[1]

Lee MW, Hur H, Chang KC, Lee TS, Ka KH, et al. 2008. Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology 36:199−202

doi: 10.4489/MYCO.2008.36.4.199
[2]

Plehn S, Wagle S, Rupasinghe HPV. 2023. Chaga mushroom triterpenoids as adjuncts to minimally invasive cancer therapies: a review. Current Research in Toxicology 5:100137

doi: 10.1016/j.crtox.2023.100137
[3]

Zheng W, Miao K, Liu Y, Zhao Y, Zhang M, et al. 2010. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Applied Microbiology and Biotechnology 87:12371254

doi: 10.1007/s00253-010-2682-4
[4]

Ern PTY, Quan TY, Yee FS, Yin ACY. 2024. Therapeutic properties of Inonotus obliquus (Chaga mushroom): A review. Mycology 15:144−161

doi: 10.1080/21501203.2023.2260408
[5]

Duan Y, Sui D, Wang L, Zhang X, Wang C, Liu C. 2022. Research progress on small molecule chemical components and pharmacological values of Inonotus obliquus. Journal of Fungal Research 20(3):214−227 (in Chinese)

doi: 10.13341/j.jfr.2021.1451
[6]

Sagayama K, Tanaka N, Fukumoto T, Kashiwada Y. 2019. Lanostane-type triterpenes from the sclerotium of Inonotus obliquus (Chaga mushrooms) as proproliferative agents on human follicle dermal papilla cells. Journal of Natural Medicines 73:597−601

doi: 10.1007/s11418-019-01280-0
[7]

Zhang X, Bao C, Zhang J. 2018. Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of β-catenin signaling. Biomedicine & Pharmacotherapy 99:142−150

doi: 10.1016/j.biopha.2017.12.084
[8]

Chung J, Choi MR, Park S, Kang JY, Chung EH, et al. 2023. Inotodiol suppresses allergic inflammation in allergic rhinitis mice. International Forum of Allergy & Rhinology 13:1603−1614

doi: 10.1002/alr.23121
[9]

Lee SH, Won GW, Choi SH, Kim MY, Oh CH, et al. 2022. Antiaging effect of inotodiol on oxidative stress in human dermal fibroblasts. Biomedicine & Pharmacotherapy 153:113311

doi: 10.1016/j.biopha.2022.113311
[10]

Ma L, Chen H, Dong P, Lu X. 2013. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chemistry 139:503−508

doi: 10.1016/j.foodchem.2013.01.030
[11]

Xu X, Zhang X, Chen C. 2016. Stimulated production of triterpenoids of Inonotus obliquus using methyl jasmonate and fatty acids. Industrial Crops and Products 85:49−57

doi: 10.1016/j.indcrop.2016.02.046
[12]

Wang Y, Liu X, Sun L, Dou B, Xin J, et al. 2024. Physical radiation induced the yield of triterpenoids in hypha of Inonotus obliquus to increase. Journal of Microbiological Methods 225:107025

doi: 10.1016/j.mimet.2024.107025
[13]

Lin P, Yan ZF, Li CT. 2020. Effects of exogenous elicitors on triterpenoids accumulation and expression of farnesyl diphosphate synthase gene in Inonotus obliquus. Biotechnology and Bioprocess Engineering 25:580−588

doi: 10.1007/s12257-019-0502-y
[14]

Fradj N, Gonçalves Dos Santos KC, de Montigny N, Awwad F, Boumghar Y, et al. 2019. RNA-Seq de novo assembly and differential transcriptome analysis of chaga (Inonotus obliquus) cultured with different betulin sources and the regulation of genes involved in terpenoid biosynthesis. International Journal of Molecular Sciences 20(18):4334

doi: 10.3390/ijms20184334
[15]

Hao J, Wang X, Shi Y, Li L, Chu J, et al. 2023. Integrated omic profiling of the medicinal mushroom Inonotus obliquus under submerged conditions. BMC genomics 24:554

doi: 10.1186/s12864-023-09656-z
[16]

