[1]

Su X, Liu Y, Han L, Wang Z, Cao M, et al. 2021. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Scientific Reports 11:9810

doi: 10.1038/s41598-021-89294-1
[2]

Wu J, Yang G, Zhu W, Wen W, Zhang F, et al. 2012. Anti-atherosclerotic activity of platycodin D derived from roots of Platycodon grandiflorum in human endothelial cells. Biological and Pharmaceutical Bulletin 35:1216−1221

doi: 10.1248/bpb.b-y110129
[3]

Kim TY, Jeon S, Jang Y, Gotina L, Won J, et al. 2021. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Experimental & Molecular Medicine 53:956−972

doi: 10.1038/s12276-021-00624-9
[4]

Yao L, Lu J, Wang J, Gao WY. 2020. Advances in biosynthesis of triterpenoid saponins in medicinal plants. Chinese Journal of Natural Medicines 18:417−424

doi: 10.1016/S1875-5364(20)30049-2
[5]

Zhang W, Zhang J, Fan Y, Dong J, Gao P, et al. 2024. RNA sequencing analysis reveals PgbHLH28 as the key regulator in response to methyl jasmonate − induced saponin accumulation in Platycodon grandiflorus. Horticulture Research 11:uhae058

doi: 10.1093/hr/uhae058
[6]

Zhao CL, Cui XM, Chen YP, Liang Q. 2010. Key enzymes of triterpenoid saponin biosynthesis and the induction of their activities and gene expressions in plants. Natural Product Communications 5:1147−1158

doi: 10.1177/1934578x1000500736
[7]

Song Y, Zhang Y, Wang X, Yu X, Liao Y, et al. 2024. Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis. Horticulture Research 11:uhae107

doi: 10.1093/hr/uhae107
[8]

Mai Y, Hu H, Ji W, Xiao Y, Zhou H, et al. 2025. Evolution and functional characterization of a biosynthetic gene cluster for saponin biosynthesis in Sapindaceae. Molecular Plant 18:1089−1093

doi: 10.1016/j.molp.2025.04.013
[9]

Cheng Y, Liu H, Tong X, Liu Z, Zhang X, et al. 2020. Identification and analysis of CYP450 and UGT supergene family members from the transcriptome of Aralia elata (Miq.) seem reveal candidate genes for triterpenoid saponin biosynthesis. BMC Plant Biology 20:214

doi: 10.1186/s12870-020-02411-6
[10]

Lacchini E, Qu T, Moses T, Volkov AN, Goossens A. 2025. Engineering Gypsophila elegans hairy root cultures to produce endosomal escape-enhancing saponins. Plant Biotechnology Journal 23:3068−3082

doi: 10.1111/pbi.70122
[11]

Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. 2020. Cytochromes P450 (P450s): a review of the class system with a focus on prokaryotic P450s. Chemistry and Structural Biology 122:289−320

doi: 10.1016/bs.apcsb.2020.06.005
[12]

Nelson DR. 1999. Cytochrome P450 and the individuality of species. Archives of Biochemistry and Biophysics 369:1−10

doi: 10.1006/abbi.1999.1352
[13]

Nelson DR, Goldstone JV, Stegeman JJ. 2013. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368:20120474

doi: 10.1098/rstb.2012.0474
[14]

Bathe U, Tissier A. 2019. Cytochrome P450 enzymes: a driving force of plant diterpene diversity. Phytochemistry 161:149−162

doi: 10.1016/j.phytochem.2018.12.003
[15]

Zhang W, Li H, Li Q, Wang Z, Zeng W, et al. 2023. Genome-wide identification, comparative analysis and functional roles in flavonoid biosynthesis of cytochrome P450 superfamily in pear (Pyrus spp.). BMC Genomic Data 24:58

doi: 10.1186/s12863-023-01159-w
[16]

Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. The Plant Journal 66:194−211

doi: 10.1111/j.1365-313X.2011.04529.x
[17]

Zhang C, Ni S, Zhang S, Nigarish M, Cheng C, et al. 2023. Genome-wide identification and expression of CYP71 gene family in response to low-temperature stress in banana. The Journal of Horticultural Science and Biotechnology 98:159−177

doi: 10.1080/14620316.2022.2098179
[18]

Ghosh S. 2017. Triterpene structural diversification by plant cytochrome P450 enzymes. Frontiers in Plant Science 8:1886

doi: 10.3389/fpls.2017.01886
[19]

Sui C, Zhang J, Wei J, Chen S, Li Y, et al. 2011. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics 12:539

doi: 10.1186/1471-2164-12-539
[20]

Xu Y, Zhao G, Ji X, Liu J, Zhao T, et al. 2022. Metabolome and transcriptome analysis reveals the transcriptional regulatory mechanism of triterpenoid saponin biosynthesis in soapberry (Sapindus mukorossi Gaertn.). Journal of Agricultural and Food Chemistry 70(23):7095−7109

doi: 10.1021/acs.jafc.2c01672
[21]

Wang T, Liu J, Luo X, Hu L, Lu H. 2021. Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacology & Therapeutics 224:107824

doi: 10.1016/j.pharmthera.2021.107824
[22]

