[1]

Kemesyte V, Statkeviciute G, Brazauskas G. 2017. Perennial ryegrass yield performance under abiotic stress. Crop Science 57:1935−1940

doi: 10.2135/cropsci2016.10.0864
[2]

Liu S, Jiang Y. 2010. Identification of differentially expressed genes under drought stress in perennial ryegrass. Physiologia Plantarum 139:375−387

doi: 10.1111/j.1399-3054.2010.01374.x
[3]

Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:616−620

doi: 10.1126/science.1204531
[4]

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−518

doi: 10.1038/s41588-023-01302-4
[5]

Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287−291

doi: 10.1038/7036
[6]

Valliyodan B, Nguyen HT. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology 9:189−195

doi: 10.1016/j.pbi.2006.01.019
[7]

Muszynski MG, Moss-Taylor L, Chudalayandi S, Cahill J, Del Valle-Echevarria AR, et al. 2020. The maize Hairy Sheath Frayed1 (Hsf1) mutation alters leaf patterning through increased cytokinin signaling. The Plant Cell 32:1501−1518

doi: 10.1105/tpc.19.00677
[8]

Ohama N, Kusakabe K, Mizoi J, Zhao H, Kidokoro S, et al. 2016. The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. The Plant Cell 28:181−201

doi: 10.1105/tpc.15.00435
[9]

Guo M, Liu JH, Ma X, Luo DX, Gong ZH, et al. 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science 7:114

doi: 10.3389/fpls.2016.00114
[10]

Raturi V, Zinta G. 2024. HSFA1 heat shock factors integrate warm temperature and heat signals in plants. Trends in Plant Science 29:1165−1167

doi: 10.1016/j.tplants.2024.07.002
[11]

Ogawa D, Yamaguchi K, Nishiuchi T. 2007. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Journal of Experimental Botany 58:3373−3383

doi: 10.1093/jxb/erm184
[12]

Li Z, Li Z, Ji Y, Wang C, Wang S, et al. 2024. The heat shock factor 20-HSF4-cellulose synthase A2 module regulates heat stress tolerance in maize. The Plant Cell 36:2652−2667

doi: 10.1093/plcell/koae106
[13]

Wu Z, Li T, Ding L, Wang C, Teng R, et al. 2024. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. New Phytologist 241:2124−2142

doi: 10.1111/nph.19507
[14]

Ma G, Shen J, Yu H, Huang X, Deng X, et al. 2022. Genome-wide identification and functional analyses of heat shock transcription factors involved in heat and drought stresses in ryegrass. Environmental and Experimental Botany 201:104968

doi: 10.1016/j.envexpbot.2022.104968
[15]

Sun T, Wang W, Hu X, Fang Z, Wang Y, et al. 2022. Genome-wide identification of heat shock transcription factor families in perennial ryegrass highlights the role of LpHSFC2b in heat stress response. Physiologia Plantarum 174:e13828

doi: 10.1111/ppl.13828
[16]

Jin J, Tian F, Yang DC, Meng YQ, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[17]

Chen Y, Kölliker R, Mascher M, Copetti D, Himmelbach A, et al. 2024. An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). Gigabyte 2024:1−11

doi: 10.46471/gigabyte.112
[18]

Yu Z, Chen Y, Zhou Y, Zhang Y, Li M, et al. 2023. Rice Gene Index: a comprehensive pan-genome database for comparative and functional genomics of Asian rice. Molecular Plant 16:798−801

doi: 10.1016/j.molp.2023.03.012
[19]

Ma S, Wang M, Wu J, Guo W, Chen Y, et al. 2021. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant 14:1965−1968

doi: 10.1016/j.molp.2021.10.006
[20]

Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373:655−662

doi: 10.1126/science.abg5289
[21]

Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, et al. 2003. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Research 31:224−228

doi: 10.1093/nar/gkg076
[22]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−1797

doi: 10.1093/nar/gkh340
[23]

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−274

doi: 10.1093/molbev/msu300
[24]

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587−589

doi: 10.1038/nmeth.4285
[25]

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35:518−522

doi: 10.1093/molbev/msx281
[26]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−1742

doi: 10.1016/j.molp.2023.09.010
[27]

Chao J, Li Z, Sun Y, Aluko OO, Wu X, et al. 2021. MG2C: a user-friendly online tool for drawing genetic maps. Molecular Horticulture 1:16

doi: 10.1186/s43897-021-00020-x
[28]

