[1]

Baghalpour N, Ayatollahi SA, Naderi N, Hosseinabadi T, Taheri Y, et al. 2021. Antinociceptive and anti-inflammatory studies on Tradescantia zebrina. Pakistan Journal of Botany 53:357−365

doi: 10.30848/pjb2021-1(31)
[2]

Butnariu M, Quispe C, Herrera-Bravo J, Fernández-Ochoa Á, Emamzadeh-Yazdi S, et al. 2022. A review on Tradescantia: phytochemical constituents, biological activities and health-promoting effects. Frontiers in Bioscience 27:197

doi: 10.31083/j.fbl2706197
[3]

Tan JBL, Kwan YM. 2020. The biological activities of the spiderworts (Tradescantia). Food Chemistry 317:126411

doi: 10.1016/j.foodchem.2020.126411
[4]

Feihrmann AC, da Silva NM, de Marins AR, Antônio Matiucci M, Nunes KC, et al. 2024. Ultrasound-assisted extraction and encapsulation by spray drying of bioactive compounds from Tradescantia zebrina leaves. Food Chemistry Advances 4:100621

doi: 10.1016/j.focha.2024.100621
[5]

da Silva VC, de Magalhães BEA, dos Santos Magalhães TB, Guimarães ET, da Silva Guedes A, et al. 2022. Determination of phenolic bioactive compounds and evaluation of the antioxidant and hemolytic activities in the methanolic extracts of Tradescantia zebrina. Revista Colombiana de Ciencias Quimico-Farmaceuticas 51:1341−1361

doi: 10.15446/rcciquifa.v51n3.101403
[6]

Hughes NM, Lev-Yadun S. 2023. Review: why do some plants have leaves with red or purple undersides? Environmental and Experimental Botany 205:105126

doi: 10.1016/j.envexpbot.2022.105126
[7]

Ramos-Arcos SA, López-Martínez S, Velázquez-Martínez JR, Gómez-Aguirre YA, Cabañas-García E, et al. 2023. Phytochemicals and bioactivities of Tradescantia zebrina Bosse: a southern Mexican species with medicinal properties. Journal of Food and Nutrition Research 11:564−572

doi: 10.12691/jfnr-11-9-2
[8]

Tan JBL, Yap WJ, Tan SY, Lim YY, Lee SM. 2014. Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the Commelinaceae family. Antioxidants 3:758−769

doi: 10.3390/antiox3040758
[9]

Kainat S, Arshad MS, Khalid W, Zubair Khalid M, Koraqi H, et al. 2022. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: a review. International Journal of Food Properties 25:2457−2476

doi: 10.1080/10942912.2022.2144884
[10]

Usman I, Hussain M, Imran A, Afzaal M, Saeed F, et al. 2022. Traditional and innovative approaches for the extraction of bioactive compounds. International Journal of Food Properties 25:1215−1233

doi: 10.1080/10942912.2022.2074030
[11]

Raspe DT, Ciotta SR, Zorzenon MRT, Dacome AS, da Silva C, et al. 2021. Ultrasound-assisted extraction of compounds from Stevia leaf pretreated with ethanol. Industrial Crops and Products 172:114035

doi: 10.1016/j.indcrop.2021.114035
[12]

Tobgay U, Boonyanuphong P, Meunprasertdee P. 2019. Comparison of hot water and methanol extraction combined with ultrasonic pretreatment on antioxidant properties of two pigmented rice cultivars. Food Research 4:547−556

doi: 10.26656/fr.2017.4(2).330
[13]

Hu Y, Lin Q, Zhao H, Li X, Sang S, et al. 2023. Bioaccessibility and bioavailability of phytochemicals: influencing factors, improvements, and evaluations. Food Hydrocolloids 135:108165

doi: 10.1016/j.foodhyd.2022.108165
[14]

Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14:991−1014

doi: 10.1038/s41596-018-0119-1
[15]

Chai TT, Wong FC. 2012. Antioxidant properties of aqueous extracts of Selaginella willdenowii. Journal of Medicinal Plants Research 6:1289−1296

doi: 10.5897/jmpr11.1378
[16]

Giusti MM, Wrolstad RE. 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry 2001:F1.2. 1−F1.2. 13

doi: 10.1002/0471142913.faf0102s00
[17]

Chai TT, Kwek MT, Ong HC, Wong FC. 2015. Water fraction of edible medicinal fern Stenochlaena palustris is a potent α-glucosidase inhibitor with concurrent antioxidant activity. Food Chemistry 186:26−31

doi: 10.1016/j.foodchem.2014.12.099
[18]

Chai T, Mohan M, Ong H, Wong F. 2014. Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers. (Typhaceae). Tropical Journal of Pharmaceutical Research 13:67−72

doi: 10.4314/tjpr.v13i1.10
[19]

