[1]

Ding L, Zhang Y. 2021. China's mango industry development situation and countermeasures. Journal of Yunnan Agricultural University (Social Science) 15:65−69 (in Chinese)

doi: 10.3969/j.issn.1004-390X(s).202011041
[2]

Wang P, Luo Y, Huang J, Gao S, Zhu G, et al. 2020. The genome evolution and domestication of tropical fruit mango. Genome Biology 21(1):60

doi: 10.1186/s13059-020-01959-8
[3]

Athoo TO, Yegon D, Owino WO, Knoche M. 2024. Bagging prevents russeting and decreases postharvest water loss of mango fruit cv. 'Apple'. Postharvest Biology and Technology 211:112804

doi: 10.1016/j.postharvbio.2024.112804
[4]

Li X, Zeng S, Wisniewski M, Droby S, Yu L, et al. 2024. Current and future trends in the biocontrol of postharvest diseases. Critical Reviews in Food Science and Nutrition 64:5672−5684

doi: 10.1080/10408398.2022.2156977
[5]

Osuna-García JA, Nolasco-González Y, Gómez-Jaimes R, Pérez-Barraza MH. 2019. Refrigeration temperature for shipping 'Kent' and 'Keitt' mango fruit for long distant markets. CABI Digital Library. www.cabidigitallibrary.org/doi/full/10.5555/20209900309 (Accessed on 24-05-2025)

[6]

Cheng X, Li R, Zhao Y, Bai Y, Wu Y, et al. 2023. Modeling mathematical relationship with weight loss and texture on table grapes of 'Red Globe' and 'Wink' during cold and ambient temperature storage. Foods 12:2443

doi: 10.3390/foods12132443
[7]

Dhara P, Ahmad T, Patel NL. 2016. Effect of storage conditions on shelf life and quality of guava fruits (Psidium guajava Linn) cv. Allahabad Safeda. Indian Horticulture Journal 6:16−20

[8]

Zhu L, Yang R, Sun Y, Zhang F, Du H, et al. 2021. Nitric oxide maintains postharvest quality of navel orange fruit by reducing postharvest rotting during cold storage and enhancing antioxidant activity. Physiological and Molecular Plant Pathology 113:101589

doi: 10.1016/j.pmpp.2020.101589
[9]

Sanatombi K. 2023. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: a review with current knowledge. Comprehensive Reviews in Food Science and Food Safety 22:3011−3052

doi: 10.1111/1541-4337.13170
[10]

Han J, Fan Y, Sun T, An J, Ding Y, et al. 2024. Sodium nitroprusside (SNP) treatment increases the postharvest resistance of apple fruit to Alternaria alternata by enhancing antioxidant enzyme activity. Physiological and Molecular Plant Pathology 129:102199

doi: 10.1016/j.pmpp.2023.102199
[11]

Meitha K, Pramesti Y, Suhandono S. 2020. Reactive oxygen species and antioxidants in postharvest vegetables and fruits. International Journal of Food Science 2020:8817778

doi: 10.1155/2020/8817778
[12]

Vall-llaura N, Fernández-Cancelo P, Nativitas-Lima I, Echeverria G, Teixidó N, et al. 2022. ROS-scavenging-associated transcriptional and biochemical shifts during nectarine fruit development and ripening. Plant Physiology and Biochemistry 171:38−48

doi: 10.1016/j.plaphy.2021.12.022
[13]

Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, et al. 2024. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. Plant Cell Reports 43:198

doi: 10.1007/s00299-024-03281-0
[14]

El-Beltagi HS, Shah ST, Mohamed HI, Alam N, Sajid M, et al. 2023. Physiological response, phytochemicals, antioxidant, and enzymatic activity of date palm (Phoenix dactylifera L.) cultivated under different storage time, harvesting stages, and temperatures. Saudi Journal of Biological Sciences 30:103818

doi: 10.1016/j.sjbs.2023.103818
[15]

Liu Y, Zhang X, Wu J, Li Y, Deng W, et al. 2024. Effect of postharvest cold storage and subsequent shelf-life on fruit quality and endogenous phytohormones in nectarine fruit. Postharvest Biology and Technology 218:113197

doi: 10.1016/j.postharvbio.2024.113197
[16]

Rinaldi MM, de Campos Dianese A, Costa AM, de Oliveira da Silva Assis DF, Almeida Rodrigues de Oliveira T, et al. 2019. Post-harvest conservation of Passiflora alata fruits under ambient and refrigerated condition. Food Science and Technology 39:889−896

doi: 10.1590/fst.14018
[17]

