[1]

Danieli MG, Casciaro M, Paladini A, Bartolucci M, Sordoni M, et al. 2024. Exposome: epigenetics and autoimmune diseases. Autoimmunity Reviews 23:103584

doi: 10.1016/j.autrev.2024.103584
[2]

Glover K, Mishra D, Singh TRR. 2021. Epidemiology of ocular manifestations in autoimmune disease. Frontiers in Immunology 12:744396

doi: 10.3389/fimmu.2021.744396
[3]

Zhang W, Kaser-Eichberger A, Fan W, Platzl C, Schrödl F, et al. 2024. The structure and function of the human choroid. Annals of Anatomy - Anatomischer Anzeiger 254:152239

doi: 10.1016/j.aanat.2024.152239
[4]

Gao SS, Jia Y, Zhang M, Su JP, Liu G, et al. 2016. Optical coherence tomography angiography. Investigative Opthalmology & Visual Science 57:OCT27−OCT36

doi: 10.1167/iovs.15-19043
[5]

Maloca PM, Feu-Basilio S, Schottenhamml J, Valmaggia P, Scholl HPN, et al. 2022. Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography. Scientific Reports 12:3695

doi: 10.1038/s41598-022-07439-2
[6]

Waheed NK, Rosen RB, Jia Y, Munk MR, Huang D, et al. 2023. Optical coherence tomography angiography in diabetic retinopathy. Progress in Retinal and Eye Research 97:101206

doi: 10.1016/j.preteyeres.2023.101206
[7]

Ong CJT, Wong MYZ, Cheong KX, Zhao J, Teo KYC, et al. 2023. Optical coherence tomography angiography in retinal vascular disorders. Diagnostics 13:1620

doi: 10.3390/diagnostics13091620
[8]

Sieper J, Poddubnyy D. 2017. Axial spondyloarthritis. The Lancet 390:73−84

doi: 10.1016/S0140-6736(16)31591-4
[9]

Batko B, Maga P, Urbanski K, Ryszawa-Mrozek N, Schramm-Luc A, et al. 2018. Microvascular dysfunction in ankylosing spondylitis is associated with disease activity and is improved by anti-TNF treatment. Scientific Reports 8:13205

doi: 10.1038/s41598-018-31550-y
[10]

Hintenberger R, Affenzeller B, Vladychuk V, Pieringer H. 2023. Cardiovascular risk in axial spondyloarthritis—a systematic review. Clinical Rheumatology 42:2621−2633

doi: 10.1007/s10067-023-06655-z
[11]

Plemel DJA, Seamone ME, Sia DIT, Smith L, Somani R. 2021. Cilioretinal artery occlusion in posterior scleritis secondary to ankylosing spondylitis. Ophthalmic Surgery, Lasers & Imaging Retina 52:102−106

doi: 10.3928/23258160-20210201-07
[12]

Uzlu D, Köse B, Erdöl H, Akyol N. 2020. Ultra-widefield fundus fluorescein angiography findings in patients with ankylosing spondylitis experiencing uveitis. International Ophthalmology 40:2627−2634

doi: 10.1007/s10792-020-01443-z
[13]

van Bentum RE, Baniaamam M, Kinaci-Tas B, van de Kreeke JA, Kocyigit M, et al. 2020. Microvascular changes of the retina in ankylosing spondylitis, and the association with cardiovascular disease - the eye for a heart study. Seminars in Arthritis and Rheumatism 50:1535−1541

doi: 10.1016/j.semarthrit.2020.08.013
[14]

Di Matteo A, Bathon JM, Emery P. 2023. Rheumatoid arthritis. The Lancet 402:2019−2033

doi: 10.1016/S0140-6736(23)01525-8
[15]

Bjordal O, Norheim KB, Rødahl E, Jonsson R, Omdal R. 2020. Primary sjögren's syndrome and the eye. Survey of Ophthalmology 65:119−132

doi: 10.1016/j.survophthal.2019.10.004
[16]

Artifoni M, Rothschild PR, Brézin A, Guillevin L, Puéchal X. 2014. Ocular inflammatory diseases associated with rheumatoid arthritis. Nature Reviews Rheumatology 10:108−116

doi: 10.1038/nrrheum.2013.185
[17]

Foster CS, Forstot SL, Wilson LA. 1984. Mortality rate in rheumatoid arthritis patients developing necrotizing scleritis or peripheral ulcerative keratitis effects of systemic immunosuppression. Ophthalmology 91:1253−1263

doi: 10.1016/S0161-6420(84)34160-4
[18]

Bailey KA, Moreno E, Haj FG, Simon SI, Passerini AG. 2019. Mechanoregulation of p38 activity enhances endoplasmic reticulum stress-mediated inflammation by arterial endothelium. FASEB Journal 33:12888−12899

doi: 10.1096/fj.201900236R
[19]