Kpemissi M, Kantati YT, Veerapur VP, Eklu-Gadegbeku K, Hassan Z. 2023. Anti-cholinesterase, anti-inflammatory and antioxidant properties of Combretum micranthum G. Don: potential implications in neurodegenerative disease. IBRO Neuroscience Reports 14:21−27

doi: 10.1016/j.ibneur.2022.12.001
[20]

Ferreira-Santos P, Nobre C, Rodrigues RM, Genisheva Z, Botelho C, et al. 2024. Extraction of phenolic compounds from grape pomace using ohmic heating: chemical composition, bioactivity and bioaccessibility. Food Chemistry 436:137780

doi: 10.1016/j.foodchem.2023.137780
[21]

Jaouhari Y, Bordiga M, Travaglia F, Coisson JD, Costa-Barbosa A, et al. 2025. Microwave-assisted extraction of raspberry pomace phenolic compounds, and their bioaccessibility and bioactivity. Food Chemistry 478:143641

doi: 10.1016/j.foodchem.2025.143641
[22]

Reboredo-Rodríguez P, Olmo-García L, Figueiredo-González M, González-Barreiro C, Carrasco-Pancorbo A, et al. 2021. Application of the INFOGEST standardized method to assess the digestive stability and bioaccessibility of phenolic compounds from Galician extra-virgin olive oil. Journal of Agricultural and Food Chemistry 69:11592−11605

doi: 10.1021/acs.jafc.1c04592
[23]

Oancea S. 2021. A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 10:1337

doi: 10.3390/antiox10091337
[24]

Chatupos V, Neelawatanasook S, Sangutai T, Khanutwong A, Srichairatanakool P, et al. 2024. Comparison of analgesic and anti-inflammatory effects of kale extract versus ibuprofen after impacted mandibular third molar surgery: a randomized, double-blind split-mouth clinical trial. Nutrients 16:3821

doi: 10.3390/nu16223821
[25]

Antony A, Farid M. 2022. Effect of temperatures on polyphenols during extraction. Applied Sciences 12:2107

doi: 10.3390/app12042107
[26]

Ferreira-Anta T, Torres MD, Vilarino JM, Dominguez H, Flórez-Fernández N. 2023. Green extraction of antioxidant fractions from Humulus lupulus varieties and microparticle production via spray-drying. Foods 12:3881

doi: 10.3390/foods12203881
[27]

Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. 2022. A review of ultrasound-assisted extraction for plant bioactive compounds: phenolics, flavonoids, thymols, saponins and proteins. Food Research International 157:111268

doi: 10.1016/j.foodres.2022.111268
[28]

Yu Y, Shiau S, Pan W, Yang Y. 2024. Extraction of bioactive phenolics from various anthocyanin-rich plant materials and comparison of their heat stability. Molecules 29:5256

doi: 10.3390/molecules29225256
[29]

Pasquet PL, Julien-David D, Zhao M, Villain-Gambier M, Trébouet D. 2024. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: effect of pH and atmosphere. Food Bioscience 57:103586

doi: 10.1016/j.fbio.2024.103586
[30]

Li CX, Wang FR, Zhang B, Deng ZY, Li HY. 2023. Stability and antioxidant activity of phenolic compounds during in vitro digestion. Journal of Food Science 88:696−716

doi: 10.1111/1750-3841.16440
[31]

De La Cruz-Molina AV, Gonçalves C, Neto MD, Pastrana L, Jauregi P, et al. 2023. Whey-pectin microcapsules improve the stability of grape marc phenolics during digestion. Journal of Food Science 88:4892−4906

doi: 10.1111/1750-3841.16806
[32]

Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, et al. 2023. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry 11:1158198

doi: 10.3389/fchem.2023.1158198
[33]

Munteanu IG, Apetrei C. 2021. Analytical methods used in determining antioxidant activity: a review. International Journal of Molecular Sciences 22:3380

doi: 10.3390/ijms22073380
[34]

Peiris DSHS, Fernando DTK, Senadeera SPNN, Ranaweera CB. 2025. Assessment of in vitro anti-inflammatory activity: a comprehensive review of methods, advantages, and limitations. Asian Journal of Research in Biochemistry 15:37−52

doi: 10.9734/ajrb/2025/v15i2365
[35]

Cea-Pavez I, Manteca-Bautista D, Morillo-Gomar A, Quirantes-Piné R, Quiles JL. 2024. Influence of the encapsulating agent on the bioaccessibility of phenolic compounds from microencapsulated propolis extract during in vitro gastrointestinal digestion. Foods 13:425

doi: 10.3390/foods13030425
[36]

Sabalingam S. 2025. In-vitro approaches to evaluate the anti-inflammatory potential of phytochemicals: a review. Journal of Drug Delivery and Therapeutics 15:187−192

doi: 10.22270/jDDT.v15i1.6956