[1]

Macesic N, Uhlemann AC, Peleg AY. 2025. Multidrug-resistant Gram-negative bacterial infections. The Lancet 405:257−272

doi: 10.1016/S0140-6736(24)02081-6
[2]

Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, et al. 2024. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet 404:1199−1226

doi: 10.1016/S0140-6736(24)01867-1
[3]

Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology 20:257−269

doi: 10.1038/s41579-021-00649-x
[4]

Li L, Li B, Yin X, Xia Y, Yang Y, et al. 2025. Assessing antimicrobial resistance connectivity across One Health sectors. Nature Water 3:1100−1113

doi: 10.1038/s44221-025-00514-8
[5]

Hernando-Amado S, Coque TM, Baquero F, Martínez JL. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology 4:1432−1442

doi: 10.1038/s41564-019-0503-9
[6]

Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: building the web of life. Nature Reviews Genetics 16:472−482

doi: 10.1038/nrg3962
[7]

Huang J, Yong H, Huang J, Che Y, Klümper U, et al. 2025. Microbial risks triggered by oral administration of antibiotics in fish aquaculture persist long after the legally mandated antibiotic withdrawal time. Nature Water 3:1057−1069

doi: 10.1038/s44221-025-00502-y
[8]

Martínez JL, Coque TM, Baquero F. 2015. What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology 13:116−123

doi: 10.1038/nrmicro3399
[9]

Tang A, Zhang J, Huang J, Deng Y, Wang D, et al. 2024. Decrypting the viral community in aerobic activated sludge reactors treating antibiotic production wastewater. Water Research 265:122253

doi: 10.1016/j.watres.2024.122253
[10]

Zhang J, Tang A, Jin T, Sun D, Guo F, et al. 2024. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. iMeta 3:e188

doi: 10.1002/imt2.188
[11]

Cen T, Zhang X, Xie S, Li D. 2020. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms. Environment International 138:105544

doi: 10.1016/j.envint.2020.105544
[12]

Jiao P, Zhou Y, Zhang X, Jian H, Zhang XX, et al. 2024. Mechanisms of horizontal gene transfer and viral contribution to the fate of intracellular and extracellular antibiotic resistance genes in anaerobic digestion supplemented with conductive materials under ammonia stress. Water Research 267:122549

doi: 10.1016/j.watres.2024.122549
[13]

Zhou H, Beltrán JF, Brito IL. 2021. Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Science Advances 7:eabj5056

doi: 10.1126/sciadv.abj5056
[14]

Yao Y, Maddamsetti R, Weiss A, Ha Y, Wang T, et al. 2022. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nature Ecology & Evolution 6:555−564

doi: 10.1038/s41559-022-01705-2
[15]

Bengtsson-Palme J, Larsson DGJ, Kristiansson E. 2017. Using metagenomics to investigate human and environmental resistomes. Journal of Antimicrobial Chemotherapy 72:2690−2703

doi: 10.1093/jac/dkx199
[16]

Li S, Zhang C, Li F, Hua T, Zhou Q, et al. 2021. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review. Journal of Hazardous Materials 411:125148

doi: 10.1016/j.jhazmat.2021.125148
[17]

Nesme J, Cécillon S, Delmont TO, Monier JM, Vogel TM, et al. 2014. Large-scale metagenomic-based study of antibiotic resistance in the environment. Current Biology 24:1096−1100

doi: 10.1016/j.cub.2014.03.036
[18]

Pillay S, Calderón-Franco D, Urhan A, Abeel T. 2022. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Frontiers in Microbiology 13:1066995

doi: 10.3389/fmicb.2022.1066995
[19]

Li B, Yang Y, Ma L, Ju F, Guo F, et al. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal 9:2490−2502

doi: 10.1038/ismej.2015.59
[20]

Beatson SA, Walker MJ. 2014. Tracking antibiotic resistance. Science 345:1454−1455

doi: 10.1126/science.1260471
[21]

Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics 13:278−289

doi: 10.1016/j.gpb.2015.08.002
[22]

Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA, et al. 2022. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nature Methods 19:823−826

doi: 10.1038/s41592-022-01539-7
[23]

Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, et al. 2014. Binning metagenomic contigs by coverage and composition. Nature Methods 11:1144−1146

doi: 10.1038/nmeth.3103
[24]

Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674−1676

doi: 10.1093/bioinformatics/btv033
[25]