Maiuolo J, Muscoli C, Gliozzi M, Musolino V, Carresi C, et al. 2021. Endothelial dysfunction and extra-articular neurological manifestations in rheumatoid arthritis. Biomolecules 11:81

doi: 10.3390/biom11010081
[20]

Ketfi C, Boutigny A, Mohamedi N, Bouajil S, Magnan B, et al. 2021. Risk of venous thromboembolism in rheumatoid arthritis. Joint Bone Spine 88:105122

doi: 10.1016/j.jbspin.2020.105122
[21]

Weber B, Weisenfeld D, Massarotti E, Seyok T, Cremone G, et al. 2024. Interplay between systemic inflammation, myocardial injury, and coronary microvascular dysfunction in rheumatoid arthritis: results from the LiiRA study. Journal of the American Heart Association 13:e030387

doi: 10.1161/JAHA.123.030387
[22]

Lee HY, Chen J, Ying P, Xu SH, Kang M, et al. 2023. Investigation of altered retinal microvasculature in female patients with rheumatoid arthritis: optical coherence tomography angiography detection. Bioscience Reports 43:BSR20230045

doi: 10.1042/BSR20230045
[23]

Ayar K, Can ME, Koca N, Çelik DŞ. 2021. Evaluation of retinal vascularization by optical coherence tomography angiography (OCTA) in rheumatoid arthritis, and its relationship with disease activity. Modern Rheumatology 31:817−826

doi: 10.1080/14397595.2020.1830740
[24]

Iacono P, Da Pozzo S, Bedendo A, Varano M, Parravano M. 2021. Effects of hydroxychloroquine on retinal vessel density in patients with rheumatoid arthritis over one-year follow-up: a pilot study. Applied Sciences 11:9837

doi: 10.3390/app11219837
[25]

Ozek D, Onen M, Karaca EE, Omma A, Kemer OE, et al. 2019. The optical coherence tomography angiography findings of rheumatoid arthritis patients taking hydroxychloroquine. European Journal of Ophthalmology 29:532−537

doi: 10.1177/1120672118801125
[26]

Abdeltawab NA, Allam RSHM, Salah SH, Borhan N, Arfeen S. 2023. Evaluation of macular sensitivity and vascular density in patients having rheumatoid arthritis on hydroxychloroquine treatment. Journal of the Egyptian Ophthalmological Society 116:215−222

doi: 10.4103/ejos.ejos_44_23
[27]

Emmi G, Bettiol A, Hatemi G, Prisco D. 2024. Behçet's syndrome. The Lancet 403:1093−1108

doi: 10.1016/S0140-6736(23)02629-6
[28]

Lin S, Xu Z, Lin Z, Xie B, Feng J. 2023. Advances in pathogenesis and treatment of ocular involvement in Behcet's disease. Frontiers in Immunology 14:1206959

doi: 10.3389/fimmu.2023.1206959
[29]

Kianersi F, Bazvand M, Fatemi A, Naderi Beni A, Kianersi H. 2024. Comparative analysis of optical coherence tomography angiography (OCTA) results between Behçet's disease patients and a healthy control group. Clinical Rheumatology 43:1155−1170

doi: 10.1007/s10067-024-06874-y
[30]

Raafat KA, Allam RSHM, Medhat BM. 2019. Optical coherence tomography angiography findings in patients with nonocular Behçet disease. Retina 39:1607−1612

doi: 10.1097/IAE.0000000000002177
[31]

Küçük MF, Yaprak L, Erol MK, Ayan A, Kök M. 2022. Quantitative changes in peripapillary, macular, and choriocapillaris microvasculature of patients with non-ocular Behçet's disease and relationship with systemic vascular involvement, an optical coherence tomography angiography study. Photodiagnosis and Photodynamic Therapy 38:102749

doi: 10.1016/j.pdpdt.2022.102749
[32]

Koca S, Onan D, Kalaycı D, Allı N. 2020. Comparison of optical coherence tomography angiography findings in patients with Behçet's disease and healthy controls. Ocular Immunology and Inflammation 28:806−813

doi: 10.1080/09273948.2019.1635167
[33]

Fan S, Shi X, Chen Z, Li X, Yu S, et al. 2022. Retinal and choroidal microvascular alterations in Behcet's disease without ocular manifestations: a systematic review and meta-analysis. Frontiers in Medicine 9:911990

doi: 10.3389/fmed.2022.911990
[34]

Goker YS, Yılmaz S, Kızıltoprak H, Tekin K, Demir G. 2019. Quantitative analysis of optical coherence tomography angiography features in patients with nonocular Behcet's disease. Current Eye Research 44:212−218

doi: 10.1080/02713683.2018.1530361
[35]

