| [1] |
Han Y, Jiang X, Wang Z, Wu Y, Zhang M, et al. 2025. Extracellular electron uptake mediated by H2O2. |
| [2] |
Zhang J, Li F, Liu D, Liu Q, Song H. 2024. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. |
| [3] |
Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. |
| [4] |
Shi L, Dong H, Reguera G, Beyenal H, Lu A, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. |
| [5] |
Yang G, Huang L, You L, Zhuang L, Zhou S. 2017. Electrochemical and spectroscopic insights into the mechanisms of bidirectional microbe-electrode electron transfer in Geobacter soli biofilms. |
| [6] |
Rowe AR, Rajeev P, Jain A, Pirbadian S, Okamoto A, et al. 2018. Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors. |
| [7] |
Sitte J, Akob DM, Kaufmann C, Finster K, Banerjee D, et al. 2010. Microbial links between sulfate reduction and metal retention in uranium-and heavy metal-contaminated soil. |
| [8] |
Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, et al. 2005. Extracellular electron transfer via microbial nanowires. |
| [9] |
Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, et al. 2011. Tunable metallic-like conductivity in microbial nanowire networks. |
| [10] |
Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM. 2011. On the electrical conductivity of microbial nanowires and biofilms. |
| [11] |
Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. 2011. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. |
| [12] |
Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR. 2017. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. |
| [13] |
Ueki T, Lovley DR. 2022. Desulfovibrio vulgaris as a model microbe for the study of corrosion under sulfate-reducing conditions. |
| [14] |
Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, et al. 2011. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. |
| [15] |
Deng X, Jevasuwan W, Fukata N, Okamoto A. 2024. Nanowire electrode structures enhanced direct extracellular electron transport via cell-surface multi-Heme cytochromes in Desulfovibrio ferrophilus IS5. |
| [16] |
Xu S, Barrozo A, Tender LM, Krylov AI, El-Naggar MY. 2018. Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 cells. |
| [17] |
Logan BE, Rossi R, Ragab AA, Saikaly PE. 2019. Electroactive microorganisms in bioelectrochemical systems. |
| [18] |
Cui W, Luo H, Liu G. 2023. Efficient hydrogen production in single-chamber microbial electrolysis cell with a fermentable substrate under hyperalkaline conditions. |
| [19] |
Ouboter HT, Berben T, Berger S, Jetten MSM, Sleutels T, et al. 2022. Methane-dependent extracellular electron transfer at the bioanode by the anaerobic archaeal methanotroph "Candidatus Methanoperedens". |
| [20] |
She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, et al. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. |
| [21] |
Yang Y, Xu M, Guo J, Sun G. 2012. Bacterial extracellular electron transfer in bioelectrochemical systems. |
| [22] |
Yi Y, Zhao T, Zang Y, Xie B, Liu H. 2021. Different mechanisms for riboflavin to improve the outward and inward extracellular electron transfer of Shewanella loihica. |
| [23] |
Wang K, Sheng Y, Cao H, Yan K, Zhang Y. 2017. Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor. |
| [24] |
Li R, Zhu H, Ruan J, Qian W, Fang X, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. |
| [25] |
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. 2009. ABySS: a parallel assembler for short read sequence data. |
| [26] |
Lin SH, Liao YC. 2013. CISA: contig integrator for sequence assembly of bacterial genomes. |
| [27] |
Ruiz F, Bernardino AF, Queiroz HM, Otero XL, Rumpel C, et al. 2024. Iron's role in soil organic carbon (de)stabilization in mangroves under land use change. |
| [28] |
Liang D, Liu X, Woodard TL, Holmes DE, Smith JA, et al. 2021. Extracellular electron exchange capabilities of Desulfovibrio ferrophilus and Desulfopila corrodens. |
| [29] |
Steidl RJ, Lampa-Pastirk S, Reguera G. 2016. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. |
| [30] |
Jiang Y, Zeng RJ. 2019. Bidirectional extracellular electron transfers of electrode-biofilm: mechanism and application. |
| [31] |
Lamprecht DA, Finin PM, Rahman MA, Cumming BM, Russell SL, et al. 2016. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. |
| [32] |
