[1]

Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103

doi: 10.1186/s40168-020-00875-0
[2]

Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, et al. 2015. Host genetic variation impacts microbiome composition across human body sites. Genome Biology 16:191

doi: 10.1186/s13059-015-0759-1
[3]

Boulund U, Bastos DM, Ferwerda B, van den Born BJ, Pinto-Sietsma SJ, et al. 2022. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host & Microbe 30:1464−1480.e6

doi: 10.1016/j.chom.2022.08.013
[4]

Brachi B, Filiault D, Whitehurst H, Darme P, Le Gars P, et al. 2022. Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proceedings of the National Academy of Sciences of the United States of America 119:e2201285119

doi: 10.1073/pnas.2201285119
[5]

Ji N, Liang D, Clark LV, Sacks EJ, Kent AD. 2023. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. Microbiome 11:216

doi: 10.1186/s40168-023-01646-3
[6]

Negre Rodríguez M, Pioppi A, Kovács ÁT. 2025. The role of plant host genetics in shaping the composition and functionality of rhizosphere microbiomes. mSystems 10:e00041-24

doi: 10.1128/msystems.00041-24
[7]

Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, et al. 2022. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nature Genetics 54:134−142

doi: 10.1038/s41588-021-00991-z
[8]

Anka IZ, Uren Webster TM, Berbel-Filho WM, Hitchings M, Overland B, et al. 2024. Microbiome and epigenetic variation in wild fish with low genetic diversity. Nature Communications 15:4725

doi: 10.1038/s41467-024-49162-8
[9]

Chen C, Wang M, Zhu J, Tang Y, Zhang H, et al. 2022. Long-term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. Microbiome 10:36

doi: 10.1186/s40168-022-01236-9
[10]

Forte FP, Malinowska M, Nagy I, Schmid J, Dijkwel P, et al. 2023. Methylome changes in Lolium perenne associated with long-term colonisation by the endophytic fungus Epichloë sp. LpTG-3 strain AR37. Frontiers in Plant Science 14:1258100

doi: 10.3389/fpls.2023.1258100
[11]

Pepke ML, Hansen SB, Limborg MT. 2024. Unraveling host regulation of gut microbiota through the epigenome–microbiome axis. Trends in Microbiology 32:1229−1240

doi: 10.1016/j.tim.2024.05.006
[12]

Siddiqui R, Alvi A, Alqassim S, Alharbi AM, Alhazmi A, et al. 2025. Epigenetics and gut microbiome of reptiles can reveal potential targets to improve human health and performance. Discover Bacteria 2:4

doi: 10.1007/s44351-025-00014-w
[13]

Guivier E, Martin JF, Pech N, Ungaro A, Chappaz R, et al. 2018. Microbiota diversity within and between the tissues of two wild interbreeding species. Microbial Ecology 75:799−810

doi: 10.1007/s00248-017-1077-9
[14]

Kim H, Jeon J, Lee KK, Lee YH. 2022. Longitudinal transmission of bacterial and fungal communities from seed to seed in rice. Communications Biology 5:772

doi: 10.1038/s42003-022-03726-w
[15]

Archie EA, Tung J. 2015. Social behavior and the microbiome. Current Opinion in Behavioral Sciences 6:28−34

doi: 10.1016/j.cobeha.2015.07.008
[16]

Cardona C, Lax S, Larsen P, Stephens B, Hampton-Marcell J, et al. 2018. Environmental sources of bacteria differentially influence host-associated microbial dynamics. mSystems 3:e00052-18

doi: 10.1128/mSystems.00052-18
[17]

Corbin KD, Carnero EA, Dirks B, Igudesman D, Yi F, et al. 2023. Host-diet-gut microbiome interactions influence human energy balance: A randomized clinical trial. Nature Communications 14:3161

doi: 10.1038/s41467-023-38778-x
[18]

Durán P, Ellis TJ, Thiergart T, Ågren J, Hacquard S. 2022. Climate drives rhizosphere microbiome variation and divergent selection between geographically distant Arabidopsis populations. New Phytologist 236:608−621

doi: 10.1111/nph.18357
[19]

Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, et al. 2020. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology & Evolution 4:122−131

doi: 10.1038/s41559-019-1063-3
[20]