Ji KB, Hu Z, Zhang QL, Mei HF, Xing YQ. 2022. Retinal microvasculature features in patients with Behcet's disease: a systematic review and meta-analysis. Scientific Reports 12:752

doi: 10.1038/s41598-021-04730-6
[36]

Karalezli A, Kaderli ST, Sul S, Pektas SD. 2021. Preclinical ocular features in patients with Behçet's disease detected by optical coherence tomography angiography. Eye 35:2719−2726

doi: 10.1038/s41433-020-01294-z
[37]

Çömez A, Beyoğlu A, Karaküçük Y. 2019. Quantitative analysis of retinal microcirculation in optical coherence tomography angiography in cases with Behçet's disease without ocular involvement. International Ophthalmology 39:2213−2221

doi: 10.1007/s10792-018-1059-z
[38]

Simsek M, Aksoy M, Ulucakoy RK. 2022. Evaluation of retinal and choroidal microcirculation in Behçet's disease. Eye 36:1494−1499

doi: 10.1038/s41433-022-01932-8
[39]

Xiong J, Peng Y, Yu S, Liu P, Huang B, et al. 2024. Retinal and conjunctival vessels in the diagnosis and assessment of Behcet's disease: a new approach. Ophthalmic Surgery, Lasers & Imaging Retina 55:13−21

doi: 10.3928/23258160-20231107-01
[40]

Karaca D, Dıraçoğlu A, Önder F. 2022. Can optical coherence tomography angiography be a first line ophthalmological evaluation in patients with Behçet's disease? Archives of Rheumatology 38:200−208

doi: 10.46497/ArchRheumatol.2023.9494
[41]

Smid LM, Vermeer KA, Missotten TOAR, van Laar JAM, van Velthoven MEJ. 2021. Parafoveal microvascular alterations in ocular and non-ocular behҫet's disease evaluated with optical coherence tomography angiography. Investigative Ophthalmology & Visual Science 62:8

doi: 10.1167/iovs.62.3.8
[42]

Khairallah M, Abroug N, Khochtali S, Mahmoud A, Jelliti B, et al. 2017. Optical coherence tomography angiography in patients with Behçet uveitis. Retina 37:1678−1691

doi: 10.1097/IAE.0000000000001418
[43]

Somkijrungroj T, Vongkulsiri S, Kongwattananon W, Chotcomwongse P, Luangpitakchumpol S, et al. 2017. Assessment of vascular change using swept-source optical coherence tomography angiography: a new theory explains central visual loss in Behcet's disease. Journal of Ophthalmology 2017:2180723

doi: 10.1155/2017/2180723
[44]

Emre S, Güven-Yılmaz S, Ulusoy MO, Ateş H. 2019. Optical coherence tomography angiography findings in Behcet patients. International Ophthalmology 39:2391−2399

doi: 10.1007/s10792-019-01080-1
[45]

Wassef AMA, Abdelhakim MASE, Macky TA, Raafat KA, Youssef MM. 2021. Post-remission retinal microvascular and choroidal thickness changes in eyes with Behḉet's disease posterior uveitis: an OCTA longitudinal study. International Ophthalmology 41:4163−4174

doi: 10.1007/s10792-021-01968-x
[46]

Cheng D, Shen M, Zhuang X, Lin D, Dai M, et al. 2018. Inner retinal microvasculature damage correlates with outer retinal disruption during remission in Behçet's posterior uveitis by optical coherence tomography angiography. Investigative Ophthalmology & Visual Science 59:1295−1304

doi: 10.1167/iovs.17-23113
[47]

Yan C, Li F, Hou M, Ye X, Su L, et al. 2021. Vascular abnormalities in peripapillary and macular regions of Behcet's uveitis patients evaluated by optical coherence tomography angiography. Frontiers in Medicine 8:727151

doi: 10.3389/fmed.2021.727151
[48]

Volkmann ER, Andréasson K, Smith V. 2023. Systemic sclerosis. The Lancet 401:304−318

doi: 10.1016/S0140-6736(22)01692-0
[49]

Paczwa K, Rerych M, Romanowska-Próchnicka K, Różycki R, Gołębiewska J. 2024. Ocular manifestation in systemic sclerosis—a literature review. Life 14:627

doi: 10.3390/life14050627
[50]

Kozikowska M, Luboń W, Kucharz EJ, Mrukwa-Kominek E. 2020. Ocular manifestations in patients with systemic sclerosis. Reumatologia 58:401−406

doi: 10.5114/reum.2020.102004
[51]

Thoreau B, Chaigne B, Renaud A, Mouthon L. 2021. Pathophysiology of systemic sclerosis. La Presse Médicale 50:104087

doi: 10.1016/j.lpm.2021.104087
[52]

