[1]

Hammami AM, Huang KM, Guan Z. 2024. An overview of the avocado market in the United States. Edis 2024:FE1150

doi: 10.32473/edis-FE1150-2024
[2]

Huang KM, Guan Z, Blare T, Hammami AM. 2023. Global avocado boom. Choices 38:1−9

[3]

Sagwe RN. 2022. Pollinator diversity, pollination deficits, and pollination efficiency in avocado (Persea americana) production across different landscapes in Murang'a county, Kenya. Doctoral Thesis. Universität Würzburg, Fakultät für Biologie, Germany. 148 pp. doi: 10.25972/OPUS-26920

[4]

Alcaraz ML, Hormaza JI. 2024. Inadequate pollination is a key factor determining low fruit-to-flower ratios in avocado. Horticulturae 10:140

doi: 10.3390/horticulturae10020140
[5]

Nirody BS. 1922. Investigations in avocado breeding. Master’s thesis. Massachusetts Agricultural College, USA. 90 pp. doi: 10.7275/6083348

[6]

Schnell RJ, Tondo CL, Brown JS, Kuhn DN, Ayala-Silva T, et al. 2009. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44:1522−1526

doi: 10.21273/HORTSCI.44.6.1522
[7]

Davenport T. 2011. Avocado Flowering. In Horticultural Reviews, ed. Janick J. Hoboken: John Wiley & Sons, Inc. 406 pp. www.wiley.com/en-us/Horticultural+Reviews%2C+Volume+8-p-9781118060933

[8]

Ish-Am G. Avocado pollination: a review. Proc. New Zealand and Australia avocado grower's conference, Tauranga, New Zealand, 20–22 September, 2005. New Zealand: avocadosource.com. 9 pp. http://avocadosource.com/Journals/AUSNZ/AUSNZ_2005/IshAmGad2005.pdf

[9]

Stout AB. 1933. The pollination of avocados. Gainesville, Florida, USA: University of Florida Agricultural Experiment Station. Bulletin No.257. 44 pp. www.avocadosource.com/papers/Research_Articles/StoutAB1933.pdf

[10]

Sedgley M. 1985. Some effects of daylength and flower manipulation on the floral cycle of two cultivars of avocado (Persea americana Mill., Lauraceae), a species showing protogynous dichogamy. Journal of experimental botany 36:823−832

doi: 10.1093/jxb/36.5.823
[11]

Stout AB. 1923. A study in cross-pollination of avocados in southern California. California Avocado Association Annual Report 1922-1923. New York: New York Botanical Garden. pp. 29−45 www.avocadosource.com/CAS_Yearbooks/CAS_08_1922/CAS_1922-23_PG_29-45.pdf

[12]

Hormaza I. 2014. Factors influencing avocado fruit set and yield. From the Grove 2014:34−36

[13]

Kamble V, Narayana C. 2024. Floral phenology and maturity indicesin avocado. Indian Horticulture 69:22−25

[14]

Ashworth VETM, Chen H, Calderón-Vázquez CL, Arpaia ML, Kuhn DN, et al. 2019. Quantitative trait locus analysis in avocado: the challenge of a slow-maturing horticultural tree crop. Journal of the American Society for Horticultural Science 144:352−362

doi: 10.21273/JASHS04729-19
[15]

Solares E, Morales-Cruz A, Balderas RF, Focht E, Ashworth VETM, et al. 2023. Insights into the domestication of avocado and potential genetic contributors to heterodichogamy. G3: Genes, Genomes, Genetics 13:jkac323

doi: 10.1093/g3journal/jkac323
[16]

Bekey R. 1986. Pollination of avocado Some new insights with special reference to the 'Hass' variety. California Avocado Society Yearbook 70:91−98

[17]

Gustafson CD, Bergh BO. 1966. History and review of studies on cross-pollination of avocados. California Avocado Society Yearbook 50:39−49

[18]

Robinson TR. 1933. Pollination and other factors influencing the production of avocados. Proceedings of the Florida State Horticultural Society 46:109−114

[19]

Degani C, Goldring A, Gazit S, Lavi U. 1986. Genetic selection during the abscission of avocado fruitlets. HortScience 21:1187−1188

doi: 10.21273/HORTSCI.21.5.1187
[20]

Kobayashi M, Lin JZ, Davis J, Francis L, Clegg MT. 2000. Quantitative analysis of avocado outcrossing and yield in California using RAPD markers. Scientia Horticulturae 86:135−149

doi: 10.1016/S0304-4238(00)00144-8
[21]

Vrecenar-Gadus M, Ellstrand NC. 1985. The effect of planting design on out-crossing rate and yield in the ‘Hass’ avocado. Scientia Horticulturae 27:215−221

doi: 10.1016/0304-4238(85)90025-1
[22]