Yang J, Yang X, Li B, Lu X, Kang J, et al. 2020. Establishment of in vitro culture system for Codonopsis pilosula transgenic hairy roots. 3 Biotech 10:137

doi: 10.1007/s13205-020-2130-9
[23]

Bosselut N, Van Ghelder C, Claverie M, Voisin R, Onesto JP, et al. 2011. Agrobacterium rhizogenes − mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants. Plant Cell Reports 30:1313−1326

doi: 10.1007/s00299-011-1043-9
[24]

Yu KW, Murthy HN, Hahn EJ, Paek KY. 2005. Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochemical Engineering Journal 23:53−56

doi: 10.1016/j.bej.2004.07.001
[25]

Zhang J, Zhou L, Zheng X, Zhang J, Yang L, et al. 2017. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Reports 36:1297−1309

doi: 10.1007/s00299-017-2154-8
[26]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345

doi: 10.1016/j.xinn.2022.100345
[27]

Jia Y, Chen S, Chen W, Zhang P, Su Z, et al. 2022. A chromosome-level reference genome of Chinese balloon flower (Platycodon grandiflorus). Frontiers in Genetics 13:869784

doi: 10.3389/fgene.2022.869784
[28]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−1202

doi: 10.1016/j.molp.2020.06.009
[29]

Sun HJ, Luo ML, Zhou X, Zhou Q, Sun YY, et al. 2020. PuMYB21/PuMYB54 coordinate to activate PuPLDβ1 transcription during peel browning of cold-stored 'Nanguo' pears. Horticulture Research 7:136

doi: 10.1038/s41438-020-00356-3
[30]

Yu H, Liu M, Yin M, Shan T, Peng H, et al. 2021. Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus. Planta 254:34

doi: 10.1007/s00425-021-03677-2
[31]

Li W, Lin S, Wang R, Chen C, Ni L, et al. 2025. Regulation of plant hormones on the secondary metabolism of medicinal plants. Medicinal Plant Biology 4:e020

doi: 10.48130/mpb-0025-0016
[32]

Nelson DR. 2009. The cytochrome P450 homepage. Human Genomics 4:59

doi: 10.1186/1479-7364-4-1-59
[33]

Chapple C. 1998. Molecular-genetic analysis of plant cytochrome p450-dependent monooxygenases. Annual Review of Plant Biology 49:311−343

doi: 10.1146/annurev.arplant.49.1.311
[34]

Wang JW, Wu JY. 2013. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. In Biotechnology of Hairy Root Systems, ed. Doran PM. Berlin, Heidelberg: Springer. pp. 55−89 doi: 10.1007/10_2013_183

[35]

Kochan E, Balcerczak E, Lipert A, Szymańska G, Szymczyk P. 2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor. Industrial Crops and Products 115:182−193

doi: 10.1016/j.indcrop.2018.02.036
[36]

Vijendra PD, Jayanna SG, Kumar V, Sannabommaji T, Rajashekar J, et al. 2020. Product enhancement of triterpenoid saponins in cell suspension cultures of Leucas aspera Spreng. Industrial Crops and Products 156:112857

doi: 10.1016/j.indcrop.2020.112857
[37]

Tian R, Zhang C, Gu W, Gu Y, Xu F, et al. 2021. Proteomic insights into protostane triterpene biosynthesis regulatory mechanism after MeJA treatment in Alisma orientale (Sam.) Juz. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1869:140671

doi: 10.1016/j.bbapap.2021.140671
[38]

Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D, et al. 2013. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytologist 200:675−690

doi: 10.1111/nph.12414
[39]

Schröder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, et al. 1999. Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Letters 458:97−102

doi: 10.1016/S0014-5793(99)01138-2
[40]

Deng B, Huang Z, Ge F, Liu D, Lu R, et al. 2017. An AP2/ERF family transcription factor PnERF1 raised the biosynthesis of saponins in Panax notoginseng. Journal of Plant Growth Regulation 36:691−701

doi: 10.1007/s00344-017-9672-z
[41]

Song M, Wang H, Wang Z, Huang H, Chen S, et al. 2021. Genome-wide characterization and analysis of bHLH transcription factors related to anthocyanin biosynthesis in fig (Ficus carica L.). Frontiers in Plant Science 12:730692

doi: 10.3389/fpls.2021.730692
[42]

Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, et al. 2017. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytologist 215:1115−1131

doi: 10.1111/nph.14663
[43]

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, et al. 2016. Advancing crop transformation in the era of genome editing. The Plant Cell 28:1510−1520

doi: 10.1105/tpc.16.00196
[44]

Park NI, Tuan PA, Li X, Kim YK, Yang TJ, et al. 2011. An efficient protocol for genetic transformation of Platycodon grandiflorum with Agrobacterium rhizogenes. Molecular Biology Reports 38:2307−2313

doi: 10.1007/s11033-010-0363-0
[45]

Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K. 2003. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant & Cell Physiology 44:395−403

doi: 10.1093/pcp/pcg051