Ren H, Liu L, Xiao Y, Shi Y, Zeng Z, et al. 2023. Further insight into systemic sclerosis from the vasculopathy perspective. Biomedicine & Pharmacotherapy 166:115282

doi: 10.1016/j.biopha.2023.115282
[53]

Mihailovic N, Lahme L, Braasch S, Rosenberger F, Eter N, et al. 2022. Altered ocular microvasculature in patients with systemic sclerosis and very early disease of systemic sclerosis using optical coherence tomography angiography. Scientific Reports 12:10990

doi: 10.1038/s41598-022-14377-6
[54]

Ranjbar M, Rothe M, Klapa S, Lange T, Prasuhn M, et al. 2020. Evaluation of choroidal substructure perfusion in patients affected by systemic sclerosis: an optical coherence tomography angiography study. Scandinavian Journal of Rheumatology 49:141−145

doi: 10.1080/03009742.2019.1641616
[55]

El-Hameed HMA, Hammouda LM, Esmail MEK, Omar I. 2025. Posterior segment evaluation of patients with systemic sclerosis using optical coherence tomography angiography. Journal of the Egyptian Ophthalmological Society 118:247−253

doi: 10.4103/ejos.ejos_73_24
[56]

Alahmadawy YA, Arfeen S, Eissa M, Mohamed SS, Bahgat N, et al. 2025. Assessment of retinal microvascular changes in systemic sclerosis using optical coherence tomography angiography: a case–control study. Journal of the Egyptian Ophthalmological Society 118:98−107

doi: 10.4103/ejos.ejos_61_24
[57]

Kılınç Hekimsoy H, Ali Şekeroğlu M, Koçer AM, Akdoğan A. 2020. Analysis of retinal and choroidal microvasculature in systemic sclerosis: an optical coherence tomography angiography study. Eye 34:763−770

doi: 10.1038/s41433-019-0591-z
[58]

Küçük MF, Yaprak L, Erol MK, Ayan A, Kök M. 2022. Evaluations of the radial peripapillary, macular and choriocapillaris microvasculature using optical coherence tomography angiography in patients with systemic sclerosis. Journal Franç ais D'Ophtalmologie 45:81−92

doi: 10.1016/j.jfo.2021.06.009
[59]

Rommel F, Prangel D, Prasuhn M, Grisanti S, Ranjbar M. 2021. Correlation of retinal and choroidal microvascular impairment in systemic sclerosis. Orphanet Journal of Rare Diseases 16:27

doi: 10.1186/s13023-020-01649-5
[60]

Cutolo CA, Cere A, Toma P, Cannavacciuolo T, Toma C, et al. 2024. Peripheral and ocular microvascular alterations in systemic sclerosis: observations from capillaroscopic assessments, perfusion peripheral analysis, and optical coherence tomography angiography. Rheumatology International 44:107−118

doi: 10.1007/s00296-023-05495-z
[61]

Elsayed SA, Mounir A, Mostafa EM, Saif DS, Mounir O. 2025. The correlation between retinal microvascular changes by optical coherence tomography angiography and nailfold capillaroscopic findings in patients with systemic sclerosis. Journal of Rheumatic Diseases 32:198−210

doi: 10.4078/jrd.2024.0124
[62]

Zirtiloglu S, Alikma MS, Acar OPA, Güven F, Icacan OC, et al. 2023. Evaluation of the optic nerve head using optical coherence tomography angiography in systemic sclerosis patients. Klinische Monatsblatter Fur Augenheilkunde 240:1277−1283

doi: 10.1055/a-1975-2222
[63]

Joye A, Suhler E. 2021. Vogt-Koyanagi-Harada disease. Current Opinion in Ophthalmology 32:574−582

doi: 10.1097/icu.0000000000000809
[64]

Wintergerst MWM, Herrmann P, Finger RP. 2018. Optical coherence tomography angiography for evaluation of sattler's layer in vogt-koyanagi-harada disease. Ophthalmic Surgery, Lasers & Imaging Retina 49:639−642

doi: 10.3928/23258160-20180803-14
[65]

Geng J, Liu M, Jin S, Xu W, Yang P, et al. 2025. Ultrawidefield optical coherence tomography angiography in the mid-periphery and macula of Vogt-Koyanagi-Harada disease. Ocular Immunology and Inflammation 33:1999−2005

doi: 10.1080/09273948.2025.2545518
[66]

Ding X, Shu Q, Bai X, Chang Q, Xu G, et al. 2024. The role of widefield optical coherence tomography angiography in the diagnosis and management of acute Vogt-Koyanagi-Harada disease. Ocular Immunology and Inflammation 32:391−401

doi: 10.1080/09273948.2023.2181186
[67]