Bechtold Emily K, Wanek W, Nuesslein B, DaCosta M, Nüsslein K. 2024. Successional changes in bacterial phyllosphere communities are plant-host species dependent. Applied and Environmental Microbiology 90:e01750-23

doi: 10.1128/aem.01750-23
[21]

Beller L, Deboutte W, Falony G, Vieira-Silva S, Tito RY, et al. 2021. Successional stages in infant gut microbiota maturation. mBio 12:e01857-21

doi: 10.1128/mbio.01857-21
[22]

Fahur Bottino G, Bonham KS, Patel F, McCann S, Zieff M, et al. 2025. Early life microbial succession in the gut follows common patterns in humans across the globe. Nature Communications 16:660

doi: 10.1038/s41467-025-56072-w
[23]

Prest TL, Kimball AK, Kueneman JG, McKenzie VJ. 2018. Host-associated bacterial community succession during amphibian development. Molecular Ecology 27:1992−2006

doi: 10.1111/mec.14507
[24]

Bae DY, Moon SH, Lee TG, Ko YS, Cho YC, et al. 2025. Consequences of domestication on gut microbiome: A comparative analysis between wild boars and domestic pigs. Animals 15:747

doi: 10.3390/ani15050747
[25]

Ferreiro A, Crook N, Gasparrini AJ, Dantas G. 2018. Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172:1216−1227

doi: 10.1016/j.cell.2018.02.015
[26]

Kim H, Lee KK, Jeon J, Harris WA, Lee YH. 2020. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8:20

doi: 10.1186/s40168-020-00805-0
[27]

Metcalf JL, Song SJ, Morton JT, Weiss S, Seguin-Orlando A, et al. 2017. Evaluating the impact of domestication and captivity on the horse gut microbiome. Scientific Reports 7:15497

doi: 10.1038/s41598-017-15375-9
[28]

Yue H, Yue W, Jiao S, Kim H, Lee YH, et al. 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome 11:70

doi: 10.1186/s40168-023-01513-1
[29]

Raaijmakers JM, Kiers ET. 2022. Rewilding plant microbiomes. Science 378:599−600

doi: 10.1126/science.abn6350
[30]

Waqas M, McCouch SR, Francioli D, Tringe SG, Manzella D, et al. 2025. Blueprints for sustainable plant production through the utilization of crop wild relatives and their microbiomes. Nature Communications 16:6364

doi: 10.1038/s41467-025-61779-x
[31]

Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR. 2019. The pathobiome in animal and plant diseases. Trends in Ecology & Evolution 34:996−1008

doi: 10.1016/j.tree.2019.07.012
[32]

Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, et al. 2014. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Frontiers in Cellular and Infection Microbiology 4:29

doi: 10.3389/fcimb.2014.00029
[33]

Kadyan S, Park G, Singh TP, Patoine C, Singar S, et al. 2025. Microbiome-based therapeutics towards healthier aging and longevity. Genome Medicine 17:75

doi: 10.1186/s13073-025-01493-x
[34]

Kamel M, Aleya S, Alsubih M, Aleya L. 2024. Microbiome dynamics: a paradigm shift in combatting infectious diseases. Journal of Personalized Medicine 14:217

doi: 10.3390/jpm14020217
[35]

Faghihinia M, Jansa J, Halverson LJ, Staddon PL. 2023. Hyphosphere microbiome of arbuscular mycorrhizal fungi: A realm of unknowns. Biology and Fertility of Soils 59:17−34

doi: 10.1007/s00374-022-01683-4
[36]

Nguyen NH. 2023. Fungal hyphosphere microbiomes are distinct from surrounding substrates and show consistent association patterns. Microbiology Spectrum 11:e04708-22

doi: 10.1128/spectrum.04708-22
[37]

Wagner K, Krause K, Gallegos-Monterrosa R, Sammer D, Kovács ÁT, Kothe E. 2019. The ectomycorrhizospheric habitat of Norway spruce and Tricholoma vaccinum: Promotion of plant growth and fitness by a rich microorganismic community. Frontiers in Microbiology 10:307

doi: 10.3389/fmicb.2019.00307
[38]

Wang L, George TS, Feng G. 2024. Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function. New Phytologist 242:1529−1533

doi: 10.1111/nph.19396
[39]

