[1]

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293−296

doi: 10.1038/nature06592
[2]

Robertson GP, Groffman PM. 2015. Chapter 14 – Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry (Fourth Edition), ed. Paul EA. Boston: Academic Press. pp. 421–446 doi: 10.1016/B978-0-12-415955-6.00014-1

[3]

Robertson GP, Groffman PM. 2024. Chapter 14 – Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry (Fifth Edition), eds. Paul EA, Frey SD. Amsterdam: Elsevier. pp. 407–438 doi: 10.1016/B978-0-12-822941-5.00014-4

[4]

Hayashi K. 2022. Nitrogen cycling and management focusing on the central role of soils: a review. Soil Science and Plant Nutrition 68:514−525

doi: 10.1080/00380768.2022.2125789
[5]

Aphirta S, Rinanti A, Muslih E, Fachrul MF, Hendrawan DI, et al. 2026. Chapter 9 – Nitrogen cycling in the ecosystem and its role in air, water, and soil pollution. In Nonpoint Source Nitrogen Pollution, eds. Kurniawan TA, Anouzla A. Amsterdam: Elsevier. pp. 177–209 doi: 10.1016/B978-0-443-29070-1.00013-6

[6]

Harris E, Yu L, Wang YP, Mohn J, Henne S, et al. 2022. Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nature Communications 13:4310

doi: 10.1038/s41467-022-32001-z
[7]

Duan J, Liu H, Zhang X, Ren C, Wang C, et al. 2024. Agricultural management practices in China enhance nitrogen sustainability and benefit human health. Nature Food 5:378−389

doi: 10.1038/s43016-024-00953-8
[8]

Hu CC, Liu XY, Driscoll AW, Kuang YW, Brookshire ENJ, et al. 2024. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nature Communications 15:6407

doi: 10.1038/s41467-024-50674-6
[9]

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889−892

doi: 10.1126/science.1136674
[10]

Quinton JN, Govers G, Van Oost K, Bardgett RD. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience 3:311−314

doi: 10.1038/ngeo838
[11]

Van Oost K, Quine TA, Govers G, De Gryze S, Six J, et al. 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318:626−629

doi: 10.1126/science.1145724
[12]

Berhe AA, Barnes RT, Six J, Marín-Spiotta E. 2018. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annual Review of Earth and Planetary Sciences 46:521−548

doi: 10.1146/annurev-earth-082517-010018
[13]

Berhe AA, Torn MS. 2017. Erosional redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry 132:37−54

doi: 10.1007/s10533-016-0286-5
[14]

Doetterl S, Berhe AA, Nadeu E, Wang Z, Sommer M, et al. 2016. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews 154:102−122

doi: 10.1016/j.earscirev.2015.12.005
[15]

Reicosky DC, Lindstrom MJ, Schumacher TE, Lobb DE, Malo DD. 2005. Tillage-induced CO2 loss across an eroded landscape. Soil and Tillage Research 81:183−194

doi: 10.1016/j.still.2004.09.007
[16]

Zheng H, Miao C, Huntingford C, Tarolli P, Li D, et al. 2025. The impacts of erosion on the carbon cycle. Reviews of Geophysics 63:e2023RG000829

doi: 10.1029/2023RG000829
[17]

Schoof J, Holz M, Rütting T, Well R, Buchen-Tschiskale C. 2025. Impact of different soil erosion levels on gross N transformation processes and gaseous N losses: an incubation study. Soil Biology and Biochemistry 209:109905

doi: 10.1016/j.soilbio.2025.109905
[18]

Holz M, Augustin J. 2021. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: a meta-analysis. Geoderma 397:115045

doi: 10.1016/j.geoderma.2021.115045
[19]

Shafreen M, Vishwakarma K, Shrivastava N, Kumar N. 2021. Physiology and distribution of nitrogen in soils. In Soil Nitrogen Ecology, eds. Cruz C, Vishwakarma K, Choudhary DK, Varma A. Cham: Springer International Publishing. pp. 3–31 doi: 10.1007/978-3-030-71206-8_1