Luo K, Cai H, Hu Y, Jin C, Gan X, et al. 2021. Distinguishing microvasculature features of Vogt-Koyanagi-Harada in patients in acute and convalescent phases using optical coherence tomography angiography. Ocular Immunology and Inflammation 29:465−471

doi: 10.1080/09273948.2019.1695856
[68]

Jia SS, Zhao C, Gong D, Chen Z, Zhang MF. 2017. Optical coherence tomography angiography of acute Vogt-Koyanagi-Harada disease. Chinese Journal of Ophthalmology 53:735−739

doi: 10.3760/cma.j.issn.0412-4081.2017.10.004
[69]

Karaca I, Yılmaz SG, Afrashi F, Nalçacı S. 2020. Assessment of macular capillary perfusion in patients with inactive Vogt-Koyanagi-Harada disease: an optical coherence tomography angiography study. Graefe's Archive for Clinical and Experimental Ophthalmology 258:1181−1190

doi: 10.1007/s00417-020-04676-x
[70]

Guo S, Xia L, Hu R, Wang J, Yang P. 2025. Vascular changes and irreversible complications in 120° fundus using widefield swept-source optical coherence tomography angiography in Vogt-Koyanagi-Harada disease. Retina 45:79−87

doi: 10.1097/IAE.0000000000004259
[71]

Fan S, Lin D, Hu J, Cao J, Wu K, et al. 2021. Evaluation of microvasculature alterations in convalescent Vogt-Koyanagi-Harada disease using optical coherence tomography angiography. Eye 35:1993−1998

doi: 10.1038/s41433-020-01210-5
[72]

Fayed AE, Gerges TK. 2022. Optical coherence tomography angiography reveals paradoxically decreasing choroidal thickness and increasing blood flow in remitting Vogt-Koyanagi-Harada syndrome. Retina 42:1788−1795

doi: 10.1097/IAE.0000000000003525
[73]

Jiang Z, Ji H, Zhang N, Huang L, Zhou M, et al. 2023. Changes of peripapillary capillary density in patients with Vogt-Koyanagi-Harada disease evaluated by optical coherence tomography angiography. Journal of Ophthalmology 2023:1271070

doi: 10.1155/2023/1271070
[74]

Liang A, Jia S, Gao F, Han X, Pei M, et al. 2021. Decrease of choriocapillary vascular density measured by optical coherence tomography angiography in Vogt-Koyanagi-Harada disease. Graefe's Archive for Clinical and Experimental Ophthalmology 259:3395−3404

doi: 10.1007/s00417-021-05238-5
[75]

Huang F, Tan S, Hu J, Hu R, Yang P. 2024. Early and late treatment influence on chorioretinal microvasculature in Vogt-Koyanagi-Harada patients using optical coherence tomography angiography. Translational Vision Science & Technology 13:15

doi: 10.1167/tvst.13.8.15
[76]

Xiao P, Ma K, Ye X, Wang G, Duan Z, et al. 2023. Classification of Vogt-Koyanagi-Harada disease using feature selection and classification based on wide-field swept-source optical coherence tomography angiography. Frontiers in Bioengineering and Biotechnology 11:1086347

doi: 10.3389/fbioe.2023.1086347
[77]

Constantin MM, Ciurduc MD, Bucur S, Olteanu R, Ionescu RA, et al. 2021. Psoriasis beyond the skin: ophthalmological changes (review). Experimental and Therapeutic Medicine 22:981

doi: 10.3892/etm.2021.10413
[78]

Enos CW, Kapoor KG, Wagner AL, Van Voorhees AS. 2021. Peripheral retinal vascular leakage in moderate to severe psoriasis: a pilot study. Journal of the American Academy of Dermatology 85:1571−1573

doi: 10.1016/j.jaad.2019.05.067
[79]

Motlagh M, Fortenbach C, Maibach HI, Modjtahedi BS. 2022. Identifying and treating ocular manifestations in psoriasis. American Journal of Clinical Dermatology 23:51−60

doi: 10.1007/s40257-021-00648-x
[80]

Okamoto F, Umebayasi Y, Ohtsuka F, Hommura S. 2001. Factors associated with increased aqueous flare in psoriasis. Japanese Journal of Ophthalmology 45:172−176

doi: 10.1016/s0021-5155(00)00359-2
[81]

Heidenreich R, Röcken M, Ghoreschi K. 2009. Angiogenesis drives psoriasis pathogenesis. International Journal of Experimental Pathology 90:232−248

doi: 10.1111/j.1365-2613.2009.00669.x
[82]

Castellino N, Longo A, Fallico M, Russo A, Bonfiglio V, et al. 2021. Retinal vascular assessment in psoriasis: a multicenter study. Frontiers in Neuroscience 15:629401

doi: 10.3389/fnins.2021.629401
[83]