Kakouridis A, Yuan M, Nuccio EE, Hagen JA, Fossum CA, et al. 2024. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. New Phytologist 242:1661−1675

doi: 10.1111/nph.19560
[40]

Wang L, Zhang L, George TS, Feng G. 2025. Hyphosphere core taxa link plant-arbuscular mycorrhizal fungi combinations to soil organic phosphorus mineralization. Soil Biology and Biochemistry 201:109647

doi: 10.1016/j.soilbio.2024.109647
[41]

Zhang C, van der Heijden MGA, Dodds BK, Nguyen TB, Spooren J, et al. 2024. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome 12:13

doi: 10.1186/s40168-023-01726-4
[42]

Zhang L, Zhou J, George TS, Limpens E, Feng G. 2022. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science 27:402−11

doi: 10.1016/j.tplants.2021.10.008
[43]

Carrasco J, Preston GM. 2020. Growing edible mushrooms: a conversation between bacteria and fungi. Environmental Microbiology 22:858−872

doi: 10.1111/1462-2920.14765
[44]

Liu Y, Sun Q, Li J, Lian B. 2018. Bacterial diversity among the fruit bodies of ectomycorrhizal and saprophytic fungi and their corresponding hyphosphere soils. Scientific Reports 8:11672

doi: 10.1038/s41598-018-30120-6
[45]

Gohar D, Põldmaa K, Tedersoo L, Aslani F, Furneaux B, et al. 2022. Global diversity and distribution of mushroom-inhabiting bacteria. Environmental Microbiology Reports 14:254−64

doi: 10.1111/1758-2229.13045
[46]

Liu D, Pérez-Moreno J, He X, Garibay-Orijel R, Yu F. 2021. Truffle microbiome is driven by fruit body compartmentalization rather than soils conditioned by different host trees. mSphere 6:e00039-21

doi: 10.1128/msphere.00039-21
[47]

Pent M, Põldmaa K, Bahram M. 2017. Bacterial communities in boreal forest mushrooms are shaped both by soil parameters and host identity. Frontiers in Microbiology 8:836

doi: 10.3389/fmicb.2017.00836
[48]

Zhang K, Chen X, Shi X, Yang Z, Yang L, et al. 2024. Endophytic bacterial community, core taxa, and functional variations within the fruiting bodies of Laccaria. Microorganisms 12:2296

doi: 10.3390/microorganisms12112296
[49]

Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, et al. 2018. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiology and Molecular Biology Reviews 82:e00068-17

doi: 10.1128/MMBR.00068-17
[50]

Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. 2021. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. The ISME Journal 15:1782−1793

doi: 10.1038/s41396-020-00886-7
[51]

Chen P, Li Z, Cao N, Wu RX, Kuang ZR, et al. 2024. Comparison of bacterial communities in five ectomycorrhizal fungi mycosphere soil. Microorganisms 12:1329

doi: 10.3390/microorganisms12071329
[52]

Yao C, Yu P, Yang J, Liu J, Zi Z, et al. 2024. Differences in soil microflora between the two Chinese geographical indication products of "Tricholoma matsutake Shangri-la" and "T. matsutake Nanhua". Agronomy 14:792

doi: 10.3390/agronomy14040792
[53]

Oh SY, Fong JJ, Park MS, Lim YW. 2016. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS One 11:e0168573

doi: 10.1371/journal.pone.0168573
[54]

Guo H, Liu W, Xie Y, Wang Z, Huang C, et al. 2024. Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica. Frontiers in Microbiology 15:1361117

doi: 10.3389/fmicb.2024.1361117
[55]

Yu F, Liang JF, Song J, Wang SK, Lu JK. 2020. Bacterial community selection of Russula griseocarnosa mycosphere soil. Frontiers in Microbiology 11:347

doi: 10.3389/fmicb.2020.00347
[56]

Siyoum NA, Surridge K, van der Linde EJ, Korsten L. 2016. Microbial succession in white button mushroom production systems from compost and casing to a marketable packed product. Annals of Microbiology 66:151−164

doi: 10.1007/s13213-015-1091-4
[57]

