[1]

Wu D, Cui D, Zhou M, Ying Y. 2022. Information perception in modern poultry farming: a review. Computers and Electronics in Agriculture 199:107131

doi: 10.1016/j.compag.2022.107131
[2]

FAO. 2017. The future of food and agriculture – trends and challenges. FAO, Rome

[3]

DeWeerdt S. 2020. Can aquaculture overcome its sustainability challenges? Nature 588:S60−S62

doi: 10.1038/d41586-020-03446-3
[4]

Tao Y, Wang J, Chen Y, Tan C, Guo H. 2025. Development of traceability systems: a methodological overview toward effective regulation of emerging contaminants. Journal of Hazardous Materials 495:139058

doi: 10.1016/j.jhazmat.2025.139058
[5]

Zhu Z, Li L, Yu Y, Tan L, Wang Z, et al. 2023. Distribution, source, risk and phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in typical urban landscape waters recharged by reclaimed water. Journal of Environmental Management 330:117214

doi: 10.1016/j.jenvman.2023.117214
[6]

Mougin J, Labreuche Y, Boulo V, Goudenège D, Saad J, et al. 2025. Antibiotic use in oyster hatcheries promotes rapid spread of a highly transferable and modular resistance plasmid in Vibrio. The ISME Journal 19:wraf163

doi: 10.1093/ismejo/wraf163
[7]

Kozlova TA, Hardy BP, Levin DB. 2020. Effect of fish steroids 17β-estradiol and 17,20β-dihydroxy-4-pregnen-3-one on growth, accumulation of pigments, and fatty acid profiles in the microalgae Scenedesmus quadricauda (CPCC-158). Renewable Energy 148:798−806

doi: 10.1016/j.renene.2019.10.165
[8]

Lin L, Huang Y, Wang P, Chen CC, Qian W, et al. 2023. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. Journal of Hazardous Materials 458:132015

doi: 10.1016/j.jhazmat.2023.132015
[9]

Ali AM, Berntssen MHG, Sele V, Valdersnes S. 2025. Wide scope screening and target quantification of per- and polyfluoroalkyl substances (PFAS) in feed and feed ingredients to farmed salmonids. Journal of Hazardous Materials 495:139078

doi: 10.1016/j.jhazmat.2025.139078
[10]

Tahir R, He K, Yan H, Shrestha A, Li XH, et al. 2025. Chronic abamectin induces hepatotoxicity and endoplasmic reticulum stress in largemouth bass (Micropterus salmoides): potential mitigation by curcumin and human health risk assessment. Journal of Hazardous Materials 495:133876

doi: 10.1016/j.jhazmat.2025.138876
[11]

Xiong X, Xie S, Feng K, Wang Q. 2022. Occurrence of microplastics in a pond-river-lake connection water system: how does the aquaculture process affect microplastics in natural water bodies. Journal of Cleaner Production 352:131632

doi: 10.1016/j.jclepro.2022.131632
[12]

Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, et al. 2024. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Frontiers in Bioengineering and Biotechnology 12:1470522

doi: 10.3389/fbioe.2024.1470522
[13]

Xie S, Hamid N, Zhang T, Zhang Z, Peng L. 2024. Unraveling the nexus: microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture - a review. Journal of Hazardous Materials 471:134324

doi: 10.1016/j.jhazmat.2024.134324
[14]

Annamalai J, Namasivayam V. 2015. Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environment International 76:78−97

doi: 10.1016/j.envint.2014.12.006
[15]

Medvedev AV, Medvedeva LA, Martsen E, Moeser M, Gorman KL, et al. 2020. Harmonized cross-species assessment of endocrine and metabolic disruptors by ecotox FACTORIAL assay. Environmental Science & Technology 54:12142−12153

doi: 10.1021/acs.est.0c03375
[16]

Segner H, Caroll K, Fenske M, Janssen CR, Maack G, et al. 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicology and Environmental Safety 54:302−314

doi: 10.1016/S0147-6513(02)00039-8
[17]

Aris AZ, Shamsuddin AS, Praveena SM. 2014. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environment International 69:104−119

doi: 10.1016/j.envint.2014.04.011
[18]

Solecki R, Kortenkamp A, Bergman Å, Chahoud I, Degen GH, et al. 2017. Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Archives of Toxicology 91:1001−1006

doi: 10.1007/s00204-016-1866-9
[19]

Koenig S, Porte C, Solé M, Sturve J. 2013. Biliary PAH and alkylphenol metabolites, biomarker enzyme activities, and gene expression levels in the deep-sea fish Alepocephalus rostratus. Environmental Science & Technology 47:2854−2861

doi: 10.1021/es304345s
[20]

Fernandes D, Zanuy S, Bebianno MJ, Porte C. 2008. Chemical and biochemical tools to assess pollution exposure in cultured fish. Environmental Pollution 152:138−146

doi: 10.1016/j.envpol.2007.05.012
[21]