Alkan AA, Uslu Doğan C, Türker İÇ. 2022. Optical coherence tomography angiography for evaluation of retinal vascular changes in patients with psoriasis according to disease severity. Ocular Immunology and Inflammation 30:433−438

doi: 10.1080/09273948.2020.1817496
[84]

Esen Baris M, Kuscu Akdeniz F, Unal I, Guven Yilmaz S. 2024. Alterations in retinal vascularity in severe psoriasis. Ocular Immunology and Inflammation 32:276−280

doi: 10.1080/09273948.2023.2166536
[85]

Tolba DA, Amin RH, Alorbani AM, Mamdouh Esmat S. 2022. Retinal vascular assessment in psoriatic patients with and without metabolic syndrome using optical coherence tomography angiography. Scientific Reports 12:16720

doi: 10.1038/s41598-022-20307-3
[86]

Maleki-Fischbach M, Kastsianok L, Koslow M, Chan ED. 2024. Manifestations and management of sjögren's disease. Arthritis Research & Therapy 26:43

doi: 10.1186/s13075-024-03262-4
[87]

Liu R, Wang Y, Li Q, Xia Q, Xu T, et al. 2022. Optical coherence tomography angiography biomarkers of retinal thickness and microvascular alterations in Sjögren's syndrome. Frontiers in Neurology 13:853930

doi: 10.3389/fneur.2022.853930
[88]

Yener NP, Ayar K. 2022. Evaluation of retinal microvascular structures by optical coherence tomography angiography in primary Sjögren's syndrome. International Ophthalmology 42:1147−1159

doi: 10.1007/s10792-021-02100-9
[89]

Ferrigno S, Conigliaro P, Corsi I, Monosi B, Cesareo M, et al. 2024. POS1259 evaluation of conjunctival vascularization through anterior segment-optical coherence tomography angiography in patients with primary Sjögren's syndrome. Annals of the Rheumatic Diseases 83:880

doi: 10.1136/annrheumdis-2024-eular.4432
[90]

Wolf E, Wicklein R, Aly L, Schmaderer C, Afzali AM, et al. 2024. Optical coherence tomography angiography suggests different retinal pathologies in multiple sclerosis and Sjögren's syndrome. Journal of Neurology 271:4610−4619

doi: 10.1007/s00415-024-12414-0
[91]

Yu C, Zou J, Ge QM, Liao XL, Pan YC, et al. 2023. Ocular microvascular alteration in Sjögren's syndrome treated with hydroxychloroquine: an OCTA clinical study. Therapeutic Advances in Chronic Disease 14:20406223231164498

doi: 10.1177/20406223231164498
[92]

Siegel CH, Sammaritano LR. 2024. Systemic lupus erythematosus: a review. JAMA 331:1480−1491

doi: 10.1001/jama.2024.2315
[93]

Silpa-archa S, Lee JJ, Foster CS. 2016. Ocular manifestations in systemic lupus erythematosus. The British Journal of Ophthalmology 100:135−141

doi: 10.1136/bjophthalmol-2015-306629
[94]

Chen L, Sun L, Meng L, Wang C, Chen Y. 2025. Conjunctival and retinal microvascular loss in systemic lupus erythematosus: a swept-source OCTA study. Journal of Translational Medicine 23:1073

doi: 10.1186/s12967-025-07118-6
[95]

Ferreira A, Viveiros L, Faria R, Bragança F, Abreu AC, et al. 2024. Retinal microvascular changes in systemic lupus erythematosus assessed by optical coherence tomography angiography. International Journal of Retina and Vitreous 10:94

doi: 10.1186/s40942-024-00617-6
[96]

Liu J, Zhang H, Yu H, Xia Y, Liu Q, et al. 2024. Changes in retinal and choroidal thickness and vascular density in patients with systemic lupus erythematosus: Assessed by optical coherence tomography angiography. Lupus 33:129−136

doi: 10.1177/09612033231224771
[97]

Arfeen SA, Bahgat N, Adel N, Eissa M, Khafagy MM. 2020. Assessment of superficial and deep retinal vessel density in systemic lupus erythematosus patients using optical coherence tomography angiography. Graefe's Archive for Clinical and Experimental Ophthalmology 258:1261−1268

doi: 10.1007/s00417-020-04626-7
[98]

Ermurat S, Koyuncu K. 2022. Evaluation of subclinical retinal microvascular changes in systemic lupus erythematosus patients using optical coherence tomography angiography and its relationship with disease activity. Lupus 31:541−554

doi: 10.1177/09612033221084222
[99]