Cao L, Wei S, Han L, Qian Y, Zhang H, et al. 2015. Gene cloning and expression of the pyrroline-5-carboxylate reductase gene of perennial ryegrass (Lolium perenne). Horticultural Plant Journal 1:113−120

doi: 10.16420/j.issn.2095-9885.2015-0004
[29]

Yu G, Xie Z, Chen W, Xu B, Huang B. 2022. Knock down of NON-YELLOW COLOURING 1-like gene or chlorophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf senescence in perennial ryegrass. Journal of Experimental Botany 73:429−444

doi: 10.1093/jxb/erab426
[30]

Yu G, Xie Z, Lei S, Li H, Xu B, et al. 2022. The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiology 189:595−610

doi: 10.1093/plphys/kiac070
[31]

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−1108

doi: 10.1038/nprot.2008.73
[32]

Sun T, Wang W, Hu X, Meng L, Xiang L, et al. 2024. HSFA3 functions as a positive regulator of HSFA2a to enhance thermotolerance in perennial ryegrass. Plant Physiology and Biochemistry 208:108512

doi: 10.1016/j.plaphy.2024.108512
[33]

Li W, Wan XL, Yu JY, Wang KL, Zhang J. 2019. Genome-wide identification, classification, and expression analysis of the Hsf gene family in carnation (Dianthus caryophyllus). International Journal of Molecular Sciences 20:5233

doi: 10.3390/ijms20205233
[34]

Zhang Q, Geng J, Du Y, Zhao Q, Zhang W, et al. 2022. Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris): genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress. BMC Plant Biology 22:33

doi: 10.1186/s12870-021-03417-4
[35]

Zhou M, Zheng S, Liu R, Lu J, Lu L, et al. 2019. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics 20:505

doi: 10.1186/s12864-019-5876-x
[36]

Bian X-H, Li W, Niu C-F, Wei W, Hu Y, et al. 2020. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytologist 225:268−283

doi: 10.1111/nph.16104
[37]

Song G, Guan H, Fang Z, Ji Y, Zhang J, et al. 2025. Molecular characterization of the heat shock transcription factors in switchgrass highlights PvHsf16 conferring cadmium stress. Grass Research 5:e001

doi: 10.48130/grares-0024-0027
[38]

Wei JT, Zheng L, Ma XJ, Yu TF, Gao X, et al. 2025. An ABF5b-HsfA2h/HsfC2a-NCED2b/POD4/HSP26 module integrates multiple signaling pathway to modulate heat stress tolerance in wheat. Plant Biotechnology Journal 23:4735−4751

doi: 10.1111/pbi.70164
[39]

Fang Y, Liao H, Wei Y, Yin J, Cha J, et al. 2025. OsCDPK24 and OsCDPK28 phosphorylate heat shock factor OsHSFA4d to orchestrate abiotic and biotic stress responses in rice. Nature Communications 16:6485

doi: 10.1038/s41467-025-61827-6
[40]

Scharf K-D, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−119

doi: 10.1016/j.bbagrm.2011.10.002
[41]

Gao L, Pan L, Shi Y, Zeng R, Li M, et al. 2024. Genetic variation in a heat shock transcription factor modulates cold tolerance in maize. Molecular Plant 17:1423−1438

doi: 10.1016/j.molp.2024.07.015
[42]

Lu J, Chen J, Chen H, Fan Z, Lin L, et al. 2025. Heat shock transcription factor OsHsfc1a enhances rice seedling thermotolerance by regulating OsMFT1 and preserving chloroplast structure under heat stress. Plant Biotechnology Journal 0:1−18

doi: 10.1111/pbi.70458
[43]

Ren Y, Ma R, Xie M, Fan Y, Feng L, et al. 2023. Genome-wide identification, phylogenetic and expression pattern analysis of HSF family genes in the Rye (Secale cereale L.). BMC Plant Biology 23:441

doi: 10.1186/s12870-023-04418-1
[44]

Cohen M, Hertweck K, Itkin M, Malitsky S, Dassa B, et al. 2022. Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence. Journal of Experimental Botany 73:6816−6837

doi: 10.1093/jxb/erac329
[45]

Fan J, Lou Y, Shi H, Chen L, Cao L. 2019. Transcriptomic analysis of dark-induced senescence in bermudagrass (Cynodon dactylon). Plants 8:614

doi: 10.3390/plants8120614
[46]

Qian Y, Cao L, Zhang Q, Amee M, Chen K, et al. 2020. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC Plant Biology 20:366

doi: 10.1186/s12870-020-02572-4
[47]

Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science 5:170

doi: 10.3389/fpls.2014.00170
[48]

Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, et al. 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America 103:18822−18827

doi: 10.1073/pnas.0605639103