Zhong S, Li R, Tian Y, Wei Z, Zhang L, et al. 2024. Integrative models for environmental forecasting of phthalate migration from microplastics in aquaculture environments. Journal of Hazardous Materials 480:136194

doi: 10.1016/j.jhazmat.2024.136194
[22]

Guillette TC, McCord J, Guillette M, Polera ME, Rachels KT, et al. 2020. Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function. Environment International 136:105358

doi: 10.1016/j.envint.2019.105358
[23]

Sznajder-Katarzyńska K, Surma M, Cieślik I. 2019. A review of perfluoroalkyl acids (PFAAs) in terms of sources, applications, human exposure, dietary intake, toxicity, legal regulation, and methods of determination. Journal of Chemistry 2019:2717528

doi: 10.1155/2019/2717528
[24]

Hannisdal R, Nøstbakken OJ, Berntssen MHG, Duinker A, Ho QT, et al. 2025. Nutrients and contaminants in farmed Atlantic salmon (Salmo salar) fillet and fish feed from 2006 to 2021. Journal of Agriculture and Food Research 21:101933

doi: 10.1016/j.jafr.2025.101933
[25]

Li C, Li Y, Li X, Ma X, Ru S, et al. 2021. Veterinary antibiotics and estrogen hormones in manures from concentrated animal feedlots and their potential ecological risks. Environmental Research 198:110463

doi: 10.1016/j.envres.2020.110463
[26]

Xu P, Zhou X, Xu D, Xiang Y, Ling W, et al. 2018. Contamination and risk assessment of estrogens in livestock manure: a case study in Jiangsu Province, China. International Journal of Environmental Research and Public Health 15:125

doi: 10.3390/ijerph15010125
[27]

Gu Y, Yu J, Hu X, Yin D. 2016. characteristics of the alkylphenol and bisphenol a distributions in marine organisms and implications for human health: a case study of the East China Sea. Science of The Total Environment 539:460−469

doi: 10.1016/j.scitotenv.2015.09.011
[28]

Acosta A, Tirkaso W, Nicolli F, Van Boeckel TP, Cinardi G, et al. 2025. The future of antibiotic use in livestock. Nature Communications 16:2469

doi: 10.1038/s41467-025-56825-7
[29]

Shi Y, Liang M, Zeng J, Wang Z, Zhang L, et al. 2024. Soil amoebae are unexpected hotspots of environmental antibiotics and antibiotic resistance genes. Environmental Science & Technology 58:21475−21488

doi: 10.1021/acs.est.4c10455
[30]

Li B, Qiu Y, Song Y, Lin H, Yin H. 2019. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics. Environment International 131:105007

doi: 10.1016/j.envint.2019.105007
[31]

Rysz M, Alvarez PJJ. 2004. Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Research 38:3705−3712

doi: 10.1016/j.watres.2004.06.015
[32]

Su HC, Pan CG, Ying GG, Zhao JL, Zhou LJ, et al. 2014. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Science of The Total Environment 490:708−714

doi: 10.1016/j.scitotenv.2014.05.060
[33]

Li S, Zhang C, Li F, Hua T, Zhou Q, et al. 2021. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review. Journal of Hazardous Materials 411:125148

doi: 10.1016/j.jhazmat.2021.125148
[34]

Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, et al. 2018. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nature Microbiology 3:898−908

doi: 10.1038/s41564-018-0241-4
[35]

Dawson AL, Bose U, Escobar-Correas S, Yap K, Craik DJ, et al. 2025. Where have you been? Backtracking microplastic to its source using the biomolecular composition of the ecocorona. Environmental Science & Technology 59:22227−22238

doi: 10.1021/acs.est.5c09277
[36]

Koelmans AA, Redondo-Hasselerharm PE, Nor NHM, de Ruijter VN, Mintenig SM, et al. 2022. Risk assessment of microplastic particles. Nature Reviews Materials 7:138−152

doi: 10.1038/s41578-021-00411-y
[37]

Hu L, Zhao Y, Xu H. 2022. Trojan horse in the intestine: a review on the biotoxicity of microplastics combined environmental contaminants. Journal of Hazardous Materials 439:129652

doi: 10.1016/j.jhazmat.2022.129652
[38]

Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3:e1700782

doi: 10.1126/sciadv.1700782
[39]

Murata M, Kang JH. 2018. Bisphenol A (BPA) and cell signaling pathways. Biotechnology Advances 36:311−327

doi: 10.1016/j.biotechadv.2017.12.002
[40]

Qian X, Gu J, Sun W, Wang XJ, Su JQ, et al. 2018. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. Journal of Hazardous Materials 344:716−722

doi: 10.1016/j.jhazmat.2017.11.020
[41]

Qiu T, Huo L, Guo Y, Gao M, Wang G, et al. 2022. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. Environmental Microbiome 17:42

doi: 10.1186/s40793-022-00437-x
[42]