Duan Y, Han H, Qi J, Gao JM, Xu Z, et al. 2022. Genome sequencing of Inonotus obliquus reveals insights into candidate genes involved in secondary metabolite biosynthesis. BMC genomics 23:314

doi: 10.1186/s12864-022-08511-x
[17]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−915

doi: 10.1038/s41587-019-0201-4
[18]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[19]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−140

doi: 10.1093/bioinformatics/btp616
[20]

Li L, Guo X, Wang S. 2025. Selection and evaluation of reference genes for qRT-PCR in Inonotus obliquus. Frontiers in Microbiology 16:1500043

doi: 10.3389/fmicb.2025.1500043
[21]

Hou L, Wang L, Wu X, Gao W, Zhang J, et al. 2019. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiology 19:231

doi: 10.1186/s12866-019-1594-4
[22]

Kim JH, Gao D, Cho CW, Hwang I, Kim HM, et al. 2021. A novel bioanalytical method for determination of inotodiol isolated from Inonotus obliquus and its application to pharmacokinetic study. Plants 10(8):1631

doi: 10.3390/plants10081631
[23]

Huynh N, Beltrame G, Tarvainen M, Suomela JP, Yang B. 2022. Supercritical CO2 extraction of triterpenoids from chaga sterile conk of Inonotus obliquus. Molecules 27:1880

doi: 10.3390/molecules27061880
[24]

Borrull A, López-Martínez G, Poblet M, Cordero-Otero R, Rozès N. 2015. A simple method for the separation and quantification of neutral lipid species using GC-MS. European Journal of Lipid Science and Technology 117:274−280

doi: 10.1002/ejlt.201400064
[25]

Xu S, Chen C, Li Y. 2020. Engineering of phytosterol-producing yeast platforms for functional reconstitution of downstream biosynthetic pathways. ACS Synthetic Biology 9:3157−3170

doi: 10.1021/acssynbio.0c00417
[26]

Ma BX, Ke X, Tang XL, Zheng RC, Zheng YG. 2018. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5, 7-dien-3β-ol accumulation by metabolic engineering. World Journal of Microbiology and Biotechnology 34:55

doi: 10.1007/s11274-018-2440-9
[27]

Zhang Y, Zhang M, Wang Z, Bao YO, Wang Y, et al. 2025. Identification of key post-modification enzymes involved in the biosynthesis of lanostane-type triterpenoids in the medicinal mushroom Antrodia camphorata. Angewandte Chemie International Edition 64:e202420104

doi: 10.1002/anie.202420104
[28]

Wu CY, Liang CH, Liang ZC. 2022. Enhanced production of fruiting bodies and bioactive compounds of Cordyceps militaris with grain substrates and cultivation patterns. Journal of the Taiwan Institute of Chemical Engineers 132:104138

doi: 10.1016/j.jtice.2021.11.005
[29]

Yuan L, Liu JK. 2025. Hericinosides A-M, Cyathane diterpene glycosides with α-glucosidase inhibitory activity from the medicinal fungus Hericium erinaceus. Journal of Agricultural and Food Chemistry 73:1389−1402

doi: 10.1021/acs.jafc.4c10986
[30]

Ma K, Bao L, Han J, Jin T, Yang X, et al. 2014. New benzoate derivatives and hirsutane type sesquiterpenoids with antimicrobial activity and cytotoxicity from the solid-state fermented rice by the medicinal mushroom Stereum hirsutum. Food Chemistry 143:239−245

doi: 10.1016/j.foodchem.2013.07.124
[31]

Duan Y, Zhu T, Chen S, Duan X, Wang S. 2023. Determination of four components of Inonotus obliquus by HPLC and comparison of contents in different parts. Herald of Medicine 42:339−345 (in Chinese)

doi: 10.3870/j.issn.1004-0781.2023.03.009
[32]

Zeng L, Liu Q, Wu H, Yang M, Cao X. 2025. Effects of nutrient restriction on growth and triterpene synthesis of Inonotus obliquus. Acta Microbiologica Sinica 65:362−370 (in Chinese)

doi: 10.13343/j.cnki.wsxb.20240463
[33]