Young G, Grogan H, Walsh L, Noble R, Tracy S, et al. 2024. Peat alternative casing materials for the cultivation of Agaricus bisporus mushrooms – a systematic review. Cleaner and Circular Bioeconomy 9:100100

doi: 10.1016/j.clcb.2024.100100
[58]

Carrasco J, García-Delgado C, Lavega R, Tello ML, De Toro M, et al. 2020. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Microbial Biotechnology 13:1933−1947

doi: 10.1111/1751-7915.13639
[59]

Iossi MR, Palú IA, Soares DM, Vieira WG, Jr., Alves LS, et al. 2022. Metaprofiling of the bacterial community in colonized compost extracts by Agaricus subrufescens. Journal of Fungi 8:995

doi: 10.3390/jof8100995
[60]

Liu Q, Kong W, Cui X, Hu S, Shi Z, et al. 2022. Dynamic succession of microbial compost communities and functions during Pleurotus ostreatus mushroom cropping on a short composting substrate. Frontiers in Microbiology 13:946777

doi: 10.3389/fmicb.2022.946777
[61]

Thai M, Safianowicz K, Bell TL, Kertesz MA. 2022. Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate. ISME Communications 2:88

doi: 10.1038/s43705-022-00174-9
[62]

Clarke J, Kavanagh K, Grogan H, Fitzpatrick DA. 2024. Population dynamics of mushroom casing over the course of Agaricus bisporus cultivation in the presence of Bacillus velezensis QST 713 and Bacillus velezensis Kos biocontrol agents. Biological Control 197:105600

doi: 10.1016/j.biocontrol.2024.105600
[63]

Cho YS, Weon HY, Joh JH, Lim JH, Kim KY, et al. 2008. Effect of casing layer on growth promotion of the edible mushroom Pleurotus ostreatus. Mycobiology 36:40−44

doi: 10.4489/MYCO.2008.36.1.040
[64]

Taparia T, Hendrix E, Hendriks M, Nijhuis E, de Boer W, et al. 2021. Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles. Soil Biology and Biochemistry 155:108161

doi: 10.1016/j.soilbio.2021.108161
[65]

Carrasco J, Tello ML, de Toro M, Tkacz A, Poole P, et al. 2019. Casing microbiome dynamics during button mushroom cultivation: implications for dry and wet bubble diseases. Microbiology 165:611−624

doi: 10.1099/mic.0.000792
[66]

Braat N, Koster MC, Wösten HAB. 2022. Beneficial interactions between bacteria and edible mushrooms. Fungal Biology Reviews 39:60−72

doi: 10.1016/j.fbr.2021.12.001
[67]

Vieira FR, Di Tomassi I, O’Connor E, Bull CT, Pecchia JA, et al. 2023. Manipulating Agaricus bisporus developmental patterns by passaging microbial communities in complex substrates. Microbiology Spectrum 11:e01978-23

doi: 10.1128/spectrum.01978-23
[68]

Wang YH, Yang XY, Wan LZ, Ren HX, Qu L, et al. 2023. Influence of the casing layer on the specific volatile compounds and microorganisms by Agaricus bisporus. Frontiers in Microbiology 14:1154903

doi: 10.3389/fmicb.2023.1154903
[69]

Li Z, Liang R, Yu F. 2025. Soil fungal diversity and community structure of Russula griseocarnosa from different sites. Microorganisms 13:490

doi: 10.3390/microorganisms13030490
[70]

Tello Martín ML, Lavega R, Carrasco JC, Pérez M, Pérez-Pulido AJ, et al. 2022. Influence of Agaricus bisporus establishment and fungicidal treatments on casing soil metataxonomy during mushroom cultivation. BMC Genomics 23:442

doi: 10.1186/s12864-022-08638-x
[71]

Kakumyan P, Yang L, Liu S, Yu C, Li Z, et al. 2025. Comparison of the bacterial and fungal communities and metabolic functions of cottonseed hull waste compost associated with high and low yields of straw mushroom Volvariella volvacea. Microorganisms 13:437

doi: 10.3390/microorganisms13020437
[72]

Chesneau G, Laroche B, Préveaux A, Marais C, Briand M, et al. 2022. Single seed microbiota: assembly and transmission from parent plant to seedling. mBio 13:e01648-22

doi: 10.1128/mbio.01648-22
[73]