Peng S, Zhang H, Song D, Chen H, Lin X, et al. 2022. Distribution of antibiotic, heavy metals and antibiotic resistance genes in livestock and poultry feces from different scale of farms in Ningxia, China. Journal of Hazardous Materials 440:129719

doi: 10.1016/j.jhazmat.2022.129719
[43]

Rothrock MJ, Min BR, Castleberry L, Waldrip H, Parker D, et al. 2021. Antibiotic resistance, antimicrobial residues, and bacterial community diversity in pasture-raised poultry, swine, and beef cattle manures. Journal of Animal Science 99:skab144

doi: 10.1093/jas/skab144
[44]

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, et al. 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America 112:5649−5654

doi: 10.1073/pnas.1503141112
[45]

He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, et al. 2020. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3:4

doi: 10.1038/s41545-020-0051-0
[46]

Gou M, Hu HW, Zhang YJ, Wang JT, Hayden H, et al. 2018. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of The Total Environment 612:1300−1310

doi: 10.1016/j.scitotenv.2017.09.028
[47]

Peak N, Knapp CW, Yang RK, Hanfelt MM, Smith MS, et al. 2007. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environmental Microbiology 9:143−151

doi: 10.1111/j.1462-2920.2006.01123.x
[48]

García-Galán MJ, Garrido T, Fraile J, Ginebreda A, Díaz-Cruz MS, et al. 2011. Application of fully automated online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry for the determination of sulfonamides and their acetylated metabolites in groundwater. Analytical and Bioanalytical Chemistry 399:795−806

doi: 10.1007/s00216-010-4367-3
[49]

Zhu L, Lian Y, Lin D, Huang D, Yao Y, et al. 2022. Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Journal of Hazardous Materials 437:129356

doi: 10.1016/j.jhazmat.2022.129356
[50]

Wu RT, Cai YF, Chen YX, Yang YW, Xing SC, et al. 2021. Occurrence of microplastic in livestock and poultry manure in South China. Environmental Pollution 277:116790

doi: 10.1016/j.envpol.2021.116790
[51]

Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, et al. 2022. Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in France. Environmental Science & Technology 56:6056−6068

doi: 10.1021/acs.est.1c03697
[52]

Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110:3435−3440

doi: 10.1073/pnas.1222743110
[53]

Tao HY, Zhang J, Shi J, Guo W, Liu X, et al. 2021. Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicology and Environmental Safety 207:111521

doi: 10.1016/j.ecoenv.2020.111521
[54]

Sarmah AK, Northcott GL, Leusch FDL, Tremblay LA. 2006. A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Science of The Total Environment 355:135−144

doi: 10.1016/j.scitotenv.2005.02.027
[55]

Sheriff I, Yusoff MS, Manan TSBA, Koroma M. 2023. Microplastics in manure: Sources, analytical methods, toxicodynamic, and toxicokinetic endpoints in livestock and poultry. Environmental Advances 12:100372

doi: 10.1016/j.envadv.2023.100372
[56]

Li H, Yang Z, Jiang F, Li L, Li Y, et al. 2023. Detection of microplastics in domestic and fetal pigs' lung tissue in natural environment: a preliminary study. Environmental Research 216:114623

doi: 10.1016/j.envres.2022.114623
[57]

de Souza BB, Meegoda J. 2024. Insights into PFAS environmental fate through computational chemistry: a review. Science of The Total Environment 926:171738

doi: 10.1016/j.scitotenv.2024.171738
[58]

Ramachandraiah K, Ameer K, Jiang G, Hong GP. 2022. Micro- and nanoplastic contamination in livestock production: entry pathways, potential effects and analytical challenges. Science of The Total Environment 844:157234

doi: 10.1016/j.scitotenv.2022.157234
[59]

Beni NN, Karimifard S, Gilley J, Messer T, Schmidt A, et al. 2023. Higher concentrations of microplastics in runoff from biosolid-amended croplands than manure-amended croplands. Communications Earth & Environment 4:42

doi: 10.1038/s43247-023-00691-y
[60]

Chai J, Zhuang Y, Cui K, Bi Y, Zhang N. 2024. Metagenomics reveals the temporal dynamics of the rumen resistome and microbiome in goat kids. Microbiome 12:14

doi: 10.1186/s40168-023-01733-5
[61]

Han XM, Hu HW, Chen QL, Yang LY, Li HL, et al. 2018. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology & Biochemistry 126:91−102

doi: 10.1016/j.soilbio.2018.08.018
[62]

Ogunfowora LA, Iwuozor KO, Ighalo JO, Igwegbe CA. 2021. Trends in the treatment of aquaculture effluents using nanotechnology. Cleaner Materials 2:100024

doi: 10.1016/j.clema.2021.100024
[63]

