[1]

Yang Y, Liu L, Liu P, Ding J, Xu H, et al. 2023. Improved global agricultural crop- and animal-specific ammonia emissions during 1961–2018. Agriculture, Ecosystems & Environment 344:108289

doi: 10.1016/j.agee.2022.108289
[2]

Chen ZL, Song W, Hu CC, Liu XJ, Chen GY, et al. 2022. Significant contributions of combustion-related sources to ammonia emissions. Nature Communications 3:7710

doi: 10.1038/s41467-022-35381-4
[3]

Liu L, Xu W, Lu X, Zhong B, Guo Y, et al. 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America 119:e2121998119

doi: 10.1073/pnas.2121998119
[4]

Zhang L, Chen Y, Zhao Y, Henze DK, Zhu L, et al. 2018. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmospheric Chemistry and Physics 18:339−355

doi: 10.5194/acp-18-339-2018
[5]

Wang C, Liu Z, Zhang X, Zhang L, Zhou F, et al. 2025. Managing ammonia for multiple benefits based on verified high-resolution emission inventory in China. Environmental Science & Technology 59:5131−5144

doi: 10.1021/acs.est.4c12558
[6]

Zhang X, Gu B, van Grinsven H, Lam SK, Liang X, et al. 2020. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nature Communications 11:4357

doi: 10.1038/s41467-020-18196-z
[7]

Zhang W, Li B, Liu J, Gu W, Li Y, et al. 2025. High-resolution livestock spatial distribution mapping in China based on big data and applications in ammonia emission inventories. Journal of Cleaner Production 520:146097

doi: 10.1016/j.jclepro.2025.146097
[8]

Yi W, Liu G, Wang M, Wang J, Chen D, et al. 2025. Increased nitrogen deposition and airborne particulate matter pollution in the vicinity of intensive animal farms caused by ammonia emissions. Agriculture, Ecosystems & Environment 387:109634

doi: 10.1016/j.agee.2025.109634
[9]

Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY. 2016. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry 96:4−15

doi: 10.1016/j.soilbio.2016.01.012
[10]

Song L, Niu S. 2022. Increased soil microbial AOB amoA and narG abundances sustain long-term positive responses of nitrification and denitrification to N deposition. Soil Biology and Biochemistry 166:108539

doi: 10.1016/j.soilbio.2021.108539
[11]

Carter MS. 2007. Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biology and Biochemistry 39:2091−2102

doi: 10.1016/j.soilbio.2007.03.013
[12]

Redding MR, Shorten PR, Lewis R, Pratt C, Paungfoo-Lonhienne C, et al. 2016. Soil N availability, rather than N deposition, controls indirect N2O emissions. Soil Biology and Biochemistry 95:288−298

doi: 10.1016/j.soilbio.2016.01.002
[13]

da Silva Cardoso A, Quintana BG, Janusckiewicz ER, de Figueiredo Brito L, da Silva Morgado E, et al. 2017. N2O emissions from urine-treated tropical soil: effects of soil moisture and compaction, urine composition, and dung addition. CATENA 157:325−332

doi: 10.1016/j.catena.2017.05.036
[14]

Harris E, Yu L, Wang YP, Mohn J, Henne S, et al. 2022. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nature Communications 13:4310

doi: 10.1038/s41467-022-32001-z
[15]

Samad MS, Ganasamurthy S, Highton MP, Bakken LR, Clough TJ, et al. 2021. Urea treatment decouples intrinsic pH control over N2O emissions in soils. Soil Biology and Biochemistry 163:108461

doi: 10.1016/j.soilbio.2021.108461
[16]

Drewer J, Braban CF, Tang YS, Anderson M, Skiba UM, et al. 2015. Surface greenhouse gas fluxes downwind of a penguin colony in the maritime sub-Antarctic. Atmospheric Environment 123:9−17

doi: 10.1016/j.atmosenv.2015.10.062
[17]

Cui X, Bo Y, Adalibieke W, Winiwarter W, Zhang X, et al. 2024. The global potential for mitigating nitrous oxide emissions from croplands. One Earth 7:401−420

doi: 10.1016/j.oneear.2024.01.005
[18]

Ineson P, Coward PA, Benham DG, Robertson SMC. 1998. Coniferous forests as "secondary agricultural" sources of nitrous oxide. Atmospheric Environment 32:3321−3330

doi: 10.1016/S1352-2310(98)00022-3
[19]

Zhu G, Shi H, Zhong L, He G, Wang B, et al. 2025. Nitrous oxide sources, mechanisms and mitigation. Nature Reviews Earth & Environment 6:574−592

doi: 10.1038/s43017-025-00707-5
[20]

