[1]

Zhang Y, Xie Y, Zhao G, Liang Z, Shi J, et al. 2024. The important role of fluid mechanics in the engineering field. Engineering Solutions to Mechanics, Marine Structures and Infrastructures 1(2):421−445

doi: 10.58531/esmmsi/1/2/2
[2]

Doost SN, Zhong L, Su B, Morsi YS. 2016. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Computer Methods and Programs in Biomedicine 127:232−247

doi: 10.1016/j.cmpb.2015.12.020
[3]

Shah J, Gupta SK, Sonvane Y, Davariya V. 2017. Review: Enhancing efficiency of solar thermal engineering systems by thermophysical properties of a promising nanofluids. Renewable and Sustainable Energy Reviews 77:1343−1348

doi: 10.1016/j.rser.2017.02.030
[4]

Timofeeva EV, Yu W, France DM, Singh D, Routbort JL. 2011. Nanofluids for heat transfer: an engineering approach. Nanoscale Research Letters 6(1):182

doi: 10.1186/1556-276X-6-182
[5]

Sohel MR, Saidur R, Khaleduzzaman SS, Ibrahim TA. 2015. Cooling performance investigation of electronics cooling system using Al2O3–H2O nanofluid. International Communications in Heat and Mass Transfer 65:89−93

doi: 10.1016/j.icheatmasstransfer.2015.04.015
[6]

Santhosh N, Subramanyam Reddy A, Sivaraj R, Rushi Kumar B. 2025. Analyzing thermal performance of nanofluids in an inclined square enclosure with quadratic natural convection: applications in solar energy and electronic cooling. Fluid Dynamics Research 57(2):025506

doi: 10.1088/1873-7005/adc8cd
[7]

Choi SUS. 2025. Enhancing thermal conductivity of fluids with nanoparticles. ASME 1995 International Mechanical Engineering Congress and Exposition, San Francisco, California, USA, 1995. pp. 99−105 doi: 10.1115/IMECE1995-0926

[8]

Yasmin H, Giwa SO, Noor S, Sharifpur M. 2023. Experimental exploration of hybrid nanofluids as energy-efficient fluids in solar and thermal energy storage applications. Nanomaterials 13(2):278

doi: 10.3390/nano13020278
[9]

Heidarshenas B, Yuan Y, El-Shafay AS. 2025. Advancements in 2D nanomaterial-enhanced nanofluids: stability, thermophysical properties, and industrial applications. Powder Technology 454:120687

doi: 10.1016/j.powtec.2025.120687
[10]

Ramzan M, Shaheen N, Saleel CA, Alazman I, Saeed AM, et al. 2025. A comparative analysis of nanoparticle aggregation and non-aggregation in a nanofluid flow over a cylinder influenced by prescribed surface temperature. Multidiscipline Modeling in Materials and Structures 21(4):830−849

doi: 10.1108/mmms-10-2024-0319
[11]

Wu SJ, Cai RR, Zhang LZ. 2025. Numerical simulation and modeling of nanoparticle aggregation effect on anisotropic effective thermal conductivity of nanofluids. International Journal of Heat and Mass Transfer 241:126681

doi: 10.1016/j.ijheatmasstransfer.2025.126681
[12]

Madhukesh JK, Paramesh SO, Prasanna GD, Prasannakumara BC, Khan MI, et al. 2024. Impact of magnetized nanoparticle aggregation over a Riga plate with thermal radiation in water-Al2O3 based nanofluid flow. ZAMM - Journal of Applied Mathematics and Mechanics 00:e202300270

doi: 10.1002/zamm.202300270
[13]

Yang Z, Yu Q, Cui C, Xing H, Yin X, et al. 2025. Effect of aggregation on thermal conduction in ternary molten salt-based nanofluids: insights from a multiscale coupled MD–LBM method. Energy Storage and Saving 4(1):70−82

doi: 10.1016/j.enss.2024.11.001
[14]

Takabi B, Gheitaghy AM, Tazraei P. 2016. Hybrid water-based suspension of Al2O3 and Cu nanoparticles on laminar convection effectiveness. Journal of Thermophysics and Heat Transfer 30(3):523−532

doi: 10.2514/1.t4756
[15]

