[1]

Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, et al. 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles 20:2005GB002672

doi: 10.1029/2005GB002672
[2]

Jickells TD, Buitenhuis E, Altieri K, Baker AR, Capone D, et al. 2017. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochemical Cycles 31:289−305

doi: 10.1002/2016GB005586
[3]

Ren H, Chen YC, Wang XT, Wong GTF, Cohen AL, et al. 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356:749−752

doi: 10.1126/science.aal3869
[4]

Young RW, Carder KL, Betzer PR, Costello DK, Duce RA, et al. 1991. Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific. Global Biogeochemical Cycles 5:119−134

doi: 10.1029/91GB00927
[5]

Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893−897

doi: 10.1126/science.1150369
[6]

Xiu P, Chai F. 2021. Impact of atmospheric deposition on carbon export to the deep ocean in the subtropical Northwest Pacific. Geophysical Research Letters 48:e2020GL089640

doi: 10.1029/2020GL089640
[7]

Krishnamurthy A, Moore JK, Mahowald N, Luo C, Doney SC, et al. 2009. Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Global Biogeochemical Cycles 23:2008GB003440

doi: 10.1029/2008GB003440
[8]

Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ, et al. 2011. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron. Global Biogeochemical Cycles 25:2010GB003858

doi: 10.1029/2010GB003858
[9]

Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, et al. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience 6:701−710

doi: 10.1038/ngeo1765
[10]

Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7:737−750

doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
[11]

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153−226

doi: 10.1007/s10533-004-0370-0
[12]

Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, et al. 2006. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology 12:470−476

doi: 10.1111/j.1365-2486.2006.01104.x
[13]

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889−892

doi: 10.1126/science.1136674
[14]

Erisman JW, Galloway J, Seitzinger S, Bleeker A, Dise NB, et al. 2013. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368:20130116

doi: 10.1098/rstb.2013.0116
[15]

Hutchins DA, Capone DG. 2022. The marine nitrogen cycle: new developments and global change. Nature Reviews Microbiology 20:401−414

doi: 10.1038/s41579-022-00687-z
[16]

Gong C, Tian H, Liao H, Pan N, Pan S, et al. 2024. Global net climate effects of anthropogenic reactive nitrogen. Nature 632:557−563

doi: 10.1038/s41586-024-07714-4
[17]

Zhu J, Jia Y, Yu G, Wang Q, He N, et al. 2025. Changing patterns of global nitrogen deposition driven by socioeconomic development. Nature Communications 16:46

doi: 10.1038/s41467-024-55606-y
[18]

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293−296

doi: 10.1038/nature06592
[19]

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130164

doi: 10.1098/rstb.2013.0164
[20]

Liu L, Xu W, Wen Z, Liu P, Xu H, et al. 2023. Modeling global oceanic nitrogen deposition from food systems and its mitigation potential by reducing overuse of fertilizers. Proceedings of the National Academy of Sciences of the United States of America 120:e2221459120

doi: 10.1073/pnas.2221459120
[21]

Liu S, Zhao Y, Lin Y, Wang J, Li Q, et al. 2025. Atmospheric reactive nitrogen deposition to the global ocean during the 2010s: interannual variation and source attribution. Journal of Geophysical Research: Atmospheres 130:e2024JD042789

doi: 10.1029/2024JD042789
[22]

Shang F, Liu M, Song Y, Lu X, Zhang Q, et al. 2024. Substantial nitrogen abatement accompanying decarbonization suppresses terrestrial carbon sinks in China. Nature Communications 15:7738

doi: 10.1038/s41467-024-52152-5
[23]

Zhu H, Chen Y, Zhao Y, Zhang L, Zhang X, et al. 2022. The response of nitrogen deposition in china to recent and future changes in anthropogenic emissions. Journal of Geophysical Research: Atmospheres 127:e2022JD037437

doi: 10.1029/2022JD037437
[24]

Erisman JW, Dammers E, Van Damme M, Soudzilovskaia N, Schaap M. 2015. Trends in EU nitrogen deposition and impacts on ecosystems. EM: Air and Waste Management Association's Magazine for Environmental Managers 65:31−35

[25]

Winiwarter W, Grizzetti B, Sutton MA. 2015. Nitrogen pollution in the EU: Best management strategies, regulations, and science needs. EM: Air and Waste Management Association's Magazine for Environmental Managers 65:18−23

[26]

Schmalensee R, Stavins RN. 2019. Policy Evolution under the Clean Air Act. Journal of Economic Perspectives 33:27−50

doi: 10.1257/jep.33.4.27
[27]

Zhang Q, Zheng Y, Tong D, Shao M, Wang S, et al. 2019. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America 116:24463−24469

doi: 10.1073/pnas.1907956116
[28]

Pozzer A, Tsimpidi AP, Karydis VA, de Meij A, Lelieveld J. 2017. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmospheric Chemistry and Physics 17:12813−12826

doi: 10.5194/acp-17-12813-2017
[29]

Pan SY, He KH, Lin KT, Fan C, Chang CT. 2022. Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Climate and Atmospheric Science 5:43

doi: 10.1038/s41612-022-00265-3
[30]

Guo Y, Zhang L, Winiwarter W, Grinsven HJM van, Wang X, et al. 2024. Ambitious nitrogen abatement is required to mitigate future global PM2.5 air pollution toward the World Health Organization targets. One Earth 7:1600−1613

doi: 10.1016/j.oneear.2024.08.007
[31]