Garner LC, Ashworth VETM, Clegg MT, Lovatt CJ. 2008. The impact of outcrossing on yields of ‘Hass’ avocado. Journal of the American Society for Horticultural Science 133:648−652

doi: 10.21273/JASHS.133.5.648
[23]

Davenport TL. 2019. Cross- vs. self-pollination in ‘Hass’ avocados growing in coastal and inland orchards of Southern California. Scientia Horticulturae 246:307−316

doi: 10.1016/j.scienta.2018.10.051
[24]

Lavi U, Lahav E, Degani C, Gazit S. 1993. Genetics of skin color, flowering group, and anise scent in avocado. Journal of Heredity 84:82−84

doi: 10.1093/oxfordjournals.jhered.a111283
[25]

Chen S, Peng X, Xie Z, Zhang M, Huang A, et al. 2025. Genetic and genomic insights into dichogamy in Zingiberaceae. Plant communications 6:101352

doi: 10.1016/j.xplc.2025.101352
[26]

Endress PK. 2020. Structural and temporal modes of heterodichogamy and similar patterns across angiosperms. Botanical Journal of the Linnean Society 193:5−18

doi: 10.1093/botlinnean/boaa001
[27]

Chopy M, Binaghi M, Cannarozzi G, Halitschke R, Boachon B, et al. 2023. A single MYB transcription factor with multiple functions during flower development. New Phytologist 239:2007−2025

doi: 10.1111/nph.19096
[28]

Liu F, Xiao Z, Yang L, Chen Q, Shao L, et al. 2017. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. New Phytologist 215:1490−1502

doi: 10.1111/nph.14675
[29]

Spitzer-Rimon B, Farhi M, Albo B, Cna’ani A, Ben Zvi MM, et al. 2013. The R2R3-MYB–like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. The Plant Cell 24:5089−5105

doi: 10.1105/tpc.112.105247
[30]

Boza EJ, Tondo CL, Ledesma N, Campbell RJ, Bost J, et al. 2018. Genetic differentiation, races and interracial admixture in avocado (Persea americana Mill.), and Persea spp. evaluated using SSR markers. Genetic Resources and Crop Evolution 65:1195−1215

doi: 10.1007/s10722-018-0608-7
[31]

Li J, Eltaher S, Freeman B, Singh S, Ali GS. 2024. Comprehensive genetic diversity and genome-wide association studies revealed the genetic basis of avocado fruit quality traits. Frontiers in Plant Science 15:1433436

doi: 10.3389/fpls.2024.1433436
[32]

Schnell RJ, Brown JS, Olano CT, Power EJ, Krol CA, et al. 2003. Evaluation of avocado germplasm using microsatellite markers. Journal of the American Society for Horticultural Science 128:881−889

doi: 10.21273/JASHS.128.6.881
[33]

Borrone JW, Olano CT, Kuhn DN, Brown JS, Schnell RJ, et al. 2008. Outcrossing in Florida avocados as measured using microsatellite markers. Journal of the American Society for Horticultural Science 133:255−261

doi: 10.21273/JASHS.133.2.255
[34]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[35]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−2120

doi: 10.1093/bioinformatics/btu170
[36]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−1760

doi: 10.1093/bioinformatics/btp324
[37]

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008

doi: 10.1093/gigascience/giab008
[38]

Lin MF, Rodeh O, Penn J, Bai X, Reid JG, et al. 2018. GLnexus: joint variant calling for large cohort sequencing. BioRxiv :1−9

doi: 10.1101/343970
[39]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81:559−575

doi: 10.1086/519795
[40]

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−2158

doi: 10.1093/bioinformatics/btr330
[41]

Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573−589

doi: 10.1534/genetics.114.164350
[42]

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633−2635

doi: 10.1093/bioinformatics/btm308
[43]

Zhang L, Duan Y, Zhang Z, Zhang L, Chen S, et al. 2024. OcBSA: an NGS-based bulk segregant analysis tool for outcross populations. Molecular Plant 17:648−657

doi: 10.1016/j.molp.2024.02.011
[44]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−3027

doi: 10.1093/molbev/msab120
[45]

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947−2948

doi: 10.1093/bioinformatics/btm404
[46]

Wu Z, Li T, Liu X, Yuan G, Hou H, et al. 2021. A novel R2R3-MYB transcription factor LlMYB305 from Lilium longiflorum plays a positive role in thermotolerance via activating heat-protective genes. Environmental and Experimental Botany 184:104399

doi: 10.1016/j.envexpbot.2021.104399
[47]

Whiley AW, Schaffer B, Wolstenholme BN. 2002. The Avocado: Botany, Production and Uses. Wallingford, UK, Cambridge, MA: CABI Publishing. 416 pp. www.cabidigitallibrary.org/doi/book/10.1079/9780851993577.0000#