Milani Shirvan K, Ellahi R, Mamourian M, Moghiman M. 2017. Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. International Journal of Heat and Mass Transfer 107:1110−1118

doi: 10.1016/j.ijheatmasstransfer.2016.11.022
[16]

Sheremet MA, Cimpean DS, Pop I. 2017. Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis. Applied Thermal Engineering 113:413−418

doi: 10.1016/j.applthermaleng.2016.11.033
[17]

Iqbal MS, Mustafa I, Ghaffari A. 2019. Analysis of heat transfer enrichment in hydromagnetic flow of hybrid nanofluid along vertical wavy surface. Journal of Magnetics 24(2):271−280

doi: 10.4283/jmag.2019.24.2.271
[18]

Iqbal MS, Mustafa I, Ghaffari A, Usman. 2021. A computational analysis of dissipation effects on the hydromagnetic convective flow of hybrid nanofluids along a vertical wavy surface. Heat Transfer 50(8):8035−8051

doi: 10.1002/htj.22265
[19]

Akter S, Hossain A, Islam MM, Molla MM. 2024. Finite difference simulation of natural convection of two-phase hybrid nanofluid along a vertical heated wavy surface. Journal of Taibah University for Science 18(1):2358548

doi: 10.1080/16583655.2024.2358548
[20]

Munir S, Bin Turabi YUU. 2025. Impact of heated wavy wall and hybrid nanofluid on natural convection in a triangular enclosure with embedded cold cylinder under inclined magnetic field. Arabian Journal for Science and Engineering 50(6):4007−4020

doi: 10.1007/s13369-024-09450-3
[21]

Alsabery AI, Chamkha AJ, Saleh H, Hashim I. 2017. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technology 308:214−234

doi: 10.1016/j.powtec.2016.12.025
[22]

Karim A, Billah MM, Talukder Newton MT, Rahman MM. 2017. Influence of the periodicity of sinusoidal boundary condition on the unsteady mixed convection within a square enclosure using an Ag–water nanofluid. Energies 10(12):2167

doi: 10.3390/en10122167
[23]

Mikhailenko SA, Sheremet MA, Pop I. 2019. Convective heat transfer in a rotating nanofluid cavity with sinusoidal temperature boundary condition. Journal of Thermal Analysis and Calorimetry 137(3):799−809

doi: 10.1007/s10973-018-7984-2
[24]

Khosravi K, Eisapour AH, Rahbari A, Mahdi JM, Talebizadehsardari P, et al. 2023. Photovoltaic-thermal system combined with wavy tubes, twisted tape inserts and a novel coolant fluid: energy and exergy analysis. Engineering Applications of Computational Fluid Mechanics 17(1):2208196

doi: 10.1080/19942060.2023.2208196
[25]

Foronda E, Ramírez-Gil FJ, Delgado-Mejía Á, Ballesteros LM, Rudas JS, et al. 2023. Thermal enhancement of heat sinks with bio-inspired textured surfaces. Thermal Science and Engineering Progress 46:102170

doi: 10.1016/j.tsep.2023.102170
[26]

Priyam A, Chand P. 2019. Experimental investigations on thermal performance of solar air heater with wavy fin absorbers. Heat and Mass Transfer 55(9):2651−2666

doi: 10.1007/s00231-019-02605-1
[27]

Brodnianská Z, Kotšmíd S. 2023. Heat transfer enhancement in the novel wavy shaped heat exchanger channel with cylindrical Vortex generators. Applied Thermal Engineering 220:119720

doi: 10.1016/j.applthermaleng.2022.119720
[28]

Hatami M, Jing D. 2017. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3-water nanofluid and RSM analysis. Applied Thermal Engineering 121:1040−1050

doi: 10.1016/j.applthermaleng.2017.04.137
[29]

Ain QU, Ali Shah I, Alzahrani SM. 2024. Enhanced heat transfer in novel star-shaped enclosure with hybrid nanofluids: a neural network-assisted study. Case Studies in Thermal Engineering 61:105065

doi: 10.1016/j.csite.2024.105065
[30]