Guo Y, Zhao H, Winiwarter W, Chang J, Wang X, et al. 2024. Aspirational nitrogen interventions accelerate air pollution abatement and ecosystem protection. Science Advances 10:eado0112

doi: 10.1126/sciadv.ado0112
[32]

Duan J, Liu H, Zhang X, Ren C, Wang C, et al. 2024. Agricultural management practices in China enhance nitrogen sustainability and benefit human health. Nature Food 5:378−389

doi: 10.1038/s43016-024-00953-8
[33]

Park RJ, Jacob DJ, Field BD, Yantosca RM, Chin M. 2004. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. Journal of Geophysical Research: Atmospheres 109:2003JD004473

doi: 10.1029/2003JD004473
[34]

Liu H, Jacob DJ, Bey I, Yantosca RM. 2001. Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research: Atmospheres 106:12109−12128

doi: 10.1029/2000JD900839
[35]

Wesely ML. 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment 23:1293−1304

doi: 10.1016/0004-6981(89)90153-4
[36]

van Vuuren DP, Stehfest E, Gernaat DEHJ, Doelman JC, van den Berg M, et al. 2017. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change 42:237−250

doi: 10.1016/j.gloenvcha.2016.05.008
[37]

Fujimori S, Hasegawa T, Masui T, Takahashi K, Herran DS, et al. 2017. SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environmental Change 42:268−283

doi: 10.1016/j.gloenvcha.2016.06.009
[38]

Calvin K, Bond-Lamberty B, Clarke L, Edmonds J, Eom J, et al. 2017. The SSP4: a world of deepening inequality. Global Environmental Change 42:284−296

doi: 10.1016/j.gloenvcha.2016.06.010
[39]

Hudman RC, Moore NE, Mebust AK, Martin RV, Russell AR, et al. 2012. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmospheric Chemistry and Physics 12:7779−7795

doi: 10.5194/acp-12-7779-2012
[40]

Randerson JT, Van Der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS. 2015. Global Fire Emissions Database, Version 4.1 (GFEDv4). Oak Ridge National Laboratory DAAC (ORNL DAAC) doi: 10.3334/ORNLDAAC/1293

[41]

Redfield AC. 1958. The biological control of chemical factors in the environment. American Scientist 46(3):205−221

[42]

Zhang Y, Yu Q, Ma W, Chen L. 2010. Atmospheric deposition of inorganic nitrogen to the Eastern China seas and its implications to marine biogeochemistry. Journal of Geophysical Research: Atmospheres 115:2009JD012814

doi: 10.1029/2009JD012814
[43]

Singh A, Gandhi N, Ramesh R. 2012. Contribution of atmospheric nitrogen deposition to new production in the nitrogen limited photic zone of the northern Indian Ocean. Journal of Geophysical Research: Oceans 117:2011JC007737

doi: 10.1029/2011JC007737
[44]

Qi JH, Shi JH, Gao HW, Sun Z. 2013. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China. Atmospheric Environment 81:600−608

doi: 10.1016/j.atmosenv.2013.08.022
[45]

Eppley RW, Peterson BJ. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677−680

doi: 10.1038/282677a0
[46]

Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5:3858

doi: 10.1038/ncomms4858
[47]

O'Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, et al. 2017. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42:169−180

doi: 10.1016/j.gloenvcha.2015.01.004
[48]

Xu P, Li G, Zheng Y, Fung JCH, Chen A, et al. 2024. Fertilizer management for global ammonia emission reduction. Nature 626:792−798

doi: 10.1038/s41586-024-07020-z
[49]

Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, et al. 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development 12:1443−1475

doi: 10.5194/gmd-12-1443-2019
[50]

Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, et al. 2015. Mapping tree density at a global scale. Nature 525:201−205

doi: 10.1038/nature14967
[51]

Somes CJ, Landolfi A, Koeve W, Oschlies A. 2016. Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model. Geophysical Research Letters 43:4500−4509

doi: 10.1002/2016GL068335
[52]

Galbraith ED, Martiny AC. 2015. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America 112:8199−8204

doi: 10.1073/pnas.1423917112
[53]

Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, et al. 2016. Past, present, and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences 73:2039−2047

doi: 10.1175/JAS-D-15-0278.1
[54]

Wang X, Zhang L, Deng J, Shao M. 2025. Climate-driven perturbations on land emissions and deposition of atmospheric nitrogen. Science Bulletin 70:3943−3946

doi: 10.1016/j.scib.2025.07.020
[55]

Ma M, Zheng B, Xu W, Cao J, Zhou K, et al. 2023. Trend and interannual variations of reactive nitrogen deposition in China during 2008–2017 and the roles of anthropogenic emissions and meteorological conditions. Journal of Geophysical Research: Atmospheres 128:e2022JD037489

doi: 10.1029/2022JD037489
[56]

Kanter DR, Winiwarter W, Bodirsky BL, Bouwman L, Boyer E, et al. 2020. A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change 61:102029

doi: 10.1016/j.gloenvcha.2019.102029
[57]

Bai Z, Winiwarter W, Klimont Z, Velthof G, Misselbrook T, et al. 2019. Further improvement of air quality in China needs clear ammonia mitigation target. Environmental Science & Technology 53:10542−10544

doi: 10.1021/acs.est.9b04725