[1]

Iqbal Z, Iqbal MS, Hashem A, Abd Allah EF, Ansari MI. 2021. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Frontiers in Plant Science 12:631810

doi: 10.3389/fpls.2021.631810
[2]

Parveen N, Kandhol N, Sharma S, Singh VP, Chauhan DK, et al. 2023. Auxin crosstalk with reactive oxygen and nitrogen species in plant development and abiotic stress. Plant and Cell Physiology 63:1814−1825

doi: 10.1093/pcp/pcac138
[3]

Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. 2023. Auxin and abiotic stress responses. Journal of Experimental Botany 74:7000−7014

doi: 10.1093/jxb/erad325
[4]

Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−119

doi: 10.1038/s41576-021-00413-0
[5]

Caumon H, Vernoux T. 2023. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. Journal of Experimental Botany 74:3887−3902

doi: 10.1093/jxb/erad132
[6]

Ori N. 2019. Dissecting the biological functions of ARF and Aux/IAA genes. The Plant Cell 31:1210−1211

doi: 10.1105/tpc.19.00330
[7]

Feng S, Li N, Chen H, Liu Z, Li C, et al. 2024. Large-scale analysis of the ARF and Aux/IAA gene families in 406 horticultural and other plants. Molecular Horticulture 4:13

doi: 10.1186/s43897-024-00090-7
[8]

Figueiredo MRA, Strader LC. 2022. Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics. Trends in Biochemical Sciences 47:865−874

doi: 10.1016/j.tibs.2022.06.004
[9]

Gomes GLB, Scortecci KC. 2021. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology 23:894−904

doi: 10.1111/plb.13303
[10]

Chen Y, Yang H, Tang B, Li F, Xie Q, et al. 2023. The AP2/ERF transcription factor SlERF.J2 functions in hypocotyl elongation and plant height in tomato. Plant Cell Reports 42:371−383

doi: 10.1007/s00299-022-02963-x
[11]

Ma X, Wang Y, Li X, Liu Y, Luo H, et al. 2025. Integrative analysis of different low-light-tolerant watermelon lines in response to low-light stress. BMC Plant Biology 25:1107

doi: 10.1186/s12870-025-07180-8
[12]

Chen Z, Zhou W, Guo X, Ling S, Li W, et al. 2024. Heat stress responsive Aux/IAA protein, OsIAA29 regulates grain filling through OsARF17 mediated auxin signaling pathway. Rice 17:16

doi: 10.1186/s12284-024-00694-z
[13]

Su P, Sui C, Li J, Wan K, Sun H, et al. 2023. The Aux/IAA protein TaIAA15-1A confers drought tolerance in Brachypodium by regulating abscisic acid signal pathway. Plant Cell Reports 42:385−394

doi: 10.1007/s00299-022-02965-9
[14]

Salehin M, Li B, Tang M, Katz E, Song L, et al. 2019. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10:4021

doi: 10.1038/s41467-019-12002-1
[15]

Shi G, Wang S, Wang P, Zhan J, Tang Y, et al. 2022. Cotton miR393-TIR1 module regulates plant defense against Verticillium dahliae via auxin perception and signaling. Frontiers in Plant Science 13:888703

doi: 10.3389/fpls.2022.888703
[16]

Suzuki G, Murakami A, Moriyasu Y, Fukuda M, Uji Y, et al. 2025. The gain-of-function mutation in the rice auxin-signaling repressor OsIAA13 induces resistance to rice bacterial blight by activating jasmonic acid-mediated defense system. Journal of General Plant Pathology 91:191−200

doi: 10.1007/s10327-025-01227-2
[17]

Wang H, Gao X, Kong Y, Jia Z, Qiao L, et al. 2025. Puccinia striiformis effector PNPi suppresses TaIAA14 expression to inhibit host cell death response. Molecular Plant Pathology 26:e70063

doi: 10.1111/mpp.70063
[18]

Reed JW. 2001. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science 6:420−425

doi: 10.1016/S1360-1385(01)02042-8
[19]

Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, et al. 2006. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Functional & Integrative Genomics 6:47−59

doi: 10.1007/s10142-005-0005-0
[20]

Wu J, Peng Z, Liu S, He Y, Cheng L, et al. 2012. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Molecular Genetics and Genomics 287:295−311

doi: 10.1007/s00438-012-0675-y
[21]

Wen S, Ying J, Ye Y, Cai Y, Li L, et al. 2025. Genome-wide identification and salt stress-responsive expression profiling of Aux/IAA gene family in Asparagus officinalis. BMC Plant Biology 25:759

doi: 10.1186/s12870-025-06780-8
[22]

Shi Q, Zhang Y, To VT, Shi J, Zhang D, et al. 2020. Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in barley (Hordeum vulgare L.). Scientific Reports 10:10242

doi: 10.1038/s41598-020-66860-7
[23]

Song S, Hao L, Zhao P, Xu Y, Zhong N, et al. 2019. Genome-wide identification, expression profiling and evolutionary analysis of auxin response factor gene family in potato (Solanum tuberosum Group phureja). Scientific Reports 9:1755

doi: 10.1038/s41598-018-37923-7
[24]

Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, et al. 2012. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America 109:11872−11877

doi: 10.1073/pnas.1205415109
[25]

Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM. 2020. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Frontiers in Plant Science 10:1815

doi: 10.3389/fpls.2019.01815
[26]

Ge C, Zhao W, Nie L, Niu S, Fang S, et al. 2020. Transcriptome profiling reveals the occurrence mechanism of bisexual flowers in melon (Cucumis melo L.). Plant Science 301:110694

doi: 10.1016/j.plantsci.2020.110694
[27]

Ling Y, Xiong X, Yang W, Liu B, Shen Y, et al. 2023. Comparative analysis of transcriptomics and metabolomics reveals defense mechanisms in melon cultivars against Pseudoperonospora cubensis infection. International Journal of Molecular Sciences 24:17552

doi: 10.3390/ijms242417552
[28]

Wei H, Zhao T, Maimaiti Y, Wang T, Han S, et al. 2025. Comparative transcriptome analysis reveals defense mechanisms of Bacillus velezensis ZY1 against bacterial fruit blotch in watermelon. Physiological and Molecular Plant Pathology 140:102956

doi: 10.1016/j.pmpp.2025.102956
[29]

Hopkins DL, Thompson CM. 2002. Evaluation of Citrullus sp. germ plasm for resistance to Acidovorax avenae subsp. citrulli. Plant Disease 86:61−64

doi: 10.1094/pdis.2002.86.1.61
[30]

Yu J, Wu S, Sun H, Wang X, Tang X, et al. 2023. CuGenDBv2: an updated database for cucurbit genomics. Nucleic Acids Research 51:D1457−D1464

doi: 10.1093/nar/gkac921
[31]

Paysan-Lafosse T, Andreeva A, Blum M, Chuguransky SR, Grego T, et al. 2024. The Pfam protein families database: embracing AI/ML. Nucleic Acids Research 53:D523−D534

doi: 10.1093/nar/gkae997
[32]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−1742

doi: 10.1016/j.molp.2023.09.010
[33]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. In 2-D Proteome Analysis Protocols, ed. Link AJ. New Jersey: Humana Press. pp. 531−552 doi: 10.1385/1-59259-584-7:531

[34]

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947−2948

doi: 10.1093/bioinformatics/btm404
[35]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−3027

doi: 10.1093/molbev/msab120
[36]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43:W39−W49

doi: 10.1093/nar/gkv416
[37]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−327

doi: 10.1093/nar/30.1.325
[38]

Smid M, Coebergh van den Braak RRJ, van de Werken HJG, van Riet J, van Galen A, et al. 2018. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinformatics 19:236

doi: 10.1186/s12859-018-2246-7
[39]

Liu T, Amanullah S, Xu H, Gao P, Du Z, et al. 2023. RNA-seq identified putative genes conferring photosynthesis and root development of melon under salt stress. Genes 14:1728

doi: 10.3390/genes14091728
[40]

