[1]

Wang HZ, Feng SG, Lu JJ, Shi NN, Liu JJ. 2009. Phylogenetic study and molecular identification of 31 Dendrobium species using inter-simple sequence repeat (ISSR) markers. Scientia Horticulturae 122:440−447

doi: 10.1016/j.scienta.2009.06.005
[2]

Teixeira da Silva JA, Ng TB. 2017. The medicinal and pharmaceutical importance of Dendrobium species. Applied Microbiology and Biotechnology 101:2227−2239

doi: 10.1007/s00253-017-8169-9
[3]

Kanlayavattanakul M, Lourith N, Chaikul P. 2018. Biological activity and phytochemical profiles of Dendrobium: a new source for specialty cosmetic materials. Industrial Crops and Products 120:61−70

doi: 10.1016/j.indcrop.2018.04.059
[4]

Zheng SG, Hu YD, Zhao RX, Yan S, Zhang XQ, et al. 2018. Genome-wide researches and applications on Dendrobium. Planta 248:769−784

doi: 10.1007/s00425-018-2960-4
[5]

Cardoso JC. 2012. Dendrobium ‘Brazilian Fire 101’-new option of color of flowers for the orchid market. Horticultura Brasileira 30:561−564

doi: 10.1590/S0102-05362012000300035
[6]

De LC, Barman D, Medhi RP, Geetamani C, Pokhrel H. 2013. Production technology of Dendrobium. Sikkim, India: National Research Centre for Orchids. 30 pp. doi: 10.13140/RG.2.2.14658.53446

[7]

Lu SJ, He JQ, Yi SS, Liao Y, Li CH, et al. 2021. Establishment and application of a comprehensive assessment system for cold resistance in Denphal-group Dendrobium cultivars. European Journal of Horticultural Science 86:289−299

doi: 10.17660/eJHS.2021/86.3.8
[8]

Li Z, Lu S, Yi S, Mo S, Yu X, et al. 2024. Physiological and transcriptomic comparisons shed light on the cold stress response mechanisms of Dendrobium spp. BMC Plant Biology 24:230

doi: 10.1186/s12870-024-04903-1
[9]

Yu X, Mo S, Zhang Z, Lu S, Liao Y, et al. 2024. Physiological response of Dendrobium Udomsri beauty under low-temperature treatment. HortScience 59:1343−1349

doi: 10.21273/HORTSCI17974-24
[10]

Mehrotra S, Verma S, Kumar S, Kumari S, Mishra BN. 2020. Transcriptional regulation and signalling of cold stress response in plants: an overview of current understanding. Environmental and Experimental Botany 180:104243

doi: 10.1016/j.envexpbot.2020.104243
[11]

Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, et al. 2022. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences 23:1549

doi: 10.3390/ijms23031549
[12]

Tang K, Zhao L, Ren Y, Yang S, Zhu JK, et al. 2020. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology 62:258−263

doi: 10.1111/jipb.12918
[13]

Okawa K, Nakayama K, Kakizaki T, Yamashita T, Inaba T. 2008. Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. Plant, Cell & Environment 31:1470−1483

doi: 10.1111/j.1365-3040.2008.01854.x
[14]

Li S, Zhang W, Zhang Z, Zheng Y, Liu Z, et al. 2023. Identification of COR413 gene family in peach and its expression in low temperature and LTC treatment at postharvest. Genomics and Applied Biology 20:8091−8098

doi: 10.5376/gab.2023.14.0002
[15]

Deng Y, Lin Y, Wei G, Hu X, Zheng Y, et al. 2024. Overexpression of the CpCOR413PM1 gene from wintersweet (Chimonanthus praecox) enhances cold and drought tolerance in Arabidopsis. Horticulturae 10:599

doi: 10.3390/horticulturae10060599
[16]

Ma X, Chen C, Yang M, Dong X, Lv W, et al. 2018. Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants. Plant Physiology and Biochemistry 124:29−39

doi: 10.1016/j.plaphy.2018.01.003
[17]

Ma X, Wang G, Zhao W, Yang M, Ma N, et al. 2017. SlCOR413IM1: a novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco. Journal of Plant Physiology 216:88−99

doi: 10.1016/j.jplph.2017.03.016
[18]

Wang M, Wang L, Yu X, Zhao J, Tian Z, et al. 2023. Enhancing cold and drought tolerance in cotton: a protective role of SikCOR413PM1. BMC Plant Biology 23:577

doi: 10.1186/s12870-023-04572-6
[19]

Dharshini S, Manoj VM, Suresha GS, Narayan JA, Sarath Padmanabhan TS, et al. 2020. Isolation and characterization of nuclear localized abiotic stress responsive cold regulated gene 413 (SsCor413) from Saccharum spontaneum. Plant Molecular Biology Reporter 38:628−640

doi: 10.1007/s11105-020-01224-z
[20]

Zhou A, Liu E, Li H, Li Y, Feng S, et al. 2018. PsCor413pm2, a plasma membrane-localized, cold-regulated protein from Phlox subulata, confers low temperature tolerance in Arabidopsis. International Journal of Molecular Sciences 19:2579

doi: 10.3390/ijms19092579
[21]