[48]

Chen H, Morrell PL, Ashworth VETM, de la Cruz M, Clegg MT. 2009. Tracing the geographic origins of major avocado cultivars. Journal of Heredity 100:56−65

doi: 10.1093/jhered/esn068
[49]

Ashworth VETM, Chen H, Clegg MT. 2011. Persea. In Wild Crop Relatives: Genomic and Breeding Resources: Tropical and Subtropical Fruits, ed. Kole C. Berlin, Heidelberg: Springer. pp. 173−189 doi: 10.1007/978-3-642-20447-0_8

[50]

Borrone JW, Brown JS, Tondo CL, Mauro-Herrera M, Kuhn DN, et al. 2009. An EST-SSR-based linkage map for Persea americana Mill. (avocado). Tree Genetics & Genomes 5:553−560

doi: 10.1007/s11295-009-0208-y
[51]

Kuhn DN, Livingstone DS, Richards JH, Manosalva P, Van den Berg N, et al. 2019. Application of genomic tools to avocado (Persea americana) breeding: SNP discovery for genotyping and germplasm characterization. Scientia Horticulturae 246:1−11

doi: 10.1016/j.scienta.2018.10.011
[52]

Rendón-Anaya M, Ibarra-Laclette E, Méndez-Bravo A, Lan T, Zheng C, et al. 2019. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences of the United States of America 116:17081−17089

doi: 10.1073/pnas.1822129116
[53]

Saxena RK, Edwards D, Varshney RK. 2014. Structural variations in plant genomes. Briefings in Functional Genomics 13:296−307

doi: 10.1093/bfgp/elu016
[54]

Alonge M, Wang X, Benoit M, Soyk S, Pereira L, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145−161.E23

doi: 10.1016/j.cell.2020.05.021
[55]

Alcaraz ML, Hormaza JI. 2014. Optimization of controlled pollination in avocado (Persea americana Mill., Lauraceae). Scientia Horticulturae 180:79−85

doi: 10.1016/j.scienta.2014.10.022
[56]

Grauke LJ, Mendoza-Herrera MA, Miller AJ, Wood BW. 2011. Geographic patterns of genetic variation in native pecans. Tree Genetics & Genomes 7:917−932

doi: 10.1007/s11295-011-0384-4
[57]

Chatwin W, Shirley D, Lopez J, Sarro J, Carlson J, et al. 2023. Female flowers first: QTL mapping in eastern black walnut (Juglans nigra L.) identifies a dominant locus for heterodichogamy syntenic with that in Persian walnut (J. regia L.). Tree Genetics & Genomes 19:4

doi: 10.1007/s11295-022-01580-9
[58]

Neale DB, Martínez-García PJ, De La Torre AR, Montanari S, Wei XX. 2017. Novel insights into tree biology and genome evolution as revealed through genomics. Annual Review of Plant Biology 68:457−483

doi: 10.1146/annurev-arplant-042916-041049
[59]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−581

doi: 10.1016/j.tplants.2010.06.005
[60]

Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants 19:307−321

doi: 10.1007/s12298-013-0179-1
[61]

Song S, Qi T, Huang H, Ren Q, Wu D, et al. 2011. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. The Plant Cell 23:1000−1013

doi: 10.1105/tpc.111.083089
[62]

Yin J, Chang X, Kasuga T, Bui M, Reid MS, et al. 2015. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Horticulture Research 2:15059

doi: 10.1038/hortres.2015.59
[63]

Qi T, Huang H, Song S, Xie D. 2015. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. The Plant Cell 27:1620−1633

doi: 10.1105/tpc.15.00116
[64]

Harmer SL. 2025. The time machine: feedback loops, post‐transcriptional regulation, and environmental integration in the plant circadian oscillator. The Plant Journal 122:e70275

doi: 10.1111/tpj.70275
[65]

Millard PS, Kragelund BB, Burow M. 2019. R2R3 MYB transcription factors–functions outside the DNA-binding domain. Trends in Plant Science 24:934−946

doi: 10.1016/j.tplants.2019.07.003
[66]

Zhang C, Lei Y, Lu C, Wang L, Wu J. 2020. MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. Journal of Integrative Plant Biology 62:1159−1175

doi: 10.1111/jipb.12902
[67]

Seo PJ, Mas P. 2014. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis. The Plant Cell 26:79−87

doi: 10.1105/tpc.113.119842
[68]

Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, et al. 2005. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell 17:2255−2270

doi: 10.1105/tpc.105.033464
[69]

Latif Ahmad P, Mohd Yaqub B, Nusrat A, Bilal Ahmad M. 2021. Floral induction pathways: decision making and determination in plants to flower-a comprehensive review. Journal of Applied Biology & Biotechnology 9:7−17

doi: 10.7324/JABB.2021.9201