[1]

Guo S, Qin N, Wang X, Zuo Z, Li Q, et al. 2023. Freeze-dried powder of daylily bud improves bromocriptine-induced lactation disorder in rats via JAK2/STAT5 pathway. Journal of Ethnopharmacology 313:116536

doi: 10.1016/j.jep.2023.116536
[2]

Wu J, Gao Y, Wang J, Guo A, Qin N, et al. 2024. Comparative analysis of chloroplast genome and evolutionary history of Hemerocallis. Frontiers in Genetics 15:1433548

doi: 10.3389/fgene.2024.1433548
[3]

Misiukevičius E, Mažeikienė I, Stanys V. 2024. Ploidy's role in daylily plant resilience to drought stress challenges. Biology 13:289

doi: 10.3390/biology13050289
[4]

Zhang Y, Song X, Yang G, Li Z, Lu H, et al. 2015. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crops Research 179:164−172

doi: 10.1016/j.fcr.2015.05.001
[5]

Huang X, Shabala S, Shabala L, Rengel Z, Wu X, et al. 2015. Linking waterlogging tolerance with Mn2+ toxicity: a case study for barley. Plant Biology 17:26−33

doi: 10.1111/plb.12188
[6]

Phukan UJ, Mishra S, Shukla RK. 2016. Waterlogging and submergence stress: affects and acclimation. Critical Reviews in Biotechnology 36:956−966

doi: 10.3109/07388551.2015.1064856
[7]

Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science 163:117−123

doi: 10.1016/S0168-9452(02)00080-8
[8]

Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, et al. 2000. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiology 122:295−318

doi: 10.1104/pp.122.2.295
[9]

Horchani F, Aloui A, Brouquisse R, Aschi-Smiti S. 2008. Physiological responses of tomato plants (Solanum lycopersicum) as affected by root hypoxia. Journal of Agronomy and Crop Science 194:297−303

doi: 10.1111/j.1439-037X.2008.00313.x
[10]

Yordanova RY, Christov KN, Popova LP. 2004. Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany 51:93−101

doi: 10.1016/S0098-8472(03)00063-7
[11]

Durigon A, Evers J, Metselaar K, de Jong van Lier Q. 2019. Water stress permanently alters shoot architecture in common bean plants. Agronomy 9:160

doi: 10.3390/agronomy9030160
[12]

Haddadi BS, Hassanpour H, Niknam V. 2016. Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiologiae Plantarum 38:119

doi: 10.1007/s11738-016-2137-3
[13]

Ji Y, Zhang X, Peng Y, Huang L, Liang X, et al. 2014. Osmolyte accumulation, antioxidant enzyme activities and gene expression patterns in leaves of orchardgrass during drought stress and recovery. Grassland Science 60:131−141

doi: 10.1111/grs.12052
[14]

Orsák M, Kotíková Z, Hnilička F, Lachman J, Stanovič R. 2020. Effect of drought and waterlogging on hydrophilic antioxidants and their activity in potato tubers. Plant, Soil and Environment 66:128−134

doi: 10.17221/520/2019-pse
[15]

Khan MIR, Trivellini A, Chhillar H, Chopra P, Ferrante A, et al. 2020. The significance and functions of ethylene in flooding stress tolerance in plants. Environmental and Experimental Botany 179:104188

doi: 10.1016/j.envexpbot.2020.104188
[16]

Tong C, Hill CB, Zhou G, Zhang XQ, Jia Y, et al. 2021. Opportunities for improving waterlogging tolerance in cereal crops—physiological traits and genetic mechanisms. Plants 10:1560

doi: 10.3390/plants10081560
[17]

Else MA, Janowiak F, Atkinson CJ, Jackson MB. 2009. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Annals of Botany 103:313−323

doi: 10.1093/aob/mcn208
[18]

Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM. 2004. Sensing and signalling during plant flooding. Plant Physiology and Biochemistry 42:273−282

doi: 10.1016/j.plaphy.2004.02.003
[19]