McCorison CB, Kim T, Donato JJ, LaPara TM. 2025. Proximity-ligation metagenomic sequence analysis reveals that the antibiotic resistome makes significant transitions during municipal wastewater treatment. Environmental Microbiology 27:e70036

doi: 10.1111/1462-2920.70036
[26]

Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, et al. 2018. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6:23

doi: 10.1186/s40168-018-0401-z
[27]

Yin X, Jiang XT, Chai B, Li L, Yang Y, et al. 2018. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34:2263−2270

doi: 10.1093/bioinformatics/bty053
[28]

dos Santos DFK, Istvan P, Quirino BF, Kruger RH. 2017. Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments. Microbial Ecology 73:479−491

doi: 10.1007/s00248-016-0866-x
[29]

Zhang AN, Gaston JM, Dai CL, Zhao S, Poyet M, et al. 2021. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications 12:4765

doi: 10.1038/s41467-021-25096-3
[30]

Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, et al. 2017. DNA sequencing at 40: past, present and future. Nature 550:345−353

doi: 10.1038/nature24286
[31]

Boolchandani M, D'Souza AW, Dantas G. 2019. Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews Genetics 20:356−370

doi: 10.1038/s41576-019-0108-4
[32]

Hu T, Chitnis N, Monos D, Dinh A. 2021. Next-generation sequencing technologies: an overview. Human Immunology 82:801−811

doi: 10.1016/j.humimm.2021.02.012
[33]

Metzker ML. 2010. Sequencing technologies — the next generation. Nature Reviews Genetics 11:31−46

doi: 10.1038/nrg2626
[34]

Buermans HPJ, den Dunnen JT. 2014. Next generation sequencing technology: advances and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1842:1932−1941

doi: 10.1016/j.bbadis.2014.06.015
[35]

Foox J, Tighe SW, Nicolet CM, Zook JM, Byrska-Bishop M, et al. 2021. Performance assessment of DNA sequencing platforms in the ABRF Next-Generation Sequencing Study. Nature Biotechnology 39:1129−1140

doi: 10.1038/s41587-021-01049-5
[36]

Ari Ş, Arikan M. 2016. Next-generation sequencing: advantages, disadvantages, and future. In Plant Omics: Trends and Applications, eds Hakeem K, Tombuloğlu H, Tombuloğlu G. Cham: Springer. pp. 109–135 doi: 10.1007/978-3-319-31703-8_5

[37]

Mardis ER. 2008. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9:387−402

doi: 10.1146/annurev.genom.9.081307.164359
[38]

Cuber P, Chooneea D, Geeves C, Salatino S, Creedy TJ, et al. 2023. Comparing the accuracy and efficiency of third generation sequencing technologies, Oxford Nanopore Technologies, and Pacific Biosciences, for DNA barcode sequencing applications. Ecological Genetics and Genomics 28:100181

doi: 10.1016/j.egg.2023.100181
[39]

Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M. 2017. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nature Nanotechnology 12:1169−1175

doi: 10.1038/nnano.2017.176
[40]

Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133−138

doi: 10.1126/science.1162986
[41]

Petersen LM, Martin IW, Moschetti WE, Kershaw CM, Tsongalis GJ. 2019. Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. Journal of Clinical Microbiology 58:e01315-19

doi: 10.1128/jcm.01315-19
[42]

Kumar KR, Cowley MJ, Davis RL. 2024. Next-generation sequencing and emerging technologies. Seminars in Thrombosis and Hemostasis 50:1026−1038

doi: 10.1055/s-0044-1786397
[43]

Liu L, Li Y, Li S, Hu N, He Y, et al. 2012. Comparison of next-generation sequencing systems. BioMed Research International 2012:251364

doi: 10.1155/2012/251364
[44]

Chen B, Yuan K, Chen X, Yang Y, Zhang T, et al. 2016. Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environmental Science & Technology 50:6670−6679

doi: 10.1021/acs.est.6b00619
[45]

Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, et al. 2024. Genomic surveillance for antimicrobial resistance — a One Health perspective. Nature Reviews Genetics 25:142−157

doi: 10.1038/s41576-023-00649-y
[46]

Ma L, Xia Y, Li B, Yang Y, Li LG, et al. 2016. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environmental Science & Technology 50:420−427

doi: 10.1021/acs.est.5b03522
[47]

Che Y, Xia Y, Liu L, Li AD, Yang Y, et al. 2019. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome 7:44

doi: 10.1186/s40168-019-0663-0
[48]

Dai D, Brown C, Bürgmann H, Larsson DGJ, Nambi I, et al. 2022. Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. Microbiome 10:20

doi: 10.1186/s40168-021-01216-5
[49]