Simon PL, Dieckow J, Zanatta JA, Ramalho B, Ribeiro RH, et al. 2020. Does Brachiaria humidicola and dicyandiamide reduce nitrous oxide and ammonia emissions from cattle urine patches in the subtropics? Science of The Total Environment 720:137692

doi: 10.1016/j.scitotenv.2020.137692
[21]

Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME Journal 1:660−662

doi: 10.1038/ismej.2007.79
[22]

Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, et al. 2005. Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems 72:51−65

doi: 10.1007/s10705-004-7354-2
[23]

Wu L, Chen X, Wei W, Liu Y, Wang D, et al. 2020. A critical review on nitrous oxide production by ammonia-oxidizing archaea. Environmental Science & Technology 54:9175−9190

doi: 10.1021/acs.est.0c03948
[24]

Pan H, Feng H, Liu Y, Lai CY, Zhuge Y, et al. 2021. Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils. ISME Communications 1:74

doi: 10.1038/s43705-021-00068-2
[25]

Wang J, Cui W, Che Z, Liang F, Wen Y, et al. 2020. Effects of synthetic nitrogen fertilizer and manure on fungal and bacterial contributions to N2O production along a soil acidity gradient. Science of The Total Environment 753:142011

doi: 10.1016/j.scitotenv.2020.142011
[26]

Yin C, Fan X, Chen H, Ye M, Yan G, et al. 2022. Inhibition of ammonia-oxidizing bacteria promotes the growth of ammonia-oxidizing archaea in ammonium-rich alkaline soils. Pedosphere 32:532−542

doi: 10.1016/S1002-0160(21)60048-6
[27]

Yi W, Shen J, Liu G, Wang J, Yu L, et al. 2021. High NH3 deposition in the environs of a commercial fattening pig farm in central south China. Environmental Research Letters 16:125007

doi: 10.1088/1748-9326/ac3603
[28]

Shen J, Chen D, Bai M, Sun J, Coates T, et al. 2016. Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia. Scientific Reports 6:32793

doi: 10.1038/srep32793
[29]

Zhang Y, Zhang N, Yin J, Yang F, Zhao Y, et al. 2020. Combination of warming and N inputs increases the temperature sensitivity of soil N2O emission in a Tibetan alpine meadow. Science of The Total Environment 704:135450

doi: 10.1016/j.scitotenv.2019.135450
[30]

Skiba U, Pitcairn C, Sheppard L, Kennedy V, Fowler D. 2005. The influence of atmospheric N deposition on nitrous oxide and nitric oxide fluxes and soil ammonium and nitrate concentrations. Water, Air, & Soil Pollution 4:37−43

doi: 10.1007/s11267-005-3011-2
[31]

Bao S. 2002. Soil agricultural and chemistry analysis. Beijing: Agricultural Press. 49 pp

[32]

Shen J, Chen D, Bai M, Sun J, Lam SK, et al. 2018. Spatial variations in soil and plant nitrogen levels caused by ammonia deposition near a cattle feedlot. Atmospheric Environment 176:120−127

doi: 10.1016/j.atmosenv.2017.12.022
[33]

Ellis S, Webb J, Misselbrook T, Chadwick D. 2001. Emission of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from a dairy hardstanding in the UK. Nutrient Cycling in Agroecosystems 60:115−122

doi: 10.1023/A:1012608100518
[34]

Fan J, Xu Y, Chen Z, Xiao J, Liu D, et al. 2017. Sulfur deposition suppressed nitrogen-induced soil N2O emission from a subtropical forestland in southeastern China. Agricultural and Forest Meteorology 233:163−170

doi: 10.1016/j.agrformet.2016.11.017
[35]

Li X, Cheng S, Fang H, Yu G, Dang X, et al. 2015. The contrasting effects of deposited NH4+ and NO3 on soil CO2, CH4 and N2O fluxes in a subtropical plantation, southern China. Ecological Engineering 85:317−327

doi: 10.1016/j.ecoleng.2015.10.003
[36]

Lin S, Iqbal J, Hu R, Ruan L, Wu J, et al. 2012. Differences in nitrous oxide fluxes from red soil under different land uses in mid-subtropical China. Agriculture Ecosystems & Environment 146:168−178

doi: 10.1016/j.agee.2011.10.024
[37]

Chen D, Fu XQ, Wang C, Liu XL, Li H, et al. 2015. Nitrous oxide emissions from a masson pine forest soil in subtropical Central China. Pedosphere 25:263−274

doi: 10.1016/S1002-0160(15)60011-X
[38]

Li C, Wang W, Wang K, Wang Y, Zhang M. 2024. Responses of greenhouse gas emissions to increased precipitation events in different ecosystems: a meta-analysis. CATENA 246:108400

doi: 10.1016/j.catena.2024.108400
[39]