Lata D, Narayana CK, Karunakaran G, Sriram S, Sane A, et al. 2024. Low-temperature storage influenced the nutritional quality and spoilage of red and white pulped dragon fruit. Applied Fruit Science 66:2443−2454

doi: 10.1007/s10341-024-01219-0
[18]

Parijadi AAR, Yamamoto K, Ikram MMM, Dwivany FM, Wikantika K, et al. 2022. Metabolome analysis of banana (Musa acuminata) treated with chitosan coating and low temperature reveals different mechanisms modulating delayed ripening. Frontiers in Sustainable Food Systems 6:835978

doi: 10.3389/fsufs.2022.835978
[19]

Satekge TK, Magwaza LS. 2022. Delayed 1-Methylcyclopropene application improves ripening recovery in banana fruit after cold storage. Horticulture, Environment, and Biotechnology 63(2):207−215

doi: 10.1007/s13580-021-00388-1
[20]

Broughton WJ, Wu KF. 1979. Storage conditions and ripening of two cultivars of banana. Scientia Horticulturae 10:83−93

doi: 10.1016/0304-4238(79)90072-4
[21]

Amwoka EM, Ambuko JL, Jesang’ HM, Owino WO. 2021. Effectiveness of selected cold chain management practices to extend shelf life of mango fruit. Advances in Agriculture 2021:8859144

doi: 10.1155/2021/8859144
[22]

Sivakumar D, Jiang Y, Yahia EM. 2011. Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Research International 44:1254−1263

doi: 10.1016/j.foodres.2010.11.022
[23]

Wang JH, Feng X, Ashraf MA, Li Y, Kong Y, et al. 2024. Identification of common and specific cold resistance pathways from cold tolerant and non-cold tolerant mango varieties. PeerJ 12:e18431

doi: 10.7717/peerj.18431
[24]

Zhao Z, Cao J, Jiang W, Gu Y, Zhao Y. 2009. Maturity-related chilling tolerance in mango fruit and the antioxidant capacity involved. Journal of the Science of Food and Agriculture 89:304−309

doi: 10.1002/jsfa.3443
[25]

Zhang L, Huang C, Zhao Y, Zheng C, Hu C. 2023. Post-ripening and senescence behavior of atemoya (Annona cherimola × A. squamosa) under two typical storage temperatures. Postharvest Biology and Technology 200:112336

doi: 10.1016/j.postharvbio.2023.112336
[26]

Shao Y, Xie J, Chen P, Li W. 2013. Changes in some chemical components and in thephysiology of rambutan fruit (Nephelium lappaceum L.) as affected by storage temperature and packingmaterial. Fruits 68:15−24

[27]

Bai XY, Yang ZM, Shen WJ, Shao YZ, Zeng JK, et al. 2022. Polyphenol treatment delays the browning of litchi pericarps and promotes the total antioxidant capacity of litchi fruit. Scientia Horticulturae 291:110563

doi: 10.1016/j.scienta.2021.110563
[28]

Islam MS, Patras A, Pokharel B, Wu Y, Vergne MJ, et al. 2016. UV-C irradiation as an alternative disinfection technique: study of its effect on polyphenols and antioxidant activity of apple juice. Innovative Food Science & Emerging Technologies 34:344−351

doi: 10.1016/j.ifset.2016.02.009
[29]

Xu D, Xi P, Lin Z, Huang J, Lu S, et al. 2021. Efficacy and potential mechanisms of benzothiadiazole inhibition on postharvest litchi downy blight. Postharvest Biology and Technology 181:111660

doi: 10.1016/j.postharvbio.2021.111660
[30]

Tang R, Zhou Y, Chen Z, Wang L, Lai Y, et al. 2020. Regulation of browning and senescence of litchi fruit mediated by phenolics and energy status: a postharvest comparison on three different cultivars. Postharvest Biology and Technology 168:111280

doi: 10.1016/j.postharvbio.2020.111280
[31]

Wang N, Nian Y, Li R, Shao Y, Li W. 2022. Transcription factor CpbHLH3 and CpXYN1 gene cooperatively regulate fruit texture and counteract 1-methylcyclopropene inhibition of softening in postharvest papaya (Carica papaya L.). Journal of Agricultural and Food Chemistry 70:9919−9930

doi: 10.1021/acs.jafc.2c01908
[32]