Rock CD, Zeevaart JA. 1991. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 88:7496−7499

doi: 10.1073/pnas.88.17.7496
[20]

Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J. 2014. Specificity in ROS signaling and transcript signatures. Antioxidants & Redox Signaling 21:1422−1441

doi: 10.1089/ars.2013.5662
[21]

Luo HT, Zhang JY, Wang G, Jia ZH, Huang SN, Wang T, et al. 2017. Functional characterization of waterlogging and heat stresses tolerance gene pyruvate decarboxylase 2 from Actinidia deliciosa. International Journal of Molecular Sciences 18:2377

doi: 10.3390/ijms18112377
[22]

Shen C, Yuan J, Ou X, Ren X, Li X. 2021. Genome-wide identification of alcohol dehydrogenase (ADH) gene family under waterlogging stress in wheat (Triticum aestivum). PeerJ 9:e11861

doi: 10.7717/peerj.11861
[23]

Zhang P, Lyu D, Jia L, He J, Qin S. 2017. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics 18:649

doi: 10.1186/s12864-017-4055-1
[24]

Tougou M, Hashiguchi A, Yukawa K, Nanjo Y, Hiraga S, et al. 2012. Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnology 29:301−305

doi: 10.5511/plantbiotechnology.12.0301a
[25]

Zhang JY, Huang SN, Wang G, Xuan JP, Guo ZR. 2016. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry 106:244−252

doi: 10.1016/j.plaphy.2016.05.009
[26]

Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, et al. 2016. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. The Plant Cell 28:160−180

doi: 10.1105/tpc.15.00866
[27]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−652

doi: 10.1038/nbt.1883
[28]

Alpuerto JB, Fukuda M, Li S, Hussain RMF, Sakane K, et al. 2022. The submergence tolerance regulator SUB1A differentially coordinates molecular adaptation to submergence in mature and growing leaves of rice (Oryza sativa L.). The Plant Journal 110:71−87

doi: 10.1111/tpj.15654
[29]

Luan H, Guo B, Shen H, Pan Y, Hong Y, et al. 2020. Overexpression of barley transcription factor HvERF2.11 in Arabidopsis enhances plant waterlogging tolerance. International Journal of Molecular Sciences 21:1982

doi: 10.3390/ijms21061982
[30]

Yu F, Liang K, Fang T, Zhao H, Han X, et al. 2019. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnology Journal 17:2286−2298

doi: 10.1111/pbi.13140
[31]

Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651−652

doi: 10.1093/bioinformatics/btg034
[32]

Roberts A, Pachter L. 2013. Streaming fragment assignment for real-time analysis of sequencing experiments. Nature Methods 10:71−73

doi: 10.1038/nmeth.2251
[33]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−3676

doi: 10.1093/bioinformatics/bti610
[34]

Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34:W293−W297

doi: 10.1093/nar/gkl031
[35]

Wixon J, Kell D. 2000. The Kyoto encyclopedia of genes and genomes-KEGG. Yeast 17:48−55

doi: 10.1002/(sici)1097-0061(200004)17:1>48::aid-yea2<3.0.co;2-h
[36]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−1202

doi: 10.1016/j.molp.2020.06.009
[37]

Luo X, Sun D, Wang S, Luo S, Fu Y, et al. 2021. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. Horticulture Research 8:235

doi: 10.1038/s41438-021-00666-0
[38]

Yin D, Guan Z, Chen S, Chen F. 2009. Establishment of evaluation system for waterlogging tolerance and identification of waterlogging tolerance in Chrysanthemum morifolium and its related genera plants. Journal of Plant Genetic Resources 10:399−404 (in Chinese)

doi: 10.13430/j.cnki.jpgr.2009.03.021
[39]

Visser EJW, Voesenek LACJ, Vartapetian BB, Jackson MB. 2003. Flooding and plant growth. Annals of Botany 91:107−109

doi: 10.1093/aob/mcg014
[40]

Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

doi: 10.3390/antiox9080681
[41]

Park SU, Lee CJ, Kim SE, Lim YH, Lee HU, et al. 2020. Plant physiology and biochemistry selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. Plant Physiology Biochemistry 155:243−251

doi: 10.1016/j.plaphy.2020.07.039
[42]

Toral-Juárez MA, Avila RT, Cardoso AA, Brito FAL, Machado KLG, et al. 2021. Drought-tolerant coffee plants display increased tolerance to waterlogging and post-waterlogging reoxygenation. Environmental and Experimental Botany 182:104311

doi: 10.1016/j.envexpbot.2020.104311
[43]

Zhang XM, Duan SG, Xia Y, Li JT, Liu LX, et al. 2023. Transcriptomic, physiological, and metabolomic response of an alpine plant, Rhododendron delavayi, to waterlogging stress and post-waterlogging recovery. International Journal of Molecular Sciences 24:10509

doi: 10.3390/ijms241310509
[44]

Robertson D, Zhang H, Palta JA, Colmer T, Turner NC. 2009. Waterlogging affects the growth, development of tillers, and yield of wheat through a severe, but transient, N deficiency. Crop & Pasture Science 60:578−586

doi: 10.1071/CP08440
[45]

Ploschuk RA, Grimoldi AA, Ploschuk EL, Striker GG. 2017. Growth during recovery evidences the waterlogging tolerance of forage grasses. Crop & Pasture Science 68:574−582

doi: 10.1071/CP17137
[46]

Loreti E, Striker GG. 2020. Plant responses to hypoxia: signaling and adaptation. Plants 9:1704

doi: 10.3390/plants9121704
[47]

Heinemann B, Hildebrandt TM. 2021. The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany 72:4634−4645

doi: 10.1093/jxb/erab182
[48]

Duhan S, Kumari A, Lal M, Sheokand S. 2019. Oxidative stress and antioxidant defense under combined waterlogging and salinity stresses. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, eds. Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M. UK: John Wiley & Sons Ltd. pp. 113−142 doi: 10.1002/9781119468677.ch5

[49]

Qi X, Li Q, Ma X, Qian C, Wang H, et al. 2019. Waterlogging‐induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant, Cell & Environment 42:1458−1470

doi: 10.1111/pce.13504
[50]

Li C, Wang P, Xia Y, Zhang Z, Yang Z, et al. 2025. Ethylene-mediated integration of metabolic regulation and stomatal closure for enhanced waterlogging tolerance in Brassica napus L. Industrial Crops and Products 235:121807

doi: 10.1016/j.indcrop.2025.121807
[51]

Geng S, Lin Z, Xie S, Xiao J, Wang H, et al. 2023. Ethylene enhanced waterlogging tolerance by changing root architecture and inducing aerenchyma formation in maize seedlings. Journal of Plant Physiology 287:154042

doi: 10.1016/j.jplph.2023.154042
[52]

Najeeb U, Tan DKY, Bange MP. 2016. Inducing waterlogging tolerance in cotton via an anti-ethylene agent aminoethoxyvinylglycine application. Archives of Agronomy and Soil Science 62:1136−1146

doi: 10.1080/03650340.2015.1113403
[53]

Islam MR, Rahman MM, Mohi-Ud-Din M, Akter M, Zaman E, et al. 2022. Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean (Vigna radiata L. Wilczek). PeerJ 10:e12862

doi: 10.7717/peerj.12862
[54]

Hossain Z, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A. 2009. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Journal of Plant Physiology 166:1391−1404

doi: 10.1016/j.jplph.2009.02.012
[55]

Yuan LB, Dai YS, Xie LJ, Yu LJ, Zhou Y, et al. 2017. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiology 173:1864−1880

doi: 10.1104/pp.16.01803
[56]