Kamsuwan C, Wang X, Seng LP, Xian CK, Piemjaiswang R, et al. 2023. Enhancing performance of polymer-based microchannel heat exchanger with nanofluid: a computational fluid dynamics-artificial neural network approach. South African Journal of Chemical Engineering 46(1):361−375

[31]

Zeeshan A, Khalid N, Ellahi R, Khan MI, Alamri SZ. 2024. Analysis of nonlinear complex heat transfer MHD flow of Jeffrey nanofluid over an exponentially stretching sheet via three phase artificial intelligence and Machine Learning techniques. Chaos, Solitons & Fractals 189:115600

doi: 10.1016/j.chaos.2024.115600
[32]

Islam T, Gama S, Afonso MM. 2024. Artificial neural network and response surface methodology-driven optimization of Cu–Al2O3/water hybrid nanofluid flow in a wavy enclosure with inclined periodic magnetohydrodynamic effects. Mathematics 13(1):1−45

[33]

Bilal M, Maiz F, Farooq M, Ahmad H, Nasrat MK, et al. 2025. Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate. Scientific Reports 15:759

doi: 10.1038/s41598-024-84480-3
[34]

Ali B, Liu S, Liu HJ, Siddiqui MIH. 2025. Magnetohydrodynamics tangent hyperbolic nanofluid flow across a vertical stretching surface using Levengberg-Marquardt back propagation artificial neural networks. Numerical Heat Transfer, Part A: Applications 86(20):7116−7138

doi: 10.1080/10407782.2024.2348121
[35]

Yahya Z, Mahmoud AM, Ali V, Khan O, Parvez M, et al. 2025. Material selection and optimization for hybrid Solar-Thermal plume Systems: a Machine learning approach to boost passive cooling and energy efficiency. Thermal Science and Engineering Progress 67:104097

doi: 10.1016/j.tsep.2025.104097
[36]

Mahanthesh B, Thriveni K. 2021. Nanoparticle aggregation effects on radiative heat transport of nanoliquid over a vertical cylinder with sensitivity analysis. Applied Mathematics and Mechanics (English Edition) 42(3):331−346

doi: 10.1007/s10483-021-2687-7
[37]

Loksupapaiboon K, Kamma P, Phromjan J, Phakdee S, Promtong M, et al. 2025. Simulation-driven optimization of direct solar dryers for household use: a combined CFD and ANN-GA approach. Thermal Science and Engineering Progress 67:104112

doi: 10.1016/j.tsep.2025.104112
[38]

Sheremet MA, Pop I. 2015. Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: buongiorno's mathematical model. Journal of Heat Transfer 137(7):072601

doi: 10.1115/1.4029816
[39]

Sundar LS, Singh MK, Sousa ACM. 2016. Enhanced thermal properties of nanodiamond nanofluids. Chemical Physics Letters 644:99−110

doi: 10.1016/j.cplett.2015.11.028
[40]

Mackolil J, Mahanthesh B. 2021. Inclined magnetic field and nanoparticle aggregation effects on thermal Marangoni convection in nanoliquid: a sensitivity analysis. Chinese Journal of Physics 69:24−37

doi: 10.1016/j.cjph.2020.11.006
[41]

Prasher R, Phelan PE, Bhattacharya P. 2006. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters 6(7):1529−1534

doi: 10.1021/nl060992s
[42]

Evans W, Prasher R, Fish J, Meakin P, Phelan P, et al. 2008. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer 51(5−6):1431−1438

doi: 10.1016/j.ijheatmasstransfer.2007.10.017
[43]

Salahuddin T, Khan M, Mahmood Z, Awais M, Al Alwan B, et al. 2025. Effect of varying the temperature dependent viscosity of Maxwell nanofluid flow near a sensor surface with activation enthalpy. Chaos, Solitons & Fractals 194:116247

doi: 10.1016/j.chaos.2025.116247
[44]

Keller HB. 1971. A new difference scheme for parabolic problems. In Numerical Solution of Partial Differential Equations–II. US: Academic Press. pp. 327−350 doi: 10.1016/B978-0-12-358502-8.50014-1

[45]

Cebeci T, Bradshaw P. 1988. Physical and Computational Aspects of Convective Heat Transfer. New York, NY: Springer doi: 10.1007/978-1-4612-3918-5