Kim H, Kim C, Lee YH. 2023. The single-seed microbiota reveals rare taxa-associated community robustness. Phytobiomes Journal 7:324−338

doi: 10.1094/pbiomes-10-22-0068-r
[74]

Vannette RL. 2020. The floral microbiome: plant, pollinator, and microbial perspectives. Annual Review of Ecology, Evolution, and Systematics 51:363−386

doi: 10.1146/annurev-ecolsys-011720-013401
[75]

Pent M, Bahram M, Põldmaa K. 2020. Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. The ISME Journal 14:2131−2141

doi: 10.1038/s41396-020-0674-7
[76]

Ren W, Penttilä R, Kasanen R, Asiegbu FO. 2022. Bacteria community inhabiting Heterobasidion fruiting body and associated wood of different decay classes. Frontiers in Microbiology 13:864619

doi: 10.3389/fmicb.2022.864619
[77]

Sillo F, Vergine M, Luvisi A, Calvo A, Petruzzelli G, et al. 2022. Bacterial communities in the fruiting bodies and background soils of the white truffle Tuber magnatum. Frontiers in Microbiology 13:864434

doi: 10.3389/fmicb.2022.864434
[78]

Splivallo R, Vahdatzadeh M, Maciá-Vicente JG, Molinier V, Peter M, et al. 2019. Orchard conditions and fruiting body characteristics drive the microbiome of the black truffle Tuber aestivum. Frontiers in Microbiology 10:1437

doi: 10.3389/fmicb.2019.01437
[79]

Maurice S, Arnault G, Nordén J, Botnen SS, Miettinen O, et al. 2021. Fungal sporocarps house diverse and host-specific communities of fungicolous fungi. The ISME Journal 15:1445−1457

doi: 10.1038/s41396-020-00862-1
[80]

Malygina EV, Potapova NA, Imidoeva NA, Vavilina TN, Belyshenko AY, et al. 2025. Microbial communities inhabiting the surface and Gleba of white (Tuber magnatum) and black (Tuber macrosporum) truffles from Russia. PeerJ 13:e20037

doi: 10.7717/peerj.20037
[81]

Liu D, He X, Chater CCC, Perez-Moreno J, Yu F. 2021. Microbiome community structure and functional gene partitioning in different micro-niches within a sporocarp-forming fungus. Frontiers in Microbiology 12:629352

doi: 10.3389/fmicb.2021.629352
[82]

Ge W, Ren Y, Dong C, Shao Q, Bai Y, et al. 2023. New perspective: Symbiotic pattern and assembly mechanism of Cantharellus cibarius-associated bacteria. Frontiers in Microbiology 14:1074468

doi: 10.3389/fmicb.2023.1074468
[83]

Gong W, Qiu K, Zhuang Z, Zhang L, Liu X, et al. 2025. Seasonal discrepancy of airborne fungal diversity and community structure in Lentinula edodes factory. Mycology 16:344−356

doi: 10.1080/21501203.2024.2323714
[84]

Kim JY, Kwon HW, Lee DH, Ko HK, Kim SH. 2019. Isolation and characterization of airborne mushroom damaging Trichoderma spp. from indoor air of cultivation houses used for oak wood mushroom production using sawdust media. The Plant Pathology Journal 35:674−683

doi: 10.5423/PPJ.FT.10.2019.0261
[85]

Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, et al. 2020. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International 145:106084

doi: 10.1016/j.envint.2020.106084
[86]

Zhou SYD, Li H, Giles M, Neilson R, Yang XR, et al. 2021. Microbial flow within an air-phyllosphere-soil continuum. Frontiers in Microbiology 11:615481

doi: 10.3389/fmicb.2020.615481
[87]

Zhou J, Chai X, Zhang L, George TS, Wang F, et al. 2020. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. mSystems 5:e00929-20

doi: 10.1128/mSystems.00929-20
[88]

Luthfiana N, Inamura N, Tantriani, Sato T, Saito K, et al. 2021. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza 31:403−412

doi: 10.1007/s00572-020-01016-z
[89]

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112:E911−E920

doi: 10.1073/pnas.1414592112
[90]

Oh SY, Kim M, Eimes JA, Lim YW. 2018. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One 13:e0190948

doi: 10.1371/journal.pone.0190948
[91]