An Q, Gao J, Liu L, Liao R, Shuai Z. 2021. Analysis of foveal microvascular abnormalities in patients with systemic lupus erythematosus using optical coherence tomography angiography. Ocular Immunology and Inflammation 29:1392−1397

doi: 10.1080/09273948.2020.1735452
[100]

Basiony AI, Elgouhary SM, Mohamed HE, Zahran ES. 2025. Assessment of retinal microvascular changes in patients with systemic lupus erythematosus using optical coherence tomography angiography. International Journal of Retina and Vitreous 11:55

doi: 10.1186/s40942-025-00677-2
[101]

Koyuncu K, Ermurat S. 2024. Optical coherence tomography angiography findings of systemic lupus erythematosus patients and the effect of neuropsychiatric involvement on it. Lupus 33:1424−1434

doi: 10.1177/09612033241283091
[102]

Çomçali S, Topçu Yilmaz P, Çavdarli C, Coşkun Ç, Maraş Y, et al. 2023. Macula and optic disc vessel density analyses in systemic lupus erythematosus with optical coherence tomography angiography. Medicine 102:e35835

doi: 10.1097/MD.0000000000035835
[103]

Shi WQ, Han T, Liu R, Xia Q, Xu T, et al. 2021. Retinal microvasculature and conjunctival vessel alterations in patients with systemic lupus erythematosus—an optical coherence tomography angiography study. Frontiers in Medicine 8:724283

doi: 10.3389/fmed.2021.724283
[104]

Pichi F, Woodstock E, Hay S, Neri P. 2020. Optical coherence tomography angiography findings in systemic lupus erythematosus patients with no ocular disease. International Ophthalmology 40:2111−2118

doi: 10.1007/s10792-020-01388-3
[105]

Xu S, Zhang Y. 2023. Subclinical macular vessel density alterations in patients with juvenile systemic lupus erythematosus. Lupus 32:1619−1624

doi: 10.1177/09612033231212524
[106]

Yılmaz Tuğan B, Sönmez HE, Yüksel N, Karabaş L. 2023. Subclinical retinal capillary abnormalities in juvenile systemic lupus erythematosus without ocular involvement. Ocular Immunology and Inflammation 31:576−584

doi: 10.1080/09273948.2022.2116584
[107]

Meng L, Chen L, Zhang C, Chen H, Yang J, et al. 2024. Quantitative assessment of retinal vasculature changes in systemic lupus erythematosus using wide-field OCTA and the correlation with disease activity. Frontiers in Immunology 15:1340224

doi: 10.3389/fimmu.2024.1340224
[108]

Bayuk EG, Doğuizi S, Erden A, Karakaş Ö, Çakar Özdal P. 2025. Choroidopathy in patients with systemic lupus erythematosus using enhanced depth imaging spectral domain optical coherence tomography and optical coherence tomography angiography. International Journal of Ophthalmology 18:1053−1063

doi: 10.18240/ijo.2025.06.11
[109]

Conigliaro P, Giannini C, Ferrigno S, Nesi C, Fonti GL, et al. 2023. Assessment of microvascular involvement in lupus nephritis patients by retinal OCT-angiography and kidney biopsies. Clinical and Experimental Rheumatology 41:581−588

doi: 10.55563/clinexprheumatol/p1q482
[110]

Wang X, Xie H, Yi Y, Zhou J, Yang H, et al. 2023. Clinical research of lupus retinopathy: quantitative analysis of retinal vessels by optical coherence tomography angiography in patients with systemic lupus erythematosus. Diagnostics 13:3222

doi: 10.3390/diagnostics13203222
[111]

Yavuz S, Küçük MF, Ayan A. 2024. Comparison of the quantitative values of peripapillary, macular and choriocapillary microvascular structures according to the presence of lupus nephritis in patients with systemic lupus erythematosus. Photodiagnosis and Photodynamic Therapy 48:104263

doi: 10.1016/j.pdpdt.2024.104263
[112]

Ferrigno S, Conigliaro P, Rizza S, Longo S, Nesi C, et al. 2023. Relationship between retinal microvascular impairment and subclinical atherosclerosis in SLE. Lupus Science & Medicine 10:e000977

doi: 10.1136/lupus-2023-000977
[113]

Yu Y, Pan XF, Zhou QH, Zhou XY, Li QH, et al. 2024. Diagnostic model of microvasculature and neurologic alterations in the retina and optic disc for lupus nephritis. Photodiagnosis and Photodynamic Therapy 50:104406

doi: 10.1016/j.pdpdt.2024.104406
[114]

Li X, Xiong C, Luo S, Chen Y, Li M, et al. 2025. Application of SS-OCTA to evaluate the effects of long-term hydroxychloroquine treatment on retinal structure and microcirculation in patients with systemic lupus erythematosus. BMC Ophthalmology 25:288

doi: 10.1186/s12886-025-04083-y
[115]