Healey N. 2020. Aquaculture's role in propagating antimicrobial resistance must be addressed. Nature 586:S63

doi: 10.1038/d41586-020-02890-5
[64]

Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, et al. 2004. Global assessment of organic contaminants in farmed salmon. Science 303:226−229

doi: 10.1126/science.1091447
[65]

Wang C, Liu X, Yang Y, Wang Z. 2021. Antibiotic and antibiotic resistance genes in freshwater aquaculture ponds in China: a meta-analysis and assessment. Journal of Cleaner Production 329:129719

doi: 10.1016/j.jclepro.2021.129719
[66]

Dong H, Chen Y, Wang J, Zhang Y, Zhang P, et al. 2021. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Journal of Hazardous Materials 403:123961

doi: 10.1016/j.jhazmat.2020.123961
[67]

Choi S, Sim W, Jang D, Yoon Y, Ryu J, et al. 2020. Antibiotics in coastal aquaculture waters: occurrence and elimination efficiency in oxidative water treatment processes. Journal of Hazardous Materials 396:122585

doi: 10.1016/j.jhazmat.2020.122585
[68]

Su H, Duan S, Hu X, Xu W, Xu Y, et al. 2024. Spatiotemporal dynamics, bioaccumulation, and critical influencing factors of antibiotics in tilapia aquaculture: a study on source identification and environmental fate within typical farming systems. Journal of Hazardous Materials 477:135328

doi: 10.1016/j.jhazmat.2024.135328
[69]

Chen H, Liu S, Xu XR, Diao ZH, Sun KF, et al. 2018. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. Journal of Hazardous Materials 343:140−148

doi: 10.1016/j.jhazmat.2017.09.017
[70]

Xu F, Yang C, Liu H, Liu H, Chen M, et al. 2025. Critical control points in Penaeus vannamei aquaculture: dynamic tracking and comprehensive risk assessment of antibiotics. Journal of Hazardous Materials 496:139256

doi: 10.1016/j.jhazmat.2025.139256
[71]

Abafe OA, Macheka LR, Abafe OT, Chokwe TB. 2021. Concentrations and human exposure assessment of per and polyfluoroalkyl substances in farmed marine shellfish in South Africa. Chemosphere 281:130985

doi: 10.1016/j.chemosphere.2021.130985
[72]

Zafeiraki E, Gebbink WA, Hoogenboom RLAP, Kotterman M, Kwadijk C, et al. 2019. Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and farmed aquatic animals collected in the Netherlands. Chemosphere 232:415−423

doi: 10.1016/j.chemosphere.2019.05.200
[73]

Kolodziej EP, Harter T, Sedlak DL. 2004. Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. Environmental Science & Technology 38:6377−6384

doi: 10.1021/es049585d
[74]

Ma J, Niu X, Zhang D, Lu L, Ye X, et al. 2020. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China. Science of The Total Environment 744:140679

doi: 10.1016/j.scitotenv.2020.140679
[75]

Li J, Liu J, Wang X, Zhang T, Wang D, et al. 2024. Vertical transfer of microplastics in nearshore water by cultured filter-feeding oysters. Journal of Hazardous Materials 475:134769

doi: 10.1016/j.jhazmat.2024.134769
[76]

Xiong X, Liu Q, Chen X, Wang R, Duan M, et al. 2021. Occurrence of microplastic in the water of different types of aquaculture ponds in an important lakeside freshwater aquaculture area of China. Chemosphere 282:131126

doi: 10.1016/j.chemosphere.2021.131126
[77]

Lv W, Zhou W, Lu S, Huang W, Yuan Q, et al. 2019. Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China. Science of The Total Environment 652:1209−1218

doi: 10.1016/j.scitotenv.2018.10.321
[78]

Garcés-Ordóñez O, Saldarriaga-Vélez JF, Espinosa-Díaz LF, Patiño AD, Cusba J, et al. 2022. Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Science of The Total Environment 829:154643

doi: 10.1016/j.scitotenv.2022.154643
[79]

Yu X, Gutang Q, Wang Y, Wang S, Li Y, et al. 2024. Microplastic and associated emerging contaminants in marine fish from the South China Sea: exposure and human risks. Journal of Hazardous Materials 480:136200

doi: 10.1016/j.jhazmat.2024.136200
[80]

Wang F, Xiang L, Leung KSY, Elsner M, Zhang Y, et al. 2024. Emerging contaminants: a One Health perspective. The Innovation 5:100612

doi: 10.1016/j.xinn.2024.100612
[81]

Okamoto N, Viswanatha R, Bittar R, Li Z, Haga-Yamanaka S, et al. 2018. A membrane transporter is required for steroid hormone uptake in Drosophila. Developmental Cell 47:294−305.e7

doi: 10.1016/j.devcel.2018.09.012
[82]

