[1]

Han Y, Jiang X, Wang Z, Wu Y, Zhang M, et al. 2025. Extracellular electron uptake mediated by H2O2. Environmental Science & Technology 59(7):3624−3633

doi: 10.1021/acs.est.4c13792
[2]

Zhang J, Li F, Liu D, Liu Q, Song H. 2024. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chemical Society Reviews 53(3):1375−1446

doi: 10.1039/D3CS00537B
[3]

Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. The ISME Journal 1(1):9−18

doi: 10.1038/ismej.2007.4
[4]

Shi L, Dong H, Reguera G, Beyenal H, Lu A, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14(10):651−662

doi: 10.1038/nrmicro.2016.93
[5]

Yang G, Huang L, You L, Zhuang L, Zhou S. 2017. Electrochemical and spectroscopic insights into the mechanisms of bidirectional microbe-electrode electron transfer in Geobacter soli biofilms. Electrochemistry Communications 77:93−97

doi: 10.1016/j.elecom.2017.03.004
[6]

Rowe AR, Rajeev P, Jain A, Pirbadian S, Okamoto A, et al. 2018. Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors. mBio 9(1):e02203−17

doi: 10.1128/mbio.02203-17
[7]

Sitte J, Akob DM, Kaufmann C, Finster K, Banerjee D, et al. 2010. Microbial links between sulfate reduction and metal retention in uranium-and heavy metal-contaminated soil. Applied and Environmental Microbiology 76(10):3143−3152

doi: 10.1128/AEM.00051-10
[8]

Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, et al. 2005. Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098−1101

doi: 10.1038/nature03661
[9]

Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, et al. 2011. Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology 6(9):573−579

doi: 10.1038/nnano.2011.119
[10]

Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM. 2011. On the electrical conductivity of microbial nanowires and biofilms. Energy & Environmental Science 4(11):4366−4379

doi: 10.1039/c1ee01753e
[11]

Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. 2011. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6(2):e16649

doi: 10.1371/journal.pone.0016649.t001
[12]

Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR. 2017. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. The ISME Journal 11(3):741−752

doi: 10.1038/ismej.2016.146
[13]

Ueki T, Lovley DR. 2022. Desulfovibrio vulgaris as a model microbe for the study of corrosion under sulfate-reducing conditions. mLife 1(1):13−20

doi: 10.1002/mlf2.12018
[14]

Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, et al. 2011. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nature Reviews Microbiology 9(6):452−466

doi: 10.1038/nrmicro2575
[15]

Deng X, Jevasuwan W, Fukata N, Okamoto A. 2024. Nanowire electrode structures enhanced direct extracellular electron transport via cell-surface multi-Heme cytochromes in Desulfovibrio ferrophilus IS5. Electrochem 5(3):330−340

doi: 10.3390/electrochem5030021
[16]

Xu S, Barrozo A, Tender LM, Krylov AI, El-Naggar MY. 2018. Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 cells. Journal of the American Chemical Society 140(32):10085−10089

doi: 10.1021/jacs.8b05104
[17]

Logan BE, Rossi R, Ragab AA, Saikaly PE. 2019. Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology 17(5):307−319

doi: 10.1038/s41579-019-0173-x
[18]

Cui W, Luo H, Liu G. 2023. Efficient hydrogen production in single-chamber microbial electrolysis cell with a fermentable substrate under hyperalkaline conditions. Waste Management 171:173−183

doi: 10.1016/j.wasman.2023.08.017
[19]

Ouboter HT, Berben T, Berger S, Jetten MSM, Sleutels T, et al. 2022. Methane-dependent extracellular electron transfer at the bioanode by the anaerobic archaeal methanotroph "Candidatus Methanoperedens". Frontiers in Microbiology 13:820989

doi: 10.3389/fmicb.2022.820989
[20]

She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, et al. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences of the United States of America 98(14):7835−7840

doi: 10.1073/pnas.141222098
[21]

Yang Y, Xu M, Guo J, Sun G. 2012. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry 47(12):1707−1714

doi: 10.1016/j.procbio.2012.07.032
[22]

Yi Y, Zhao T, Zang Y, Xie B, Liu H. 2021. Different mechanisms for riboflavin to improve the outward and inward extracellular electron transfer of Shewanella loihica. Electrochemistry Communications 124:106966

doi: 10.1016/j.elecom.2021.106966
[23]