Kundu BB, Krishnan J, Szubin R, Patel A, Palsson BO, et al. 2025. Extracellular respiration is a latent energy metabolism in Escherichia coli. |
| [33] |
Yang Q, Wang L, Liu J, Cao W, Pan Q, et al. 2021. Targeting the complex I and III of mitochondrial electron transport chain as a potentially viable option in liver cancer management. |
| [34] |
Zikaki K, Kiachaki E, Gaitanaki C, Aggeli IK. 2025. "Villains" turning good: antimycin a and rotenone, mitochondrial respiratory chain inhibitors, protect H9c2 cardiac cells against insults triggering the intrinsic apoptotic pathway. |
| [35] |
Verma AK, Kim RQ, Lamprecht DA, Aguilar-Pérez C, Wong S, et al. 2025. Structural and mechanistic study of a novel inhibitor analogue of M. tuberculosis cytochrome bc1:aa3. |
| [36] |
Ozawa K, Tsapin AI, Nealson KH, Cusanovich MA, Akutsu H. 2000. Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c3, in Shewanella oneidensis MR-1. |
| [37] |
Zang Y, Cao B, Zhao H, Xie B, Ge Y, et al. 2023. Mechanism and applications of bidirectional extracellular electron transfer of Shewanella. |
| [38] |
Gralnick JA, Bond DR. 2023. Electron transfer beyond the outer membrane: putting electrons to rest. |
| [39] |
Portela PC, Morgado L, Silva MA, Denkhaus L, Einsle O, et al. 2023. Exploring oxidative stress pathways in Geobacter sulfurreducens: the redox network between MacA peroxidase and triheme periplasmic cytochromes. |
| [40] |
Hou L, Zheng B, Jiang Z, Hu Y, Shi L, et al. 2024. The dmsEFABGH operon encodes an essential and modular electron transfer pathway for extracellular iodate reduction by Shewanella oneidensis MR-1. |
| [41] |
Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, et al. 2009. Characterization of an electron conduit between bacteria and the extracellular environment. |
| [42] |
Li D, Zheng X, Yang Y, Xu M. 2025. Periplasmic protein mobility for extracellular electron transport in Shewanella oneidensis. |
| [43] |
Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, et al. 2011. Structure of a bacterial cell surface decaheme electron conduit. |
| [44] |
Tefft NM, Ford K, TerAvest MA. 2023. NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1. |
| [45] |
Ye Y, Liu X, Nealson KH, Rensing C, Qin S, et al. 2022. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms. |
| [46] |
Neu J, Shipps CC, Guberman-Pfeffer MJ, Shen C, Srikanth V, et al. 2022. Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires. |
| [47] |
Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, et al. 2015. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. |
| [48] |
Pan Z, Yu J, Guo Y, Yin W, Zhang H, et al. 2025. Coupling electrodialysis with microbial electrosynthesis enables high-rate, high-titer, and cost-effective acetate production from CO2. |
| [49] |
Ha BN, Pham DM, Masuda D, Kasai T, Katayama A. 2022. Humin-promoted microbial electrosynthesis of acetate from CO2 by Moorella thermoacetica. |
| [50] |
Tremblay PL, Höglund D, Koza A, Bonde I, Zhang T. 2015. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. |
| [51] |
Mustafa Z, Auroona N, Sarwar A, Lee EY. 2026. Recent advancements in microbial carbon dioxide fixation: metabolic engineering strategies. |
| [52] |
Zheng L, Du Y, Steinchen W, Girbig M, Abendroth F, et al. 2025. Regulation of acetyl-CoA biosynthesis via an intertwined acetyl-CoA synthetase/acetyltransferase complex. |
| [53] |
Vögeli B, Schulz L, Garg S, Tarasava K, Clomburg JM, et al. 2022. Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. |
| [54] |
Yee MO, Snoeyenbos-West OL, Thamdrup B, Ottosen LD, Rotaru A. 2019. Extracellular electron uptake by two Methanosarcina species. |
| [55] |
Yin MD, Lemaire ON, Rosas Jiménez JG, Belhamri M, Shevchenko A, et al. 2025. Conformational dynamics of a multienzyme complex in anaerobic carbon fixation. |
| [56] |
Can M, Abernathy MJ, Wiley S, Griffith C, James CD, et al. 2023. Characterization of methyl-and acetyl-Ni intermediates in acetyl CoA synthase formed during anaerobic CO2 and CO fixation. |
| [57] |
Zhan M, Zeng W, Liu H, Li J, Meng Q, et al. 2023. Simultaneous nitrogen and sulfur removal through synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification in a modified bioreactor enhanced by activated carbon. |
| [58] |
Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A. 2018. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. |