Wang Y, Wang F, Xiang L, Liao M, Wang M, et al. 2025. Co-exposure of di(2-ethylhexyl) phthalate (DEHP) decreased the submicron plastic stress in soill–plant system. Eco-Environment & Health 4:100184

doi: 10.1016/j.eehl.2025.100184
[83]

Mahoney H, Xie Y, Brinkmann M, Giesy JP. 2022. Next generation per- and poly-fluoroalkyl substances: status and trends, aquatic toxicity, and risk assessment. Eco-Environment & Health 1:117−131

doi: 10.1016/j.eehl.2022.05.002
[84]

Liu J, Xu G, Zhao S, He J. 2024. Plastisphere microbiomes respiring persistent organohalide pollutants. Environmental Science & Technology 58:14740−14752

doi: 10.1021/acs.est.4c02251
[85]

Jepson PD, Law RJ. 2016. Persistent pollutants, persistent threats. Science 352:1388−1389

doi: 10.1126/science.aaf9075
[86]

Zhao Y, Zhang XX, Zhao Z, Duan C, Chen H, et al. 2018. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp. Journal of Hazardous Materials 350:10−18

doi: 10.1016/j.jhazmat.2018.02.004
[87]

Chi W, Zou Y, Qiu T, Shi W, Tang L, et al. 2024. Horizontal gene transfer plays a crucial role in the development of antibiotic resistance in an antibiotic-free shrimp farming system. Journal of Hazardous Materials 476:135150

doi: 10.1016/j.jhazmat.2024.135150
[88]

Su H, Xu W, Hu X, Xu Y, Wen G, et al. 2025. The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. Journal of Hazardous Materials 489:137704

doi: 10.1016/j.jhazmat.2025.137704
[89]

Li Z, Junaid M, Chen G, Wang J. 2022. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Reviews in Aquaculture 14:1028−1045

doi: 10.1111/raq.12639
[90]

Khalifa HO, Shikoray L, Mohamed MI, Habib I, Matsumoto T. 2024. Veterinary drug residues in the food chain as an emerging public health threat: sources, analytical methods, health impacts, and preventive measures. Foods 13:1629

doi: 10.3390/foods13111629
[91]

Leichtweis J, Vieira Y, Welter N, Silvestri S, Dotto GL, et al. 2022. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Safety and Environmental Protection 160:25−40

doi: 10.1016/j.psep.2022.01.085
[92]

Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, et al. 2022. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. Chemosphere 308:136370

doi: 10.1016/j.chemosphere.2022.136370
[93]

Stentiford GD, Peeler EJ, Tyler CR, Bickley LK, Holt CC, et al. 2022. A seafood risk tool for assessing and mitigating chemical and pathogen hazards in the aquaculture supply chain. Nature Food 3:169−178

doi: 10.1038/s43016-022-00465-3
[94]

Ojoghoro JO, Scrimshaw MD, Sumpter JP. 2021. Steroid hormones in the aquatic environment. Science of The Total Environment 792:148306

doi: 10.1016/j.scitotenv.2021.148306
[95]

Tian L, Fang G, Li G, Li L, Zhang T, et al. 2024. Metagenomic approach revealed the mobility and co-occurrence of antibiotic resistomes between non-intensive aquaculture environment and human. Microbiome 12:107

doi: 10.1186/s40168-024-01824-x
[96]

Jin X, Liu S, Zhang Z, Liu T, Li N, et al. 2023. Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments. Journal of Hazardous Materials 443:130261

doi: 10.1016/j.jhazmat.2022.130261
[97]

Xia R, Yin X, Balcazar JL, Huang D, Liao J, et al. 2025. Bacterium-phage symbiosis facilitates the enrichment of bacterial pathogens and antibiotic-resistant bacteria in the plastisphere. Environmental Science & Technology 59:2948−2960

doi: 10.1021/acs.est.4c08265
[98]

Zhang YJ, Hu HW, Chen QL, Singh BK, Yan H, et al. 2019. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International 130:104912

doi: 10.1016/j.envint.2019.104912
[99]

Yu T, Huang Y, Zhang Y, Wang S, Wang X, et al. 2025. Manure input propagated antibiotic resistance genes and virulence factors in soils by regulating microbial carbon metabolism. Environmental Pollution 375:126293

doi: 10.1016/j.envpol.2025.126293
[100]

Ramsperger AFRM, Wieland S, Wilde MV, Fröhlich T, Kress H, et al. 2025. Cellular internalization pathways of environmentally exposed microplastic particles: phagocytosis or macropinocytosis? Journal of Hazardous Materials 489:137647

doi: 10.1016/j.jhazmat.2025.137647
[101]

Yu X, Zhou ZC, Shuai XY, Lin ZJ, Liu Z, et al. 2023. Microplastics exacerbate co-occurrence and horizontal transfer of antibiotic resistance genes. Journal of Hazardous Materials 451:131130

doi: 10.1016/j.jhazmat.2023.131130
[102]