Wang K, Sheng Y, Cao H, Yan K, Zhang Y. 2017. Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor. Chemical Engineering Journal 307:150−158

doi: 10.1016/j.cej.2016.07.106
[24]

Li R, Zhu H, Ruan J, Qian W, Fang X, et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20(2):265−272

doi: 10.1101/gr.097261.109
[25]

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. 2009. ABySS: a parallel assembler for short read sequence data. Genome Research 19(6):1117−1123

doi: 10.1101/gr.089532.108
[26]

Lin SH, Liao YC. 2013. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 8(3):e60843

doi: 10.1371/journal.pone.0060843
[27]

Ruiz F, Bernardino AF, Queiroz HM, Otero XL, Rumpel C, et al. 2024. Iron's role in soil organic carbon (de)stabilization in mangroves under land use change. Nature Communications 15(1):10433

doi: 10.1038/s41467-024-54447-z
[28]

Liang D, Liu X, Woodard TL, Holmes DE, Smith JA, et al. 2021. Extracellular electron exchange capabilities of Desulfovibrio ferrophilus and Desulfopila corrodens. Environmental Science & Technology 55(23):16195−16203

doi: 10.1021/acs.est.1c04071
[29]

Steidl RJ, Lampa-Pastirk S, Reguera G. 2016. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nature Communications 7(1):12217

doi: 10.1038/ncomms12217
[30]

Jiang Y, Zeng RJ. 2019. Bidirectional extracellular electron transfers of electrode-biofilm: mechanism and application. Bioresource Technology 271:439−448

doi: 10.1016/j.biortech.2018.09.133
[31]

Lamprecht DA, Finin PM, Rahman MA, Cumming BM, Russell SL, et al. 2016. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nature Communications 7:12393

doi: 10.1038/ncomms12393
[32]

Kundu BB, Krishnan J, Szubin R, Patel A, Palsson BO, et al. 2025. Extracellular respiration is a latent energy metabolism in Escherichia coli. Cell 188(11):2907−2924.E23

doi: 10.1016/j.cell.2025.03.016
[33]

Yang Q, Wang L, Liu J, Cao W, Pan Q, et al. 2021. Targeting the complex I and III of mitochondrial electron transport chain as a potentially viable option in liver cancer management. Cell Death Discovery 7(1):293

doi: 10.1038/s41420-021-00675-x
[34]

Zikaki K, Kiachaki E, Gaitanaki C, Aggeli IK. 2025. "Villains" turning good: antimycin a and rotenone, mitochondrial respiratory chain inhibitors, protect H9c2 cardiac cells against insults triggering the intrinsic apoptotic pathway. International Journal of Molecular Sciences 26(6):2435

doi: 10.3390/ijms26062435
[35]

Verma AK, Kim RQ, Lamprecht DA, Aguilar-Pérez C, Wong S, et al. 2025. Structural and mechanistic study of a novel inhibitor analogue of M. tuberculosis cytochrome bc1:aa3. npj Drug Discovery 2(1):6

doi: 10.1038/s44386-025-00008-3
[36]

Ozawa K, Tsapin AI, Nealson KH, Cusanovich MA, Akutsu H. 2000. Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c3, in Shewanella oneidensis MR-1. Applied and Environmental Microbiology 66(9):4168−4171

doi: 10.1128/AEM.66.9.4168-4171.2000
[37]

Zang Y, Cao B, Zhao H, Xie B, Ge Y, et al. 2023. Mechanism and applications of bidirectional extracellular electron transfer of Shewanella. Environmental Science: Processes & Impacts 25(12):1863−1877

doi: 10.1039/D3EM00224A
[38]

Gralnick JA, Bond DR. 2023. Electron transfer beyond the outer membrane: putting electrons to rest. Annual Review of Microbiology 77(1):517−539

doi: 10.1146/annurev-micro-032221-023725
[39]

Portela PC, Morgado L, Silva MA, Denkhaus L, Einsle O, et al. 2023. Exploring oxidative stress pathways in Geobacter sulfurreducens: the redox network between MacA peroxidase and triheme periplasmic cytochromes. Frontiers in Microbiology 14:1253114

doi: 10.3389/fmicb.2023.1253114
[40]