Diao Q, Cao Y, Fan H, Zhang Y. 2020. Transcriptome analysis deciphers the mechanisms of exogenous nitric oxide action on the response of melon leaves to chilling stress. Biologia Plantarum 64:465−472

doi: 10.32615/bp.2020.021
[41]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[42]

Tao F, Sollapura V, Robert LS, Fan C. 2023. Neofunctionalization of tandem duplicate genes encoding putative β-L-arabinofuranosidases in Arabidopsis. Plant Physiology 192:2855−2870

doi: 10.1093/plphys/kiad169
[43]

Wang JL, Wang M, Zhang L, Li YX, Li JJ, et al. 2024. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proceedings of the National Academy of Sciences of the United States of America 121:e2314353121

doi: 10.1073/pnas.2314353121
[44]

Serivichyaswat PT, Kareem A, Feng M, Melnyk CW. 2024. Auxin signaling in the cambium promotes tissue adhesion and vascular formation during Arabidopsis graft healing. Plant Physiology 196:754−762

doi: 10.1093/plphys/kiae257
[45]

Yang X, Ma Y, Chen J, Huang M, Qi M, et al. 2024. Sextuple knockouts of a highly conserved and coexpressed AUXIN/INDOLE-3-ACETIC ACID gene set confer shade avoidance-like responses in Arabidopsis. Plant, Cell & Environment 47:4483−4497

doi: 10.1111/pce.15039
[46]

Abel S, Oeller PW, Theologis A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Sciences of the United States of America 91:326−330

doi: 10.1073/pnas.91.1.326
[47]

Tiwari SB, Hagen G, Guilfoyle TJ. 2004. Aux/IAA proteins contain a potent transcriptional repression domain. The Plant Cell 16:533−543

doi: 10.1105/tpc.017384
[48]

Dreher KA, Brown J, Saw RE, Callis J. 2006. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. The Plant Cell 18:699−714

doi: 10.1105/tpc.105.039172
[49]

Chandler JW. 2016. Auxin response factors. Plant, Cell & Environment 39:1014−1028

doi: 10.1111/pce.12662
[50]

Cho H, Ryu H, Rho S, Hill K, Smith S, et al. 2014. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology 16:66−76

doi: 10.1038/ncb2893
[51]

Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. 2021. Auxin interactions with other hormones in plant development. Cold Spring Harbor Perspectives in Biology 13:a039990

doi: 10.1101/cshperspect.a039990
[52]

Rinaldi MA, Liu J, Enders TA, Bartel B, Strader LC. 2012. A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Molecular Biology 79:359−373

doi: 10.1007/s11103-012-9917-y
[53]

Zhang A, Yang X, Lu J, Song F, Sun J, et al. 2021. OsIAA20, an Aux/IAA protein, mediates abiotic stress tolerance in rice through an ABA pathway. Plant Science 308:110903

doi: 10.1016/j.plantsci.2021.110903
[54]

Lu S, Li M, Cheng Y, Gou H, Che L, et al. 2024. Genome-wide identification of Aux/IAA gene family members in grape and functional analysis of VaIAA3 in response to cold stress. Plant Cell Reports 43:265

doi: 10.1007/s00299-024-03353-1
[55]

Sun J, Qi L, Li Y, Zhai Q, Li C. 2013. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. The Plant Cell 25:2102−2114

doi: 10.1105/tpc.113.112417
[56]

Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ. 2018. Multiple links between shade avoidance and auxin networks. Journal of Experimental Botany 69:213−228

doi: 10.1093/jxb/erx295
[57]

Liu S, Wang C, Liu X, Navas-Castillo J, Zang L, et al. 2021. Tomato chlorosis virus–encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-boxTIR1 complex assembly. Plant, Cell & Environment 44:3155−3172

doi: 10.1111/pce.14125
[58]

Fan S, Chang Y, Liu G, Shang S, Tian L, et al. 2020. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. Physiologia Plantarum 168:88−97

doi: 10.1111/ppl.12970