[20]

Naef F, Scherrer S, Weiler M. 2002. A process based assessment of the potential to reduce flood runoff by land use change. Journal of Hydrology 267:74−79

doi: 10.1016/S0022-1694(02)00141-5
[21]

Liu C, Li Z, Chang X, He J, Nie X, et al. 2018. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: a case study in a loess hilly-gully catchment, China. Agriculture Ecosystems & Environment 253:11−22

doi: 10.1016/j.agee.2017.10.028
[22]

Li Z, Liu C, Dong Y, Chang X, Nie X, et al. 2017. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–gully region of China. Soil and Tillage Research 166:1−9

doi: 10.1016/j.still.2016.10.004
[23]

Shi J, Zhang Z, Wang Z, Peng Y, Wang X. 2024. Soil erosion alters the composition of soil nitrogen and induces nitrogen immobilization along a sloping agricultural landscape. Soil Use and Management 40:e13067

doi: 10.1111/sum.13067
[24]

Jia H, Lei A, Lei J, Ye M, Zhao J. 2007. Effects of hydrological processes on nitrogen loss in purple soil. Agricultural Water Management 89:89−97

doi: 10.1016/j.agwat.2006.12.013
[25]

Wang T, Xiao W, Huang Z, Zeng L. 2022. Interflow pattern govern nitrogen loss from tea orchard slopes in response to rainfall pattern in Three Gorges Reservoir Area. Agricultural Water Management 269:107684

doi: 10.1016/j.agwat.2022.107684
[26]

Rumynin VG. 2015. Surface runoff generation, vertical infiltration and subsurface lateral flow. In Overland Flow Dynamics and Solute Transport, ed. Rumynin VG. Cham: Springer International Publishing. pp. 3–50 doi: 10.1007/978-3-319-21801-4_1

[27]

Almaraz M, Wang C, Wong MY. 2025. Deep soil contributions to global nitrogen budgets. Nature Communications 16:966

doi: 10.1038/s41467-025-56132-1
[28]

Stacy EM, Hart SC, Hunsaker CT, Johnson DW, Berhe AA. 2015. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration. Biogeosciences 12:4861−4874

doi: 10.5194/bg-12-4861-2015
[29]

Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, et al. 2015. Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96:1561−1574

doi: 10.1890/14-0834.1
[30]

Zhu J, Jansen-Willems A, Müller C, Dörsch P. 2021. Topographic differences in nitrogen cycling mediate nitrogen retention in a subtropical, N-saturated forest catchment. Soil Biology and Biochemistry 159:108303

doi: 10.1016/j.soilbio.2021.108303
[31]

Nesa MM, Propa SM, Sen S, Abdullah HM. 2024. Land use change and soil erosion: challenges and way forward to management. In Climate Change and Soil-Water-Plant Nexus: Agriculture and Environment, eds. Rahman MM, Biswas JC, Meena RS. Singapore: Springer Nature Singapore. pp. 547–571 doi: 10.1007/978-981-97-6635-2_18

[32]

Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8:2013

doi: 10.1038/s41467-017-02142-7
[33]

Tang X, Qiu J, Xu Y, Li J, Chen J, et al. 2022. Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. CATENA 218:106543

doi: 10.1016/j.catena.2022.106543
[34]

Yang R, Yang S, Chen LL, Yang Z, Xu L, et al. 2023. Effect of vegetation restoration on soil erosion control and soil carbon and nitrogen dynamics: a meta-analysis. Soil and Tillage Research 230:105705

doi: 10.1016/j.still.2023.105705
[35]

Li H, Zhu H, Qiu L, Wei X, Liu B, et al. 2020. Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China. Agriculture, Ecosystems & Environment 302:107081

doi: 10.1016/j.agee.2020.107081
[36]