Nayfach S, Pollard KS. 2016. Toward accurate and quantitative comparative metagenomics. Cell 166:1103−1116

doi: 10.1016/j.cell.2016.08.007
[50]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−359

doi: 10.1038/nmeth.1923
[51]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−1760

doi: 10.1093/bioinformatics/btp324
[52]

Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158

doi: 10.1186/s40168-018-0541-1
[53]

Qiu Z, Yuan L, Lian CA, Lin B, Chen J, et al. 2024. BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis. Nature Communications 15:2179

doi: 10.1038/s41467-024-46539-7
[54]

Kang DD, Li F, Kirton E, Thomas A, Egan R, et al. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359

doi: 10.7717/peerj.7359
[55]

Wu YW, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605−607

doi: 10.1093/bioinformatics/btv638
[56]

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, et al. 2012. Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy 67:2640−2644

doi: 10.1093/jac/dks261
[57]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421

doi: 10.1186/1471-2105-10-421
[58]

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, et al. 2013. The comprehensive antibiotic resistance database. Antimicrobial agents and chemotherapy 57:3348−3357

doi: 10.1128/aac.00419-13
[59]

Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research 48:D517−D525

doi: 10.1093/nar/gkz935
[60]

Yang Y, Jiang X, Chai B, Ma L, Li B, et al. 2016. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 32:2346−2351

doi: 10.1093/bioinformatics/btw136
[61]

Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, et al. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research 45:D566−D573

doi: 10.1093/nar/gkw1004
[62]

Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, et al. 2019. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrobial Agents and Chemotherapy 63:e00483-19

doi: 10.1128/aac.00483-19
[63]

Liu B, Pop M. 2009. ARDB—antibiotic resistance genes database. Nucleic Acids Research 37:D443−D447

doi: 10.1093/nar/gkn656
[64]

Yang Y, Li B, Ju F, Zhang T. 2013. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environmental Science & Technology 47:10197−10205

doi: 10.1021/es4017365
[65]

Mao X, Yin X, Yang Y, Che Y, Xu X, et al. 2024. Standardization in global environmental antibiotic resistance genes (ARGs) surveillance. Critical Reviews in Environmental Science and Technology 54:1633−1650

doi: 10.1080/10643389.2024.2344453
[66]

Yin X, Chen X, Jiang XT, Yang Y, Li B, et al. 2023. Toward a universal unit for quantification of antibiotic resistance genes in environmental samples. Environmental Science & Technology 57:9713−9721

doi: 10.1021/acs.est.3c00159
[67]

Li B, Li X, Yan T. 2021. A quantitative metagenomic sequencing approach for high-throughput gene quantification and demonstration with antibiotic resistance genes. Applied and Environmental Microbiology 87:e00871-21

doi: 10.1128/AEM.00871-21
[68]

Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, et al. 2019. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. The ISME Journal 13:346−360

doi: 10.1038/s41396-018-0277-8
[69]

Satinsky BM, Gifford SM, Crump BC, Moran MA. 2013. Use of internal standards for quantitative metatranscriptome and metagenome analysis. In Methods in Enzymology. Volume 531. Amsterdam, the Netherlands: Elsevier. pp. 237–250 doi: 10.1016/B978-0-12-407863-5.00012-5

[70]

Shi X, Yang Y, Wang C, Xu X, Mao X, et al. 2025. Microbial risk assessment across multiple environments based on metagenomic absolute quantification with cellular internal standards. Nature Water 3:473−485

doi: 10.1038/s44221-025-00421-y
[71]

Wang X, Zhang H, Yu S, Li D, Gillings MR, et al. 2024. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens. The ISME Journal 18:wrad032

doi: 10.1093/ismejo/wrad032
[72]

Carattoli A, Zankari E, Garcìa-Fernandez A, Larsen MV, Lund O, et al. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy 58:3895−3903

doi: 10.1128/aac.02412-14
[73]

Krawczyk PS, Lipinski L, Dziembowski A. 2018. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research 46:e35

doi: 10.1093/nar/gkx1321
[74]

Zhou F, Xu Y. 2010. cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics 26:2051−2052

doi: 10.1093/bioinformatics/btq299
[75]

Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, et al. 2016. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32:3380−3387

doi: 10.1093/bioinformatics/btw493
[76]

Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E, et al. 2017. Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics 33:475−482

doi: 10.1093/bioinformatics/btw651
[77]

Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Research 34:D32−D36

doi: 10.1093/nar/gkj014
[78]

