[1]

Gantait S, Mandal N. 2010. Tissue culture of Anthurium andreanum: a significant review and future prospective. International Journal of Botany 6:207−219

doi: 10.3923/ijb.2010.207.219
[2]

Favero BT, Lütken H, Dole JM, Lima GPP. 2020. Anthurium andraeanum senescence in response to 6-benzylaminopurine: vase life and biochemical aspects. Postharvest Biology and Technology 161:111084

doi: 10.1016/j.postharvbio.2019.111084
[3]

Niu J, Leng Q, Li G, Huang S, Xu S, et al. 2021. 'Victory Flag': a new cut Anthurium cultivar. HortScience 56:513−514

doi: 10.21273/HORTSCI15520-20
[4]

Osorio-Guarín JA, Gopaulchan D, Quanckenbush C, Lennon AM, Umaharan P, et al. 2021. Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.). PLoS One 16:e0261364

doi: 10.1371/journal.pone.0261364
[5]

Evelyn S, Farrell AD, Elibox W, De Abreu K, Umaharan P. 2020. The impact of light on vase life in (Anthurium andraeanum Hort.) cut flowers. Postharvest Biology and Technology 159:110984

doi: 10.1016/j.postharvbio.2019.110984
[6]

Evelyn S, Elibox W, Umaharan P, De Abreu K, Farrell AD. 2023. Genotypic differences in vase life of Anthurium andraeanum (Hort.) cut-flowers are associated with differences in spathe chlorophyll content. Postharvest Biology and Technology 197:112220

doi: 10.1016/j.postharvbio.2022.112220
[7]

Elibox W, Umaharan P. 2014. Morphophysiological parameters associated with vase life of cut flowers of Anthurium andraeanum hort. Acta Horticulturae ( 1047):99−108

doi: 10.17660/actahortic.2014.1047.10
[8]

Fan Y, Liu J, Zou J, Zhang X, Jiang L, et al. 2020. The RhHB1/RhLOX4 module affects the dehydration tolerance of rose flowers (Rosa hybrida) by fine-tuning jasmonic acid levels. Horticulture Research 7:74

doi: 10.1038/s41438-020-0299-z
[9]

van Doorn WG, Woltering EJ. 2008. Physiology and molecular biology of petal senescence. Journal of Experimental Botany 59:453−480

doi: 10.1093/jxb/erm356
[10]

Zhu YF, Wu AG, Chen MY, Zhou XY, Huang FH, et al. 2025. Plant-based strategies against aging: focus on bioactive compounds from medicine-food homology plants. Phytomedicine 145:157052

doi: 10.1016/j.phymed.2025.157052
[11]

Moosa A, AL-Huqail AA, Alshehri D, Alghanem SMS, Zulfiqar F, et al. 2025. Combined efficacy of Bacillus amyloliquefaciens CIM95 and melatonin in reducing anthracnose in strawberries (Fragaria × ananassa Duch.) by enhancing antioxidant activity and defense-related genes. International Journal of Food Microbiology 442:111379

doi: 10.1016/j.ijfoodmicro.2025.111379
[12]

Zhou C, Luo L, Miao P, Dong Q, Cheng H, et al. 2023. A novel perspective to investigate how nanoselenium and melatonin lengthen the cut carnation vase shelf. Plant Physiology and Biochemistry 196:982−992

doi: 10.1016/j.plaphy.2023.02.033
[13]

Wojciechowska N, Sobieszczuk-Nowicka E, Bagniewska-Zadworna A. 2018. Plant organ senescence – regulation by manifold pathways. Plant Biology 20:167−181

doi: 10.1111/plb.12672
[14]

Saks Y, Van Staden J. 1993. Evidence for the involvement of gibberellins in developmental phenomena associated with carnation flower senescence. Plant Growth Regulation 12:105−110

doi: 10.1007/BF00144590
[15]

Lü P, Zhang C, Liu J, Liu X, Jiang G, et al. 2014. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal 78:578−590

doi: 10.1111/tpj.12494
[16]

Hunter DA, Ferrante A, Vernieri P, Reid MS. 2004. Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus "Dutch Master"). Physiologia Plantarum 121:313−321

doi: 10.1111/j.0031-9317.2004.0311.x
[17]

Trivellini A, Cocetta G, Vernieri P, Mensuali-Sodi A, Ferrante A. 2015. Effect of cytokinins on delaying Petunia flower senescence: a transcriptome study approach. Plant Molecular Biology 87:169−180

doi: 10.1007/s11103-014-0268-8
[18]

Shimizu-Yumoto H, Tsujimoto N, Naka T. 2020. Acid invertase activities of Dahlia 'Kokucho' petals during flower opening and following cutting and treatment with 6-benzylaminopurine. Scientia Horticulturae 272:109525

doi: 10.1016/j.scienta.2020.109525
[19]

Wu L, Ma N, Jia Y, Zhang Y, Feng M, et al. 2017. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiology 173:853−862

doi: 10.1104/pp.16.01064
[20]