Anh PTQ, Gomi T, MacDonald LH, Mizugaki S, Van Khoa P, et al. 2014. Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: a plot-scale study. Geoderma 232−234:352−362

doi: 10.1016/j.geoderma.2014.05.011
[37]

Barakat M, Cheviron B, Angulo-Jaramillo R. 2016. Influence of the irrigation technique and strategies on the nitrogen cycle and budget: a review. Agricultural Water Management 178:225−238

doi: 10.1016/j.agwat.2016.09.027
[38]

Huang R, Gao X, Wang F, Xu G, Long Y, et al. 2020. Effects of biochar incorporation and fertilizations on nitrogen and phosphorus losses through surface and subsurface flows in a sloping farmland of Entisol. Agriculture, Ecosystems & Environment 300:106988

doi: 10.1016/j.agee.2020.106988
[39]

Zhang J, Cai Z, Müller C. 2018. Terrestrial N cycling associated with climate and plant-specific N preferences: a review. European Journal of Soil Science 69:488−501

doi: 10.1111/ejss.12533
[40]

Murphy DV, Recous S, Stockdale EA, Fillery IRP, Jensen LS, et al. 2003. Gross nitrogen fluxes in soil: theory, measurement and application of 15N pool dilution techniques. Advances in Agronomy 79:69−118

doi: 10.1016/S0065-2113(02)79002-0
[41]

Qiu L, Zhu H, Liu J, Yao Y, Wang X, et al. 2021. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agriculture, Ecosystems & Environment 307:107232

doi: 10.1016/j.agee.2020.107232
[42]

Wang Z, Pan S, Lv J, Peng Y, Shi J, et al. 2024. Erosion and deposition controlling redistribution and biodegradation of nitrogen fractions along a Mollisol agricultural landscape. Journal of Soils and Sediments 24:86−97

doi: 10.1007/s11368-023-03642-4
[43]

Qiu L, Zhang Q, Zhu H, Reich PB, Banerjee S, et al. 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal 15:2474−2489

doi: 10.1038/s41396-021-00913-1
[44]

Mickan BS, Abbott LK, Solaiman ZM, Mathes F, Siddique KHM, et al. 2019. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biology and Fertility of Soils 55:53−66

doi: 10.1007/s00374-018-1328-z
[45]

Gómez-Rey MX, Couto-Vázquez A, González-Prieto SJ. 2012. Nitrogen transformation rates and nutrient availability under conventional plough and conservation tillage. Soil and Tillage Research 124:144−152

doi: 10.1016/j.still.2012.05.010
[46]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263−276

doi: 10.1038/nrmicro.2018.9
[47]

Mabuhay JA, Nakagoshi N, Isagi Y. 2004. Influence of erosion on soil microbial biomass, abundance and community diversity. Land Degradation & Development 15:183−195

doi: 10.1002/ldr.607
[48]

Yang Q, Peng J, Ni S, Zhang C, Wang J, et al. 2024. Soil erosion-induced decline in aggregate stability and soil organic carbon reduces aggregate-associated microbial diversity and multifunctionality of agricultural slope in the Mollisol region. Land Degradation & Development 35:3714−3726

doi: 10.1002/ldr.5163
[49]

Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, et al. 2019. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry 136:107521

doi: 10.1016/j.soilbio.2019.107521
[50]

Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, et al. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications 7:10541

doi: 10.1038/ncomms10541
[51]

Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry 75:11−25

doi: 10.1016/j.soilbio.2014.03.021
[52]

Yang J, Badreldin N, Gao Y, Yan C, Zhao Y, et al. 2025. Innovative methods for monitoring soil erosion: utilizing InSAR technology effectively. CATENA 261:109547

doi: 10.1016/j.catena.2025.109547
[53]

Yan X, Shan J, Wang X, Wang B, Liu SJ, et al. 2025. Uncovering the soil nitrogen cycle from microbial pathways to global sustainability. Nitrogen Cycling 1:e002

doi: 10.48130/nc-0025-0005