/fmicb.2017.02344
[81]

Weinstein MP, Lewis JS II. 2020. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. Journal of Clinical Microbiology 58(3):e01864-19

doi: 10.1128/JCM.01864-19
[82]

Bixby ML, Salay J, Hirsch EB. 2024. What's new in 2024: from the CLSI subcommittee on antimicrobial susceptibility testing. Contagion Live 9(3)

[83]

Ruan Z, Huang A, Wang X, Huang L, Hao H. 2022. Overview of CLSI, EUCAST, and susceptibility breakpoints in China. Biotechnology Bulletin 38(9):47−58

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0695
[84]

Humphries RM, Abbott AN, Hindler JA. 2019. Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. Journal of Clinical Microbiology 57(6):e00203-19

doi: 10.1128/jcm.00203-19
[85]

Kahlmeter G, Turnidge J. 2022. How to: ECOFFs—the why, the how, and the don'ts of EUCAST epidemiological cutoff values. Clinical Microbiology and Infection 28(7):952−954

doi: 10.1016/j.cmi.2022.02.024
[86]

Mouton JW, Brown DFJ, Apfalter P, Cantón R, Giske CG, et al. 2012. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clinical Microbiology and Infection 18(3):E37−E45

doi: 10.1111/j.1469-0691.2011.03752.x
[87]

O’Halloran C, Walsh N, O'Grady MC, Barry L, Hooton C, et al. 2018. Assessment of the comparability of CLSI, EUCAST and Stokes antimicrobial susceptibility profiles for Escherichia coli uropathogenic isolates. British Journal of Biomedical Science 75(1):24−29

doi: 10.1080/09674845.2017.1392736
[88]

Sánchez-Bautista A, Coy J, García-Shimizu P, Rodríguez JC. 2018. From CLSI to EUCAST guidelines in the interpretation of antimicrobial susceptibility: what is the effect in our setting? Enfermedades Infecciosas y Microbiología Clínica 36(4):229−232

doi: 10.1016/j.eimc.2017.03.003
[89]

Cusack TP, Ashley EA, Ling CL, Rattanavong S, Roberts T, et al. 2019. Impact of CLSI and EUCAST breakpoint discrepancies on reporting of antimicrobial susceptibility and AMR surveillance. Clinical Microbiology and Infection 25(7):910−911

doi: 10.1016/j.cmi.2019.03.007
[90]

Suravaram S, Hada V, Ahmed Siddiqui I. 2021. Comparison of antimicrobial susceptibility interpretation among Enterobacteriaceae using CLSI and EUCAST breakpoints. Indian Journal of Medical Microbiology 39(3):315−319

doi: 10.1016/j.ijmmb.2021.05.004
[91]

Otto WR, Arendrup MC, Fisher BT. 2023. A practical guide to antifungal susceptibility testing. Journal of the Pediatric Infectious Diseases Society 12(4):214−221

doi: 10.1093/jpids/piad014
[92]

Alhumaid S, Al Mutair A, Al Alawi Z, Alzahrani AJ, Tobaiqy M, et al. 2021. Antimicrobial susceptibility of gram-positive and gram-negative bacteria: a 5-year retrospective analysis at a multi-hospital healthcare system in Saudi Arabia. Annals of Clinical Microbiology and Antimicrobials 20(1):43

doi: 10.1186/s12941-021-00450-x
[93]

Lipworth S, Chau K, Oakley S, Barrett L, Crook D, et al. 2025. Estimating the association of antimicrobial resistance genes with minimum inhibitory concentration in Escherichia coli: an observational study. The Lancet Microbe 6:101183

doi: 10.1016/j.lanmic.2025.101183