Khaskheli AJ, Ahmed W, Ma C, Zhang S, Liu Y, et al. 2018. RhERF113 functions in ethylene-induced petal senescence by modulating cytokinin content in rose. Plant & Cell Physiology 59:2442−2451

doi: 10.1093/pcp/pcy162
[21]

do Nascimento Simões A, Diniz NB, da Silva Vieira MR, Ferreira-Silva SL, da Silva MB, et al. 2018. Impact of GA3 and spermine on postharvest quality of Anthurium cut flowers (Anthurium andraeanum) cv. Arizona. Scientia Horticulturae 241:178−186

doi: 10.1016/j.scienta.2018.06.095
[22]

Mawlong B, Panja P, Thakur PK, Bhattacharjee D, Dhua RS. 2020. Studies on preservation and shelf life of cut Anthurium flower. Journal of Crop and Weed 16:82−89

doi: 10.22271/09746315.2020.v16.i2.1318
[23]

Fukui R, Kikuchi S, Ichida Y, Honjo H. 2005. Vase life of imported Anthurium flowers evaluated in Japan in relation to the effects of postimportation benzyladenine treatment. HortScience 40:1439−1443

doi: 10.21273/hortsci.40.5.1439
[24]

Paull RE, Chantrachit T. 2001. Benzyladenine and the vase life of tropical ornamentals. Postharvest Biology and Technology 21:303−310

doi: 10.1016/S0925-5214(00)00153-8
[25]

Gao SP. 2006. Studies on postharvest preservative methods of cut flower of herbaceous peony. Master's thesis (in Chinese). Beijing Forestry University.

[26]

Sahoo R, Kumar S, Ahuja PS. 2001. Induction of a new isozyme of superoxide dismutase at low temperature in Potentilla astrisanguinea Lodd. variety argyrophylla (Wall. ex. Lehm) Griers. Journal of Plant Physiology 158:1093−1097

doi: 10.1078/0176-1617-00224
[27]

do Nascimento Simões A, Moreira SI, Mosquim PR, de Fátima Ferreira Soares N, Puschmann R. 2014. The effects of storage temperature on the quality and phenolic metabolism of whole and minimally processed kale leaves. Acta Scientiarum Agronomy 37:101−107

doi: 10.4025/actasciagron.v37i1.18123
[28]

Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, et al. 1993. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radical Biology and Medicine 15:353−363

doi: 10.1016/0891-5849(93)90035-S
[29]

Wei L, You Z, Liu P, Zhu H, Duan X, et al. 2025. The role of amino acids in delaying the pulp breakdown of litchi fruit during postharvest storage. Food Chemistry 489:144977

doi: 10.1016/j.foodchem.2025.144977
[30]

Rabiza-Świder J, Skutnik E, Jędrzejuk A, Rochala-Wojciechowska J. 2020. Nanosilver and sucrose delay the senescence of cut snapdragon flowers. Postharvest Biology and Technology 165:111165

doi: 10.1016/j.postharvbio.2020.111165
[31]

Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF. 2007. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. Journal of Experimental Botany 58:2873−2885

doi: 10.1093/jxb/erm076
[32]

Werner S, Tarkowskà D, Schmülling T. 2025. Cytokinin depends on GA biosynthesis and signaling to regulate different aspects of vegetative phase change in Arabidopsis. Nature Communications 16:6292

doi: 10.1038/s41467-025-61507-5
[33]

Ji X, Yuan Y, Bai Z, Wang M, Niu L, et al. 2023. PlZFP mediates the combinatorial interactions of abscisic acid with gibberellin and ethylene during flower senescence in cut herbaceous peony. Postharvest Biology and Technology 195:112130

doi: 10.1016/j.postharvbio.2022.112130
[34]

Fan HM, Wang XW, Sun X, Li YY, Sun XZ, et al. 2014. Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in Chrysanthemum. Scientia Horticulturae 177:118−123

doi: 10.1016/j.scienta.2014.05.010
[35]

Wang Y, Zhao H, Liu C, Cui G, Qu L, et al. 2020. Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana. Plant Physiology and Biochemistry 149:121−131

doi: 10.1016/j.plaphy.2020.02.001
[36]

Zhang Y, Zhong D, Liu Z, Gao J. 2021. Study on the physiological, cellular, and morphological aspects of the postharvest development of cut lily flowers. Horticultural Plant Journal 7:149−158

doi: 10.1016/j.hpj.2021.02.005
[37]

Partap M, Deekshith HN, Gupta H, Birsanta G, Kapoor P, et al. 2025. Morphological and biochemical analysis along with gene expression dynamics in Lilium 'Brunello' under supplemented effect of blue and red light treatment in pin tray soil-less cultivation system. Journal of Photochemistry and Photobiology B: Biology 267:113168

doi: 10.1016/j.jphotobiol.2025.113168
[38]

Gómez-Merino FC, Ramírez-Martínez M, Castillo-González AM, Trejo-Téllez LI. 2020. Lanthanum prolongs vase life of cut tulip flowers by increasing water consumption and concentrations of sugars, proteins and chlorophylls. Scientific Reports 10:4209

doi: 10.1038/s41598-020-61200-1
[39]

Gómez-Santos M, González-García Y, Pérez-Álvarez M, Cadenas-Pliego G, Juárez-Maldonado A. 2023. Impact of Calcium-Silicon nanoparticles on flower quality and biochemical characteristics of Lilium under salt stress. Plant Stress 10:100270

doi: 10.1016/j.stress.2023.100270