Thomas P, Joshi MR. 1988. Reduction of chilling injury in ripe Alphonso mango fruit in cold storage by temperature conditioning. International Journal of Food Science & Technology 23:447−455

doi: 10.1111/j.1365-2621.1988.tb00601.x
[33]

Öz AT, Eryol B, Ali MA. 2023. Postharvest hexanal application delays senescence and maintains quality in persimmon fruit during low-temperature storage. Journal of the Science of Food and Agriculture 103:7653−7663

doi: 10.1002/jsfa.12847
[34]

Wu C, Hao W, Yan L, Zhang H, Zhang J, et al. 2023. Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chemistry 419:136088

doi: 10.1016/j.foodchem.2023.136088
[35]

Carrión-Antolí A, Badiche-El Hilali F, Lorente-Mento J M, Díaz-Mula H M, Serrano M, et al. 2024. Antioxidant systems and quality in sweet cherries are improved by preharvest GABA treatments leading to delay postharvest senescence. International Journal of Molecular Sciences 25:260

doi: 10.3390/ijms25010260
[36]

Zhu Y, Wang K, Wu C, Hao Y, Zhang B, et al. 2021. DNA hypermethylation associated with the development of temperature-dependent postharvest chilling injury in peach fruit. Postharvest Biology and Technology 181:111645

doi: 10.1016/j.postharvbio.2021.111645
[37]

Tharanathan RN, Yashoda HM, Prabha TN. 2006. Mango (Mangifera indica L.), "the king of fruits"—an overview. Food Reviews International 22:95−123

doi: 10.1080/87559120600574493
[38]

Khedr EH, Khedr N. 2023. Optimization of postharvest progesterone treatment to alleviate chilling injury in mango fruit, maintaining intracellular energy, cell wall stability, and antioxidant activity. Postharvest Biology and Technology 206:112572

doi: 10.1016/j.postharvbio.2023.112572
[39]

Song H, Yuan W, Jin P, Wang W, Wang X, et al. 2016. Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology 119:41−48

doi: 10.1016/j.postharvbio.2016.04.015
[40]

Ramana Rao TV, Gol NB, Shah KK. 2011. Effect of postharvest treatments and storage temperatures on the quality and shelf life of sweet pepper (Capsicum annum L.). Scientia Horticulturae 132:18−26

doi: 10.1016/j.scienta.2011.09.032
[41]

Huyskens-Keil S, Eichholz-Dündar I, Hassenberg K, Herppich WB. 2020. Impact of light quality (white, red, blue light and UV-C irradiation) on changes in anthocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of white asparagus after harvest. Postharvest Biology and Technology 161:111069

doi: 10.1016/j.postharvbio.2019.111069
[42]

Li S. 2023. Novel insight into functions of ascorbate peroxidase in higher plants: more than a simple antioxidant enzyme. Redox Biology 64:102789

doi: 10.1016/j.redox.2023.102789
[43]

Zhang X, Yao Y, Dhanasekaran S, Li J, Ngolong Ngea GL, et al. 2022. Controlling black spot of postharvest broccoli by Meyerozyma guilliermondii and its regulation on ROS metabolism of broccoli. Biological Control 170:104938

doi: 10.1016/j.biocontrol.2022.104938
[44]

Wiebe LI, Knaus EE. 2001. Enzyme-targeted, nucleoside-based radiopharmaceuticals for scintigraphic monitoring of gene transfer and expression. Current Pharmaceutical Design 7:1893−1906

doi: 10.2174/1381612013396817
[45]

Li L, Wang X, Lv J, Duan W, Huang T, et al. 2023. Overexpression of Sly-miR167a delayed postharvest chilling injury of tomato fruit under low temperature storage. Postharvest Biology and Technology 204:112420

doi: 10.1016/j.postharvbio.2023.112420
[46]

Carmona L, Sulli M, Diretto G, Alquézar B, Alves M, et al. 2022. Improvement of antioxidant properties in fruit from two blood and blond orange cultivars by postharvest storage at low temperature. Antioxidants 11:547

doi: 10.3390/antiox11030547
[47]

Liu Z, Jiang F, Mo Y, Liao H, Chen P, et al. 2022. Effects of ethanol treatment on storage quality and antioxidant system of postharvest papaya. Frontiers in Plant Science 13:856499

doi: 10.3389/fpls.2022.856499