Guo J. 2017. Cloning and characterization of sterol C24 methyltransferase (SMT1) gene from Poria cocos. Master's Thesis. Huazhong Agricultural University, Wuhan, China

[34]

Yang C, Li W, Li C, Zhou Z, Xiao Y, et al. 2018. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry 155:83−92

doi: 10.1016/j.phytochem.2018.07.009
[35]

Zhang S, Xie Y, Tan Y, Chen H, Mei R, et al. 2015. Triterpenoids of Inonotus obliquus. Chinese Traditional and Herbal Drugs 46:2355−2360 (in Chinese)

[36]

Fang Y, Luo M, Song X, Shen Y, Xiao H. 2020. Improving the production of squalene-type triterpenoid 2,3;22,23-squalene dioxide by optimizing the expression of CYP505D13 in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 130:265−271

doi: 10.1016/j.jbiosc.2020.04.005
[37]

Lan X, Yuan W, Wang M, Xiao H. 2019. Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a Ganoderma P450 reductase. Biotechnology and Bioengineering 116:3301−3311

doi: 10.1002/bit.27154
[38]

Kahlos K, Tikka VH. 1994. Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipids in Inonotus obliquus, in vitro. Applied Microbiology and Biotechnology 42:385−390

doi: 10.1007/BF00902746
[39]

Wang WF, Xiao H, Zhong JJ. 2022. Biosynthesis of a novel ganoderic acid by expressing CYP genes from Ganoderma lucidum in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 106:523−534

doi: 10.1007/s00253-021-11717-w
[40]

Du Y, Peng S, Chen H, Li J, Huang F, et al. 2025. Unveiling the spatiotemporal landscape of Ganoderma lingzhi: Insights into ganoderic acid distribution and biosynthesis. Engineering

doi: 10.1016/j.eng.2025.03.030
[41]

Yuan W, Jiang C, Wang Q, Fang Y, Wang J, et al. 2022. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nature Communications 13:7740

doi: 10.1038/s41467-022-35500-1
[42]

Kahlos K, Hiltunen R. 1986. 3β,22-Dihydroxylanosta-7,9(11),24-triene: a new, minor compound from Inonotus obliquus. Planta Medica 00:495−496

doi: 10.1055/s-2007-969266
[43]

Handa N, Yamada T, Tanaka R. 2012. Four new lanostane-type triterpenoids from Inonotus obliquus. Phytochemistry Letters 5:480−485

doi: 10.1016/j.phytol.2012.04.010
[44]

Kou RW, Xia B, Han R, Li ZQ, Yang JR, et al. 2022. Neuroprotective effects of a new triterpenoid from edible mushroom on oxidative stress and apoptosis through the BDNF/TrkB/ERK/CREB and Nrf2 signaling pathway in vitro and in vivo. Food & Function 13:12121−12134

doi: 10.1039/d2fo02854a
[45]

Kahlos K. 1986. 3β,22-Dihydroxy-lanosta-8,24-dien-7-one, a new 7-keto compound from Inonotus obliquus. Acta Pharmaceutica Fennica 95:113−117

[46]

Handa N, Yamada T, Tanaka R. 2010. An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774−1779

doi: 10.1016/j.phytochem.2010.07.005
[47]

Nakamura S, Iwami J, Matsuda H, Mizuno S, Yoshikawa M. 2009. Absolute stereostructures of inoterpenes A–F from sclerotia of Inonotus obliquus. Tetrahedron 65:2443−2450

doi: 10.1016/j.tet.2009.01.076
[48]

Chen SD, Yong TQ, Xiao C, Gao X, Xie YZ, et al. 2021. Inhibitory effect of triterpenoids from the mushroom Inonotus obliquus against α-glucosidase and their interaction: Inhibition kinetics and molecular stimulations. Bioorganic Chemistry 115:105276

doi: 10.1016/j.bioorg.2021.105276