Xie Z, Tang H. 2017. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33:3340−3347

doi: 10.1093/bioinformatics/btx433
[79]

Treepong P, Guyeux C, Meunier A, Couchoud C, Hocquet D, et al. 2018. panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data. Bioinformatics 34:3795−3800

doi: 10.1093/bioinformatics/bty479
[80]

Néron B, Littner E, Haudiquet M, Perrin A, Cury J, et al. 2022. IntegronFinder 2.0: identification and analysis of integrons across bacteria, with a focus on antibiotic resistance in Klebsiella. Microorganisms 10:700

doi: 10.3390/microorganisms10040700
[81]

Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, et al. 2021. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37

doi: 10.1186/s40168-020-00990-y
[82]

Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, et al. 2020. Identifying viruses from metagenomic data using deep learning. Quantitative Biology 8:64−77

doi: 10.1007/s40484-019-0187-4
[83]

Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. 2017. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5:69

doi: 10.1186/s40168-017-0283-5
[84]

Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, et al. 2024. Identification of mobile genetic elements with geNomad. Nature Biotechnology 42:1303−1312

doi: 10.1038/s41587-023-01953-y
[85]

Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, et al. 2021. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nature Biotechnology 39:578−585

doi: 10.1038/s41587-020-00774-7
[86]

Kieft K, Zhou Z, Anantharaman K. 2020. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8:90

doi: 10.1186/s40168-020-00867-0
[87]

Rice EW, Wang P, Smith AL, Stadler LB. 2020. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environmental Science & Technology Letters 8:282−291

doi: 10.1021/acs.estlett.0c00202
[88]

Garcia-Armisen T, Anzil A, Cornelis P, Chevreuil M, Servais P. 2013. Identification of antimicrobial resistant bacteria in rivers: insights into the cultivation bias. Water Research 47:4938−4947

doi: 10.1016/j.watres.2013.05.036
[89]

Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, et al. 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology 2:16270

doi: 10.1038/nmicrobiol.2016.270
[90]

Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, et al. 2016. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. The ISME Journal 10:427−436

doi: 10.1038/ismej.2015.124
[91]

Liu S, Dai S, Deng Y, Li J, Zhang Y, et al. 2025. Long-read epicPCR enhances species-level host identification of clinically relevant antibiotic resistance genes in environmental microbial communities. Environment International 197:109337

doi: 10.1016/j.envint.2025.109337
[92]

Lou EG, Fu Y, Wang Q, Treangen TJ, Stadler LB. 2024. Sensitivity and consistency of long-and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. Journal of Hazardous Materials 469:133939

doi: 10.1016/j.jhazmat.2024.133939
[93]

Zhao R, Yu K, Zhang J, Zhang G, Huang J, et al. 2020. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Research 186:116318

doi: 10.1016/j.watres.2020.116318
[94]

Liang J, Mao G, Yin X, Ma L, Liu L, et al. 2020. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Water Research 168:115160

doi: 10.1016/j.watres.2019.115160
[95]

Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, et al. 2012. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods 58:268−276

doi: 10.1016/j.ymeth.2012.05.001
[96]

Stalder T, Press MO, Sullivan S, Liachko I, Top EM. 2019. Linking the resistome and plasmidome to the microbiome. The ISME Journal 13:2437−2446

doi: 10.1038/s41396-019-0446-4
[97]

Wang Y, Yu Z, Ding P, Lu J, Klümper U, et al. 2022. Non-antibiotic pharmaceuticals promote conjugative plasmid transfer at a community-wide level. Microbiome 10:124

doi: 10.1186/s40168-022-01314-y
[98]

Li HZ, Yang K, Liao H, Lassen SB, Su JQ, et al. 2022. Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics. Proceedings of the National Academy of Sciences of the United States of America 119:e2201473119

doi: 10.1073/pnas.2201473119
[99]

Zhang Z, Zhang Q, Wang T, Xu N, Lu T, et al. 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications 13:1553

doi: 10.1038/s41467-022-29283-8
[100]

Oh M, Pruden A, Chen C, Heath LS, Xia K, et al. 2018. MetaCompare: a computational pipeline for prioritizing environmental resistome risk. FEMS Microbiology Ecology 94:fiy079

doi: 10.1093/femsec/fiy079
[101]

Rumi MA, Oh M, Davis BC, Brown CL, Juvekar A, et al. 2024. MetaCompare 2.0: differential ranking of ecological and human health resistome risks. FEMS Microbiology Ecology 100:fiae155

doi: 10.1093/femsec/fiae155