Srinivasan R, Jin X, Lin X, Zhao Z. 2025. Essential oil compounds as antibiotic alternatives: a comprehensive review of antibacterial, anti-quorum sensing, and antibiofilm effects against Vibrio spp. in Aquaculture. Reviews in Aquaculture 17:e70065

doi: 10.1111/raq.70065
[103]

Zhang L, Lin L, Qin Z. 2024. A review on the application of chicken immunoglobulin Y in aquaculture. Reviews in Aquaculture 16:536−551

doi: 10.1111/raq.12850
[104]

Lu J, Zhang Y, Wu J, Wang J. 2022. Intervention of antimicrobial peptide usage on antimicrobial resistance in aquaculture. Journal of Hazardous Materials 427:128154

doi: 10.1016/j.jhazmat.2021.128154
[105]

Ng WK, Koh CB. 2017. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture 9:342−368

doi: 10.1111/raq.12141
[106]

Zhang M, Cai Z, Zhang G, Zhang Y, Xue N, et al. 2021. Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres. Journal of Hazardous Materials 409:125012

doi: 10.1016/j.jhazmat.2020.125012
[107]

Barnes AC, Rudenko O, Landos M, Dong HT, Lusiastuti A, et al. 2022. Autogenous vaccination in aquaculture: a locally enabled solution towards reduction of the global antimicrobial resistance problem. Reviews in Aquaculture 14:907−918

doi: 10.1111/raq.12633
[108]

Haygood AM, Jha R. 2018. Strategies to modulate the intestinal microbiota of Tilapia (Oreochromis sp.) in aquaculture: a review. Reviews in Aquaculture 10:320−333

doi: 10.1111/raq.12162
[109]

Dezfooli SM, Gutierrez-Maddox N, Alfaro A, Seyfoddin A. 2019. Encapsulation for delivering bioactives in aquaculture. Reviews in Aquaculture 11:631−660

doi: 10.1111/raq.12250
[110]

Hasan MM, Fahim FJ, Rana S, Uddin S, Tonny MFS, et al. 2025. Antimicrobial potential and stability of Lactobacillus acidophilus-derived bacteriocins against multidrug-resistant common foodborne pathogens. Applied Food Research 5:100728

doi: 10.1016/j.afres.2025.100728
[111]

Gao X, Ding J, Liao C, Xu J, Liu X, et al. 2021. Defensins: the natural peptide antibiotic. Advanced Drug Delivery Reviews 179:114008

doi: 10.1016/j.addr.2021.114008
[112]

Patel A, Raikar LG, Gandhi J, Prakash H. 2025. Degradation of cefixime antibiotic by continuous flow ultraviolet-C persulfate based advanced oxidation process: fresh and marine water matrices, antibacterial activity removal, and cost analysis. Chemical Engineering Journal 512:162178

doi: 10.1016/j.cej.2025.162178
[113]

Long L, Li J, Hou T, Liu M, Lin Y, et al. 2024. Removal of antibiotics from aquaculture wastewater using a continuous flow/EC/PMS coupled system. Chemical Engineering Journal 499:156278

doi: 10.1016/j.cej.2024.156278
[114]

Li R, Wu X, Han Z, Xu L, Gan L, et al. 2023. Removal of antibiotic-resistant bacteria and genes by Solar-activated Ferrate/Peroxymonosulfate: efficiency in aquaculture wastewater and mechanism. Chemical Engineering Journal 474:145547

doi: 10.1016/j.cej.2023.145547
[115]

Lu F, Chen Y, Huang J, Lin J, Zhang Y, et al. 2025. Peroxymonosulfate activation by peanut shell biochar-doped BiFeO3 composite to remove antibiotic resistant bacteria from aquaculture wastewater. Biochar 7:104

doi: 10.1007/s42773-025-00497-5
[116]

Kim T, Lee HYH, Kim CM, Jang A. 2023. Elucidating the relation between residual oxidants formation behavior and quinolone antibiotic removal efficiency on catalytic ozonation in seawater-based aquaculture wastewater. Journal of Cleaner Production 426:138779

doi: 10.1016/j.jclepro.2023.138779
[117]

Chen X, Lei X, Zhu Y, Yan S, Li Y, et al. 2025. Enhanced removal of tetracycline and doxycycline in aquaculture pond sediments via synthetic bacterial consortium: efficacy and ecological risk assessment. Journal of Hazardous Materials 495:138997

doi: 10.1016/j.jhazmat.2025.138997
[118]

Rezvani H, Costantino J, Kapadia M, Majooni Y, Abioye SO, et al. 2025. Bio-inspired graphene oxide sponges for enhanced adsorption of legacy and emerging contaminants from water. Journal of Water Process Engineering 77:108329

doi: 10.1016/j.jwpe.2025.108329
[119]