Mihailovic N, Leclaire MD, Eter N, Brücher VC. 2020. Altered microvascular density in patients with systemic lupus erythematosus treated with hydroxychloroquine—an optical coherence tomography angiography study. Graefe's Archive for Clinical and Experimental Ophthalmology 258:2263−2269

doi: 10.1007/s00417-020-04788-4
[116]

Leclaire MD, Esser EL, Dierse S, Koch R, Zimmermann JA, et al. 2024. Microvascular density analysis of patients with inactive systemic lupus erythematosus—a two-year follow-up optical coherence tomography angiography study. Journal of Clinical Medicine 13:2979

doi: 10.3390/jcm13102979
[117]

Maitiyaer M, Zhang J, Li P, Jiang D, Li H, et al. 2025. Belimumab-driven reductions in retinal microvascular density assessed by optical coherence tomography angiography: insights from systemic lupus erythematosus patients. Frontiers in Immunology 16:1511133

doi: 10.3389/fimmu.2025.1511133
[118]

Ruiz-Lozano RE, Velazquez-Valenzuela F, Roman-Zamudio M, Andrade-Leal SK, Rodriguez-Garcia A. 2022. Polymyositis and dermatomyositis: ocular manifestations and potential sight-threatening complications. Rheumatology International 42:1119−1131

doi: 10.1007/s00296-021-05035-7
[119]

Griger Z, Danko K, Nemeth G, Hassan Z, Aszalos Z, et al. 2020. Anterior segment parameters associated with extramuscular manifestations in polymyositis and dermatomyositis. International Journal of Ophthalmology 13:1443−1450

doi: 10.18240/ijo.2020.09.17
[120]

Harrison SM, Frenkel M, Grossman BJ, Matalon R. 1973. Retinopathy in childhood dermatomyositis. American Journal of Ophthalmology 76:786−790

doi: 10.1016/0002-9394(73)90578-3
[121]

Bader-Meunier B, Monnet D, Barnerias C, Halphen I, Lambot-Juhan K, et al. 2012. Thrombotic microangiopathy and Purtscher-like retinopathy as a rare presentation of juvenile dermatomyositis. Pediatrics 129:e821−e824

doi: 10.1542/peds.2011-0338
[122]

Munro S. 1959. Fundus appearances in a case of acute dermatomyositis. The British Journal of Ophthalmology 43:548−558

doi: 10.1136/bjo.43.9.548
[123]

Choi RY, Swan RJ, Hersh A, Vitale AT. 2018. Retinal manifestations of juvenile dermatomyositis: case report of bilateral diffuse chorioretinopathy with paracentral acute middle maculopathy and review of the literature. Ocular Immunology and Inflammation 26:929−933

doi: 10.1080/09273948.2017.1305421
[124]

Backhouse O, Griffiths B, Henderson T, Emery P. 1998. Ophthalmic manifestations of dermatomyositis. Annals of the Rheumatic Diseases 57:447−449

doi: 10.1136/ard.57.8.447
[125]

Yan Y, Shen X. 2013. Purtscher-like retinopathy associated with dermatomyositis. BMC Ophthalmology 13:36

doi: 10.1186/1471-2415-13-36
[126]

Nohrenberg M, Tang YF, Varma S, Fagan XJ, Hoi A. 2022. Purtscher-like retinopathy in anti-MDA5 dermatomyositis: a window to underlying microvasculopathy. Clinical and Experimental Rheumatology 40:473−474

doi: 10.55563/clinexprheumatol/f6lsk1
[127]

Loporchio D, Gealy D, Yilmaz T, Barton AT, Thakuria P, et al. 2023. Bilateral occlusive retinal vasculitis in a patient with dermatomyositis. Middle East African Journal of Ophthalmology 29:156−158

doi: 10.4103/meajo.meajo_289_21
[128]

DeWane ME, Waldman R, Lu J. 2020. Dermatomyositis: clinical features and pathogenesis. Journal of the American Academy of Dermatology 82:267−281

doi: 10.1016/j.jaad.2019.06.1309
[129]

Yılmaz Tuğan B, Sönmez HE, Güngör M, Yüksel N, Karabaş L. 2022. Preclinical ocular microvascular changes in juvenile dermatomyositis: a pilot optical coherence tomography angiography study. Microvascular Research 143:104382

doi: 10.1016/j.mvr.2022.104382
[130]

Huang BZ, Ling Q, Xu SH, Zou J, Zang MM, et al. 2023. Retinal microvascular and microstructural alterations in the diagnosis of dermatomyositis: a new approach. Frontiers in Medicine 10:1164351

doi: 10.3389/fmed.2023.1164351