Li Y, Chapman SJ, Nicol GW, Yao H. 2018. Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry 116:290−301

doi: 10.1016/j.soilbio.2017.10.023
[40]

Russenes AL, Korsaeth A, Bakken LR, Dörsch P. 2016. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil. Soil Biology and Biochemistry 99:36−46

doi: 10.1016/j.soilbio.2016.04.019
[41]

Rummel PS, Englert P, Beule L, Pausch J. 2025. N2O flux dynamics and production pathways modulated by soil organic matter and litter turnover. Biology and Fertility of Soils 61:1235−1251

doi: 10.1007/s00374-025-01925-1
[42]

Sáez-Sandino T, Maestre FT, Berdugo M, Gallardo A, Plaza C, et al. 2024. Increasing numbers of global change stressors reduce soil carbon worldwide. Nature Climate Change 14:740−745

doi: 10.1038/s41558-024-02019-w
[43]

Kuśmierz S, Skowrońska M, Tkaczyk P, Lipiński W, Mielniczuk J. 2023. Soil organic carbon and mineral nitrogen contents in soils as affected by their pH, texture and fertilization. Agronomy 13(1):267

doi: 10.3390/agronomy13010267
[44]

Geng F, Li K, Liu X, Gong Y, Yue P, et al. 2019. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. CATENA 182:104100

doi: 10.1016/j.catena.2019.104100
[45]

Götze H, Saul M, Jiang Y, Pacholski A. 2023. Effect of incorporation techniques and soil properties on NH3 and N2O emissions after urea application. Agronomy 13:2632

doi: 10.3390/agronomy13102632
[46]

Yu G, Cheng S, Fang H, Tian J, Xu M, et al. 2018. Responses of soil nitrous oxide flux to soil environmental factors in a subtropical coniferous plantation: a boundary line analysis. European Journal of Soil Biology 86:16−25

doi: 10.1016/j.ejsobi.2018.02.002
[47]

Schaufler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, et al. 2010. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. European Journal of Soil Science 61:683−696

doi: 10.1111/j.1365-2389.2010.01277.x
[48]

Gleeson DB, Müller C, Banerjee S, Ma W, Siciliano SD, et al. 2010. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biology and Biochemistry 42:1888−1891

doi: 10.1016/j.soilbio.2010.06.020
[49]

Dai Z, Yu M, Chen H, Zhao H, Huang Y, et al. 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology 26:5267−5276

doi: 10.1111/gcb.15211
[50]

Vogeler I, Giltrap D, Cichota R. 2013. Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. Science of The Total Environment 465:147−155

doi: 10.1016/j.scitotenv.2012.09.021
[51]

Chen S, Hao T, Goulding K, Misselbrook T, Liu X. 2019. Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland. Environmental Pollution 252:675−681

doi: 10.1016/j.envpol.2019.03.069
[52]

Ying J, Li X, Wang N, Lan Z, He J, et al. 2017. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology and Biochemistry 107:10−18

doi: 10.1016/j.soilbio.2016.12.023
[53]

Rousk J, Brookes PC, Bååth E. 2010. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry 42:926−934

doi: 10.1016/j.soilbio.2010.02.009
[54]

Peralta AL, Matthews JW, Kent AD. 2014. Habitat specialization along a wetland moisture gradient differs between ammonia-oxidizing and denitrifying microorganisms. Microbial Ecology 68:339−350

doi: 10.1007/s00248-014-0407-4
[55]

Zhao Y, Ling N, Liu X, Li C, Jing X, et al. 2024. Altitudinal patterns of alpine soil ammonia-oxidizing community structure and potential nitrification rate. Applied and Environmental Microbiology 90:e00070-24

doi: 10.1128/aem.00070-24
[56]

Lu X, Mao Q, Gilliam FS, Luo Y, Mo J. 2014. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology 20:3790−3801

doi: 10.1111/gcb.12665
[57]

Van Damme M, Clarisse L, Whitburn S, Hadji-Lazaro J, Hurtmans D, et al. 2018. Industrial and agricultural ammonia point sources exposed. Nature 564:99−103

doi: 10.1038/s41586-018-0747-1
[58]

Yue P, Zuo X, Li K, Cui X, Wang S, et al. 2021. The driving effect of nitrogen-related functional microorganisms under water and nitrogen addition on N2O emission in a temperate desert. Science of The Total Environment 772:145470

doi: 10.1016/j.scitotenv.2021.145470
[59]

Wang Z, Li Y, Liu X, Ju X. 2025. Integrated manure application enhances soil quality and reduces nitrous oxide emissions by deterministically shaping N cycling guilds. Nitrogen Cycling 1:e007

doi: 10.48130/nc-0025-0007