Schmidt MP, Ashworth DJ, Celis N, Ibekwe AM. 2023. Optimizing date palm leaf and pistachio shell biochar properties for antibiotic adsorption by varying pyrolysis temperature. Bioresource Technology Reports 21:101325

doi: 10.1016/j.biteb.2022.101325
[120]

Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, et al. 2024. Nanomaterials and biochar mediated remediation of emerging contaminants. Science of The Total Environment 916:170064

doi: 10.1016/j.scitotenv.2024.170064
[121]

Liu X, Wang Y, Liu H, Zhang Y, Zhou Q, et al. 2024. A systematic review on aquaculture wastewater: pollutants, impacts, and treatment technology. Environmental Research 262:119793

doi: 10.1016/j.envres.2024.119793
[122]

Zhang N, Chen J, Fang Z, Tsang EP. 2019. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline. Chemical Engineering Journal 369:588−599

doi: 10.1016/j.cej.2019.03.112
[123]

Shen Y, Chen Z, Shen J, Wang B, Yan P, et al. 2025. A pilot-scale study of in situ granular activated carbon regeneration via ozone micro-nano bubbles oxidation for long-lasting micropollutant purification in water. Chemical Engineering Journal 523:168434

doi: 10.1016/j.cej.2025.168434
[124]

Farid MU, Choi PJ, Kharraz JA, Lao JY, St-Hilaire S, et al. 2022. Hybrid nanobubble-forward osmosis system for aquaculture wastewater treatment and reuse. Chemical Engineering Journal 435:135164

doi: 10.1016/j.cej.2022.135164
[125]

Ahmad A, Abdullah SRS, Abu Hasan H, Othman AR, Ismail NI. 2021. Aquaculture industry: supply and demand, best practices, effluent and its current issues and treatment technology. Journal of Environmental Management 287:112271

doi: 10.1016/j.jenvman.2021.112271
[126]

Aalto SL, Suurnäkki S, von Ahnen M, Tiirola M, Pedersen PB. 2022. Microbial communities in full-scale woodchip bioreactors treating aquaculture effluents. Journal of Environmental Management 301:113852

doi: 10.1016/j.jenvman.2021.113852
[127]

Ahmed N, Turchini GM. 2021. Recirculating aquaculture systems (RAS): environmental solution and climate change adaptation. Journal of Cleaner Production 297:126604

doi: 10.1016/j.jclepro.2021.126604
[128]

Widiasa IN, Harvianto GR, Susanto H, Istirokhatun T, Agustini TW. 2018. Searching for ultrafiltration membrane molecular weight cut-off for water treatment in recirculating aquaculture system. Journal of Water Process Engineering 21:133−142

doi: 10.1016/j.jwpe.2017.12.006
[129]

Pu C, Liu H, Ding G, Sun Y, Yu X, et al. 2018. Impact of direct application of biogas slurry and residue in fields: in situ analysis of antibiotic resistance genes from pig manure to fields. Journal of Hazardous Materials 344:441−449

doi: 10.1016/j.jhazmat.2017.10.031
[130]

Zhang R, Wang X, Gu J, Zhang Y. 2017. Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure. Bioresource Technology 244:63−70

doi: 10.1016/j.biortech.2017.07.032
[131]

Song W, Wang X, Gu J, Zhang S, Yin Y, et al. 2017. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion. Bioresource Technology 231:1−8

doi: 10.1016/j.biortech.2017.01.054
[132]

Sun W, Gu J, Wang X, Qian X, Tuo X. 2018. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater. Bioresource Technology 256:342−349

doi: 10.1016/j.biortech.2018.02.052
[133]

Fang H, Han L, Zhang H, Long Z, Cai L, et al. 2018. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of Hazardous Materials 357:53−62

doi: 10.1016/j.jhazmat.2018.05.066
[134]

Tang T, Chen Y, Du Y, Yao B, Liu M. 2023. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. Journal of Hazardous Materials 441:129870

doi: 10.1016/j.jhazmat.2022.129870
[135]

Huang XF, Ye GY, Yi NK, Lu LJ, Zhang L, et al. 2019. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands. Ecological Engineering 135:45−53

doi: 10.1016/j.ecoleng.2019.05.017
[136]

Ma X, Li X, Li J, Ren JL, Chi L, et al. 2021. Iron-carbon could enhance nitrogen removal in Sesuvium portulacastrum constructed wetlands for treating mariculture effluents. Bioresource Technology 325:124602

doi: 10.1016/j.biortech.2020.124602
[137]

Zhang L, Lyu T, Vargas CAR, Arias CA, Carvalho PN, et al. 2018. New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environmental Pollution 240:699−708

doi: 10.1016/j.envpol.2018.05.028
[138]

Tien YC, Li B, Zhang T, Scott A, Murray R, et al. 2017. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Science of The Total Environment 581:32−39

doi: 10.1016/jscitotenv.2016.12.138
[139]

Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, et al. 2014. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Science of The Total Environment 496:116−121

doi: 10.1016/j.scitotenv.2014.07.024
[140]

Yuan QB, Zhai YF, Mao BY, Schwarz C, Hu N. 2019. Fates of antibiotic resistance genes in a distributed swine wastewater treatment plant. Water Environment Research 91:1565−1575

doi: 10.1002/wer.1125
[141]

Huang L, Xu Y, Xu J, Ling J, Zheng L, et al. 2019. Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. International Biodeterioration & Biodegradation 138:114−121

doi: 10.1016/j.ibiod.2019.01.009
[142]

Ma Z, Wu H, Zhang K, Xu X, Wang C, et al. 2018. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment. Chemical Engineering Journal 334:630−637

doi: 10.1016/j.cej.2017.10.051
[143]

Huang X, Liu C, Li K, Su J, Zhu G, et al. 2015. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Research 70:109−117

doi: 10.1016/j.watres.2014.11.048
[144]

Yu J, Zhai Y, Che G, Lu Y, Zhang X, et al. 2026. Efficient removal of Streptococcus suis and its associated Tet(O) antibiotic-resistance genes by Fe doped carbon nitride photocatalytic activation peroxymonosulfate. Separation and Purification Technology 380:135566

doi: 10.1016/j.seppur.2025.135566
[145]

McCance W, Jones OAH, Edwards M, Surapaneni A, Chadalavada S, et al. 2018. Contaminants of Emerging Concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. Water Research 146:118−133

doi: 10.1016/j.watres.2018.09.013
[146]

Sun Y, Ren X, Rene ER, Wang Z, Zhou L, et al. 2021. The degradation performance of different microplastics and their effect on microbial community during composting process. Bioresource Technology 332:125133

doi: 10.1016/j.biortech.2021.125133
[147]

Núñez-Delgado A, Zhang Z, Bontempi E, Coccia M, Race M, et al. 2023. Editorial on the topic "new research on detection and removal of emerging pollutants". Materials 16:725

doi: 10.3390/ma16020725
[148]

Viau VE, Ostera JM, Tolivia A, Ballester ELC, Abreu PC, et al. 2012. Contribution of biofilm to water quality, survival and growth of juveniles of the freshwater crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Aquaculture 324:70−78

doi: 10.1016/j.aquaculture.2011.10.009
[149]

Liu FF, Lu T, Zhang YX. 2022. Performance assessment of constructed wetland-microbial fuel cell for treatment of mariculture wastewater containing heavy metals. Process Safety and Environmental Protection 168:633−641

doi: 10.1016/j.psep.2022.10.026
[150]

Zhou B, Luo J, Jin M, Xue N, He R, et al. 2025. Micropollutants removal from aquaculture water using layer-by-layer self-assembled nanofiltration membranes. Water Research 271:122933

doi: 10.1016/j.watres.2024.122933
[151]

Sha S, Dong Z, Gao Y, Hashim H, Lee CT, et al. 2022. In-situ removal of residual antibiotics (enrofloxacin) in recirculating aquaculture system: effect of ultraviolet photolysis plus biodegradation using immobilized microbial granules. Journal of Cleaner Production 333:130190

doi: 10.1016/j.jclepro.2021.130190
[152]

Xu C, Zhu C, Li Y, Zhang H, Lv W. 2024. Palygorskite-mediated simultaneous nutrient removal and antibiotic degradation from aquaculture wastewater in lab-scale constructed wetlands. Chemical Engineering Journal 499:156568

doi: 10.1016/j.cej.2024.156568
[153]

Liu C, Lei J, Yu J, Chen J, Huang X, et al. 2025. The potential risk and sustainable reuse technologies of aquaculture wastewater: a review. Current Pollution Reports 11:39

doi: 10.1007/s40726-025-00368-4
[154]

Cui E, Zhou Z, Gao F, Chen H, Li J. 2023. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: a review. Science of The Total Environment 859:160257

doi: 10.1016/j.scitotenv.2022.160257
[155]

Gorito AM, Ribeiro AR, Gomes CR, Almeida CMR, Silva AMT. 2018. Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Science of The Total Environment 644:1171−1180

doi: 10.1016/j.scitotenv.2018.06.371
[156]

Deng YY, Zou MY, Liu W, Lian YL, Guo QM, et al. 2023. Antibiotic removal and microbial response mechanism in constructed wetlands treating aquaculture wastewater containing veterinary drugs. Journal of Cleaner Production 394:136271

doi: 10.1016/j.jclepro.2023.136271
[157]

Deng Y, Liu W, Thi NT, Di HJ, Lian Y, et al. 2024. Exploring the efficiency of tide flow constructed wetlands for treating mariculture wastewater: a comprehensive study on antibiotic removal mechanism under salinity stress. Water Research 258:121738

doi: 10.1016/j.watres.2024.121738