[1]

Barberis M, Nepi M, Galloni M. 2024. Floral nectar: fifty years of new ecological perspectives beyond pollinator reward. Perspectives in Plant Ecology, Evolution and Systematics 62:125764

doi: 10.1016/j.ppees.2023.125764
[2]

Balduino H, Tunes P, Nepi M, Guimarães E, Machado SR. 2025. Structure and ultrastructure of nuptial and extranuptial nectaries explain secretion changes throughout flower lifetime and allow for multiple ecological interactions. AoB PLANTS 17:plaf037

doi: 10.1093/aobpla/plaf037
[3]

Chatt EC, Mahalim SN, Mohd-Fadzil NA, Roy R, Klinkenberg PM, et al. 2021. Nectar biosynthesis is conserved among floral and extrafloral nectaries. Plant Physiology 185:1595−1616

doi: 10.1093/plphys/kiab018
[4]

Li Y, Liu H, Yao X, Sun L, Sui X. 2022. The role of sugar transporter CsSWEET7a in apoplasmic phloem unloading in receptacle and nectary during cucumber anthesis. Frontiers in Plant Science 12:758526

doi: 10.3389/fpls.2021.758526
[5]

Göttlinger T, Pirritano M, Simon M, Fuß J, Lohaus G. 2024. Metabolic and transcriptomic analyses of nectaries reveal differences in the mechanism of nectar production between monocots (Ananas comosus) and dicots (Nicotiana tabacum). BMC Plant Biology 24:940

doi: 10.1186/s12870-024-05630-3
[6]

Chwil M, Kostryco M, Matraszek-Gawron R. 2019. Comparative studies on structure of the floral nectaries and the abundance of nectar production of Prunus laurocerasus L. Protoplasma 256:1705−1726

doi: 10.1007/s00709-019-01412-z
[7]

Ren G, Healy RA, Klyne AM, Horner HT, James MG, et al. 2007. Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Science 173:277−290

doi: 10.1016/j.plantsci.2007.05.008
[8]

Schmitt AJ, Roy R, Klinkenberg PM, Jia M, Carter CJ. 2018. The octadecanoid pathway, but not COI1, is required for nectar secretion in Arabidopsis thaliana. Frontiers in Plant Science 9:01060

doi: 10.3389/fpls.2018.01060
[9]

Radhika V, Kost C, Boland W, Heil M. 2010. The role of jasmonates in floral nectar secretion. PLoS One 5:e9265

doi: 10.1371/journal.pone.0009265
[10]

Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546−549

doi: 10.1038/nature13082
[11]

Płażek A, Dziurka M, Słomka A, Kopeć P. 2023. The effect of stimulants on nectar composition, flowering, and seed yield of common buckwheat (Fagopyrum esculentum Moench). International Journal of Molecular Sciences 24:12852

doi: 10.3390/ijms241612852
[12]

Radhika V, Kost C, Mithöfer A, Boland W. 2010. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences of the United States of America 107:17228−17233

doi: 10.1073/pnas.1009007107
[13]

Shani E, Hedden P, Sun TP. 2024. Highlights in gibberellin research: a tale of the dwarf and the slender. Plant Physiology 195:111−134

doi: 10.1093/plphys/kiae044
[14]

Aloni R, Aloni E, Langhans M, Ullrich CI. 2006. Role of auxin in regulating Arabidopsis flower development. Planta 223:315−328

doi: 10.1007/s00425-005-0088-9
[15]

Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, et al. 2012. A regulatory network for coordinated flower maturation. PLoS Genetics 8:e1002506

doi: 10.1371/journal.pgen.1002506
[16]

Zhang R, Min Y, Holappa LD, Walcher-Chevillet CL, Duan X, et al. 2020. A role for the Auxin Response Factors ARF6 and ARF8 homologs in petal spur elongation and nectary maturation in Aquilegia. New Phytologist 227:1392−1405

doi: 10.1111/nph.16633
[17]

Nisar N, Cuttriss AJ, Pogson BJ, Cazzonelli CI. 2014. The promoter of the Arabidopsis PIN6 auxin transporter enabled strong expression in the vasculature of roots, leaves, floral stems and reproductive organs. Plant Signaling & Behavior 9:e27898

doi: 10.4161/psb.27898
[18]

Quan W, Ding G. 2017. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinus massoniana Lamb.). Acta Physiologiae Plantarum 39:258

doi: 10.1007/s11738-017-2558-7
[19]

Hong JH, Chu H, Zhang C, Ghosh D, Gong X, et al. 2015. A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap. Frontiers in Plant Science 6:00206

doi: 10.3389/fpls.2015.00206
[20]

Chandrasekaran U, Park S, Kim K, Byeon S, Han AR, et al. 2024. Energy deprivation affects nitrogen assimilation and fatty acid biosynthesis leading to leaf chlorosis under waterlogging stress in the endangered Abies koreana. Tree Physiology 44:tpae055

doi: 10.1093/treephys/tpae055
[21]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−408

doi: 10.1006/meth.2001.1262
[22]

Solhaug EM, Johnson E, Carter CJ. 2019. Carbohydrate metabolism and signaling in squash nectaries and nectar throughout floral maturation. Plant Physiology 180:1930−1946

doi: 10.1104/pp.19.00470
[23]

Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M, et al. 2020. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. The EMBO Reports 21:e49719

doi: 10.15252/embr.201949719
[24]

Wei H, Bausewein A, Greiner S, Dauchot N, Harms K, et al. 2017. CiMYB17, a stress-induced chicory R2R3-MYB transcription factor, activates promoters of genes involved in fructan synthesis and degradation. New Phytologist 215:281−298

doi: 10.1111/nph.14563
[25]

Liu H, Zhang JQ, Zhang RR, Chen C, Tao JP, et al. 2025. SlMYB1R1-SlSWEET12c module synergistically promotes sugar accumulation in tomato fruits. The Plant Journal 121:e70062

doi: 10.1111/tpj.70062
[26]

Liu L, Zhao L, Chen P, Cai H, Hou Z, Jin X, et al. 2020. ATP binding cassette transporters ABCG1 and ABCG16 affect reproductive development via auxin signalling in Arabidopsis. The Plant Journal 102:1172−1186

doi: 10.1111/tpj.14690
[27]

Ma XL, Milne RI, Zhou HX, Song YQ, Fang JY, et al. 2019. Proteomics and post-secretory content adjustment of Nicotiana tabacum nectar. Planta 250:1703−1715

doi: 10.1007/s00425-019-03258-4
[28]

Tiedge K, Lohaus G. 2018. Nectar sugar modulation and cell wall invertases in the nectaries of day- and night- flowering Nicotiana. Frontiers in Plant Science 9:00622

doi: 10.3389/fpls.2018.00622
[29]

Li J, Seng S, Li D, Zhang F, Liu Y, et al. 2021. Antagonism between abscisic acid and gibberellin regulates starch synthesis and corm development in Gladiolus hybridus. Horticulture Research 8:155

doi: 10.1038/s41438-021-00589-w
[30]

Wiesen LB, Bender RL, Paradis T, Larson A, Perera MADN, et al. 2016. A role for GIBBERELLIN 2-OXIDASE6 and gibberellins in regulating nectar production. Molecular Plant 9:753−756

doi: 10.1016/j.molp.2015.12.019
[31]

Ross JJ, McAdam EL. 2025. New links between auxin and starch. Nature Communications 16:491

doi: 10.1038/s41467-024-55756-z