Hou L, Zheng B, Jiang Z, Hu Y, Shi L, et al. 2024. The dmsEFABGH operon encodes an essential and modular electron transfer pathway for extracellular iodate reduction by Shewanella oneidensis MR-1. Microbiology Spectrum 12(8):e00512−e00524

doi: 10.1128/spectrum.00512-24
[41]

Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, et al. 2009. Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences of the United States of America 106(52):22169−22174

doi: 10.1073/pnas.0900086106
[42]

Li D, Zheng X, Yang Y, Xu M. 2025. Periplasmic protein mobility for extracellular electron transport in Shewanella oneidensis. Microorganisms 13(5):1144

doi: 10.3390/microorganisms13051144
[43]

Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, et al. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proceedings of the National Academy of Sciences of the United States of America 108(23):9384−9389

doi: 10.1073/pnas.1017200108
[44]

Tefft NM, Ford K, TerAvest MA. 2023. NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1. Microbial Biotechnology 16(3):560−568

doi: 10.1111/1751-7915.14175
[45]

Ye Y, Liu X, Nealson KH, Rensing C, Qin S, et al. 2022. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms. mBio 13(1):e03822-21

doi: 10.1128/mbio.03822-21
[46]

Neu J, Shipps CC, Guberman-Pfeffer MJ, Shen C, Srikanth V, et al. 2022. Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires. Nature Communications 13(1):5150

doi: 10.1038/s41467-022-32659-5
[47]

Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, et al. 2015. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environmental Science & Technology 49(22):13566−13574

doi: 10.1021/acs.est.5b03821
[48]

Pan Z, Yu J, Guo Y, Yin W, Zhang H, et al. 2025. Coupling electrodialysis with microbial electrosynthesis enables high-rate, high-titer, and cost-effective acetate production from CO2. Bioresource Technology 424:132280

doi: 10.1016/j.biortech.2025.132280
[49]

Ha BN, Pham DM, Masuda D, Kasai T, Katayama A. 2022. Humin-promoted microbial electrosynthesis of acetate from CO2 by Moorella thermoacetica. Biotechnology and Bioengineering 119(12):3487−3496

doi: 10.1002/bit.28238
[50]

Tremblay PL, Höglund D, Koza A, Bonde I, Zhang T. 2015. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Scientific Reports 5(1):16168

doi: 10.1038/srep16168
[51]

Mustafa Z, Auroona N, Sarwar A, Lee EY. 2026. Recent advancements in microbial carbon dioxide fixation: metabolic engineering strategies. Green Chemistry 28:21−36

doi: 10.1039/D5GC03349G
[52]

Zheng L, Du Y, Steinchen W, Girbig M, Abendroth F, et al. 2025. Regulation of acetyl-CoA biosynthesis via an intertwined acetyl-CoA synthetase/acetyltransferase complex. Nature Communications 16(1):2557

doi: 10.1038/s41467-025-57842-2
[53]

Vögeli B, Schulz L, Garg S, Tarasava K, Clomburg JM, et al. 2022. Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. Nature Communications 13(1):3058

doi: 10.1038/s41467-022-30571-6
[54]

Yee MO, Snoeyenbos-West OL, Thamdrup B, Ottosen LD, Rotaru A. 2019. Extracellular electron uptake by two Methanosarcina species. Frontiers in Energy Research 7:29

doi: 10.3389/fenrg.2019.00029
[55]

Yin MD, Lemaire ON, Rosas Jiménez JG, Belhamri M, Shevchenko A, et al. 2025. Conformational dynamics of a multienzyme complex in anaerobic carbon fixation. Science 387(6733):498−504

doi: 10.1126/science.adr9672
[56]

Can M, Abernathy MJ, Wiley S, Griffith C, James CD, et al. 2023. Characterization of methyl-and acetyl-Ni intermediates in acetyl CoA synthase formed during anaerobic CO2 and CO fixation. Journal of the American Chemical Society 145(25):13696−13708

doi: 10.1021/jacs.3c01772
[57]

Zhan M, Zeng W, Liu H, Li J, Meng Q, et al. 2023. Simultaneous nitrogen and sulfur removal through synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification in a modified bioreactor enhanced by activated carbon. Environmental Research 232:116341

doi: 10.1016/j.envres.2023.116341
[58]

Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A. 2018. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Science Advances 4(2):eaao5682

doi: 10.1126/sciadv.aao5682