Arendt KR, Hockett KL, Araldi-Brondolo SJ, Baltrus DA, Arnold AE. 2016. Isolation of endohyphal bacteria from foliar Ascomycota and in vitro establishment of their symbiotic associations. Applied and Environmental Microbiology 82:2943−49

doi: 10.1128/AEM.00452-16
[92]

Beijen EPW, van Maanen MH, Marian IM, Klusener JX, van Roosmalen E, et al. 2024. Transcriptomics reveals the regulation of the immune system of the mushroom-forming fungus Schizophyllum commune during interaction with four competitors. Microbiological Research 289:127929

doi: 10.1016/j.micres.2024.127929
[93]

Künzler M. 2018. How fungi defend themselves against microbial competitors and animal predators. PLOS Pathogens 14:e1007184

doi: 10.1371/journal.ppat.1007184
[94]

Shamugam S, Kertesz MA. 2023. Bacterial interactions with the mycelium of the cultivated edible mushrooms Agaricus bisporus and Pleurotus ostreatus. Journal of Applied Microbiology 134:lxac018

doi: 10.1093/jambio/lxac018
[95]

Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A. 2009. Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101:583−591

doi: 10.3852/07-194
[96]

Zhang C, Huang T, Shen C, Wang X, Qi Y, et al. 2016. Downregulation of ethylene production increases mycelial growth and primordia formation in the button culinary-medicinal mushroom, Agaricus bisporus (Agaricomycetes). International Journal of Medicinal Mushrooms 18:1131−1140

doi: 10.1615/IntJMedMushrooms.v18.i12.80
[97]

Zhu H, Zuo Y, Qiu C, Wang X, Zhang Y, et al. 2013. Promotion of the growth and yield in Pleurotus ostreatus by Bradyrhizobium japonicum. Journal of Pure and Applied Microbiology 7:1087−1092

[98]

Kim WG, Weon HY, Seok SJ, Lee KH. 2008. In vitro antagonistic characteristics of bacilli isolates against Trichoderma spp. and three species of mushrooms. Mycobiology 36:266−269

doi: 10.4489/myco.2008.36.4.266
[99]

Mis B, Karaca K, Eltem R. 2024. In vitro antagonistic activity of plant growth promoting rhizobacteria against aggressive biotypes of the green mold. Journal of Basic Microbiology 64:e2400422

doi: 10.1002/jobm.202400422
[100]

Chen J, Li JM, Tang YJ, Xing YM, Qiao P, et al. 2019. Chinese black truffle-associated bacterial communities of Tuber indicum from different geographical regions with nitrogen fixing bioactivity. Frontiers in Microbiology 10:2515

doi: 10.3389/fmicb.2019.02515
[101]

Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, et al. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist 175:743−755

doi: 10.1111/j.1469-8137.2007.02148.x
[102]

Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, et al. 2010. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environmental Microbiology Reports 2:560−568

doi: 10.1111/j.1758-2229.2010.00145.x
[103]

Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, et al. 2011. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environmental Microbiology Reports 3:203−210

doi: 10.1111/j.1758-2229.2010.00209.x
[104]

Oh SY, Park MS, Lim YW. 2019. The influence of microfungi on the mycelial growth of ectomycorrhizal fungus Tricholoma matsutake. Microorganisms 7:169

doi: 10.3390/microorganisms7060169
[105]

Choi DH, Han JG, Lee KH, Gi-Hong A. 2023. Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum. Mycobiology 51:354−359

doi: 10.1080/12298093.2023.2257430
[106]

Zampieri E, Chiapello M, Daghino S, Bonfante P, Mello A. 2016. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Scientific Reports 6:25773

doi: 10.1038/srep25773
[107]

Jin Z, Jiang F, Wang L, Declerck S, Feng G, et al. 2024. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. Microbiome 12:83

doi: 10.1186/s40168-024-01811-2
[108]

Yuan J, Yan Z, Wang Y, Fan S, Chen J, et al. 2026. Oxalotrophic bacteria in the ectomycorrhizosphere play an essential role in phosphorus mobilization. Soil Biology and Biochemistry 214:110077

doi: 10.1016/j.soilbio.2025.110077
[109]