Paradiso A, Caretto S, Leone A, Bove A, Nisi R, et al. 2016. ROS production and scavenging under anoxia and re-oxygenation in Arabidopsis cells: a balance between redox signaling and impairment. Frontiers in Plant Science 7:1803

doi: 10.3389/fpls.2016.01803
[57]

Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH. 2012. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99:160−168

doi: 10.1016/j.ygeno.2011.12.008
[58]

Stasnik P, Großkinsky DK, Jonak C. 2022. Physiological and phenotypic characterization of diverse Camelina sativa lines in response to waterlogging. Plant Physiology and Biochemistry 183:120−127

doi: 10.1016/j.plaphy.2022.05.007
[59]

Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS. 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports 7:42389

doi: 10.1038/srep42389
[60]

Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, et al. 2008. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology 35:412−426

doi: 10.1071/FP08108
[61]

Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA. 2016. Proline accumulation in plants: roles in stress tolerance and plant development. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, eds. Iqbal N, Nazar R, Khan NA. New Delhi: Springer India. pp. 155−166 doi: 10.1007/978-81-322-2616-1_9

[62]

Cao M, Zheng L, Li J, Mao Y, Zhang R, et al. 2022. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS One 17:0261086

doi: 10.1371/journal.pone.0261086
[63]

Greenway H, Armstrong W, Colmer TD. 2006. Conditions leading to high CO2 (> 5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany 98:9−32

doi: 10.1093/aob/mcl076
[64]

Drew MC. 1997. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Review of Plant Biology 48:223−250

doi: 10.1146/annurev.arplant.48.1.223
[65]

Gibbs J, Greenway H. 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology 30:1−47

doi: 10.1071/PP98095
[66]

Atwell BJ, Greenway H, Colmer TD. 2015. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. New Phytologist 206:36−56

doi: 10.1111/nph.13173
[67]

Zhu X, Li X, Jiu S, Zhang K, Wang C, et al. 2018. Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. Royal Society Open Science 5:172253

doi: 10.1098/rsos.172253
[68]

Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, et al. 2011. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytologist 190:457−471

doi: 10.1111/j.1469-8137.2010.03590.x
[69]

Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, et al. 2018. Signal dynamics and interactions during flooding stress. Plant Physiology 176:1106−1117

doi: 10.1104/pp.17.01232
[70]

van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RAM, et al. 2013. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. The Plant Cell 25:4691−4707

doi: 10.1105/tpc.113.119016
[71]

Justin SHFW, Armstrong W. 1991. A reassessment of the influence of NAA on aerenchyma formation in maize roots. New Phytologist 117:607−618

doi: 10.1111/j.1469-8137.1991.tb00965.x
[72]

Nguyen TN, Tuan PA, Mukherjee S, Son S, Ayele BT. 2018. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. Journal of Experimental Botany 69:4065−4082

doi: 10.1093/jxb/ery190
[73]

Müller JT, van Veen H, Bartylla MM, Akman M, Pedersen O, et al. 2021. Keeping the shoot above water-submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale). New Phytologist 229:140−155

doi: 10.1111/nph.16350
[74]

De Ollas C, González-Guzmán M, Pitarch Z, Matus JT, Candela H, et al. 2021. Identification of ABA-mediated genetic and metabolic responses to soil flooding in tomato (Solanum lycopersicum L. Mill). Frontiers in Plant Science 12:613059

doi: 10.3389/fpls.2021.613059
[75]

Steffens B, Wang J, Sauter M. 2006. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604−612

doi: 10.1007/s00425-005-0111-1
[76]

Schmitz AJ, Folsom JJ, Jikamaru Y, Ronald P, Walia H. 2013. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytologist 198:1060−1070

doi: 10.1111/nph.12202
[77]

Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, et al. 2016. Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genetics 12:1005760

doi: 10.1371/journal.pgen.1005760
[78]

Wang C, Wang H, Li P, Li H, Xu C, et al. 2020. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. The Plant Journal 104:241−251

doi: 10.1111/tpj.14920