Hou T, Wang J, Yi S, Zhang Z, Li C. 2022. Selection and validation of reference genes for RT-qPCR in Phalaenopsis-type Dendrobium hybrid. Acta Horticulturae Sinica 49:2489−2501 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0763
[22]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−743

doi: 10.1046/j.1365-313x.1998.00343.x
[23]

Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−119

doi: 10.1038/s41576-021-00413-0
[24]

Cao Y, Feng J, Hwarari D, Ahmad B, Wu H, et al. 2022. Alterations in population distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. caused by climate change. Forests 13:488

doi: 10.3390/f13030488
[25]

Raison JK, Chapman EA. 1976. Membrane phase changes in chilling-sensitive Vigna radiata and their significance to growth. Australian Journal of Plant Physiology 3:291−299

doi: 10.1071/pp9760291
[26]

Thomashow MF. 1999. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology 50:571−599

doi: 10.1146/annurev.arplant.50.1.571
[27]

Guan Y, Hwarari D, Korboe HM, Ahmad B, Cao Y, et al. 2023. Low temperature stress-induced perception and molecular signaling pathways in plants. Environmental and Experimental Botany 207:105190

doi: 10.1016/j.envexpbot.2022.105190
[28]

Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, et al. 2020. A chloroplast COR413 protein from Physcomitrella patens is required for growth regulation under high light and ABA responses. Frontiers in Plant Science 11:845

doi: 10.3389/fpls.2020.00845
[29]

Breton G, Danyluk J, Charron JF, Sarhan F. 2003. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiology 132:64−74

doi: 10.1104/pp.102.015255
[30]

Goddard NJ, Dunn MA, Zhang L, White AJ, Jack PL, et al. 1993. Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt101. Plant Molecular Biology 23:871−879

doi: 10.1007/BF00021541
[31]

Guo X, Zhang L, Dong G, Xu Z, Li G, et al. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Science 289:110246

doi: 10.1016/j.plantsci.2019.110246
[32]

Zhang L, Guo X, Zhang Z, Wang A, Zhu J. 2021. Cold-regulated gene LeCOR413PM2 confers cold stress tolerance in tomato plants. Gene 764:145097

doi: 10.1016/j.gene.2020.145097
[33]

Wang J, Zuo KJ, Qin J, Zhang L, Su L, et al. 2007. Isolation and bioinformatics analyses of a COR413-like gene from Gossypium barbadense. Acta Physiologiae Plantarum 29:1−9

doi: 10.1007/s11738-006-0001-6
[34]

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist 222:1690−1704

doi: 10.1111/nph.15696
[35]

Lyons JM, Asmundson CM. 1965. Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling sensitivity in plants. Journal of the American Oil Chemists' Society 42:1056−1058

doi: 10.1007/BF02636905
[36]

Su C, Chen K, Ding Q, Mou Y, Yang R, et al. 2018. Proteomic analysis of the function of a novel cold-regulated multispanning transmembrane protein COR413-PM1 in Arabidopsis. International Journal of Molecular Sciences 19:2572

doi: 10.3390/ijms19092572
[37]

Örvar BL, Sangwan V, Omann F, Dhindsa RS. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal 23:785−794

doi: 10.1046/j.1365-313x.2000.00845.x
[38]

Sangwan V, Foulds I, Singh J, Dhindsa RS. 2001. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. The Plant Journal 27:1−12

doi: 10.1046/j.1365-313x.2001.01052.x
[39]

Dharshini S, Swathi T, Lekshmi LA, Krishna SS, Harish Chandar SR, et al. 2025. Overexpression of abiotic stress-responsive SsCor413-1 gene enhances salt and drought tolerance in sugarcane (Saccharum spp. hybrid). International Journal of Molecular Sciences 26:9868

doi: 10.3390/ijms26209868
[40]

Hu X, Liu J, Liu E, Qiao K, Gong S, et al. 2021. Arabidopsis cold-regulated plasma membrane protein Cor413pm1 is a regulator of ABA response. Biochemical and Biophysical Research Communications 561:88−92

doi: 10.1016/j.bbrc.2021.05.032
[41]

Machuka J, Bashiardes S, Ruben E, Spooner K, Cuming A, et al. 1999. Sequence analysis of expressed sequence tags from an ABA-treated cDNA library identifies stress response genes in the moss Physcomitrella patens. Plant and Cell Physiology 40:378−387

doi: 10.1093/oxfordjournals.pcp.a029553
[42]

Zhang C, Li C, Liu J, Lv Y, Yu C, et al. 2017. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. Journal of Experimental Botany 68:4695−4707

doi: 10.1093/jxb/erx260
[43]

Long S, Yan F, Yang L, Sun Z, Wei S. 2020. Responses of Manila grass (Zoysia matrella) to chilling stress: from transcriptomics to physiology. PLoS One 15:e0235972

doi: 10.1371/journal.pone.0235972
[44]

Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, et al. 2021. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172:847−868

doi: 10.1111/ppl.13268
[45]

Raza MA, Sohail H, Ahmad Hassan M, Sajad S, Xing Y, et al. 2024. Cold stress in Brassica vegetables: morpho-physiological and molecular responses underlying adaptive mechanism. Scientia Horticulturae 329:113002

doi: 10.1016/j.scienta.2024.113002