Marantos A, Mitarai N, Sneppen K. 2022. From kill the winner to eliminate the winner in open phage-bacteria systems. PLOS Computational Biology 18:e1010400

doi: 10.1371/journal.pcbi.1010400
[110]

Tong D, Xu J. 2024. Element cycling by environmental viruses. National Science Review 11:nwae459

doi: 10.1093/nsr/nwae459
[111]

Zimmerman AE, Graham EB, McDermott J, Hofmockel KS. 2024. Estimating the importance of viral contributions to soil carbon dynamics. Global Change Biology 30:e17524

doi: 10.1111/gcb.17524
[112]

Bergh Ø, BØrsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature 340:467−68

doi: 10.1038/340467a0
[113]

Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH, et al. 2020. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8:52

doi: 10.1186/s40168-020-00822-z
[114]

Wang X, Tang Y, Yue X, Wang S, Yang K, et al. 2024. The role of rhizosphere phages in soil health. FEMS Microbiology Ecology 100:fiae052

doi: 10.1093/femsec/fiae052
[115]

Berrios L. 2025. Bacteriophages as important considerations for mycorrhizal symbioses in our changing world. Trends in Microbiology 33:1052−1055

doi: 10.1016/j.tim.2025.04.009
[116]

Storey N, Rabiey M, Neuman BW, Jackson RW, Mulley G. 2020. Genomic characterisation of mushroom pathogenic pseudomonads and their interaction with bacteriophages. Viruses 12:1286

doi: 10.3390/v12111286
[117]

Yun YB, Um Y, Kim YK. 2022. Optimization of the bacteriophage cocktail for the prevention of brown blotch disease caused by Pseudomonas tolaasii. The Plant Pathology Journal 38:472−481

doi: 10.5423/PPJ.OA.03.2022.0026
[118]

Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. 2019. Current status and applications of genome-scale metabolic models. Genome Biology 20:121

doi: 10.1186/s13059-019-1730-3
[119]

Quinn-Bohmann N, Carr AV, Diener C, Gibbons SM. 2025. Moving from genome-scale to community-scale metabolic models for the human gut microbiome. Nature Microbiology 10:1055−1066

doi: 10.1038/s41564-025-01972-2
[120]

Han Y, Tafur Rangel A, Pomraning KR, Kerkhoven EJ, Kim J. 2023. Advances in genome-scale metabolic models of industrially important fungi. Current Opinion in Biotechnology 84:103005

doi: 10.1016/j.copbio.2023.103005
[121]

Nilsson A, Nielsen J. 2017. Genome scale metabolic modeling of cancer. Metabolic Engineering 43:103−112

doi: 10.1016/j.ymben.2016.10.022
[122]

Poolman MG, Miguet L, Sweetlove LJ, Fell DA. 2009. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant physiology 151:1570−1581

doi: 10.1104/pp.109.141267
[123]

Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, et al. 2002. Genome-scale metabolic model of Helicobacter pylori 26695. Journal of Bacteriology 184:4582−93

doi: 10.1128/JB.184.16.4582-4593.2002
[124]

Yue Y, Huang H, Qi Z, Dou HM, Liu XY, et al. 2020. Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets. BMC Bioinformatics 21:334

doi: 10.1186/s12859-020-03667-3
[125]

Gelbach PE, Cetin H, Finley SD. 2024. Flux sampling in genome-scale metabolic modeling of microbial communities. BMC Bioinformatics 25:45

doi: 10.1186/s12859-024-05655-3
[126]

Molina Ortiz JP, McClure DD, Holmes A, Rice SA, Read MN, et al. 2025. Genome-scale metabolic modelling of human gut microbes to inform rational community design. Gut Microbes 17:2534673

doi: 10.1080/19490976.2025.2534673
[127]

Quinn-Bohmann N, Wilmanski T, Sarmiento KR, Levy L, Lampe JW, et al. 2024. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nature Microbiology 9:1700−1712

doi: 10.1038/s41564-024-01728-4
[128]

Xu X, Zarecki R, Medina S, Ofaim S, Liu X, et al. 2019. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. The ISME Journal 13:494−508

doi: 10.1038/s41396-018-0288-5
[129]

Mataigne V, Vannier N, Vandenkoornhuyse P, Hacquard S. 2022. Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome. Microbiome 10:217

doi: 10.1186/s40168-022-01383-z