[1]

Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, et al. 2022. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Science Advances 8(2):eabj1570

doi: 10.1126/sciadv.abj1570
[2]

Chebli Y, Geitmann A. 2017. Cellular growth in plants requires regulation of cell wall biochemistry. Current Opinion in Cell Biology 44:28−35

doi: 10.1016/j.ceb.2017.01.002
[3]

Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, et al. 2017. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION 2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. The Plant Journal 89(6):1159−1173

doi: 10.1111/tpj.13453
[4]

Ma Q, Wang X, Sun J, Mao T. 2018. Coordinated regulation of hypocotyl cell elongation by light and ethylene through a microtubule destabilizing protein. Plant Physiology 176(1):678−690

doi: 10.1104/pp.17.01109
[5]

Krahmer J, Fankhauser C. 2024. Environmental control of hypocotyl elongation. Annual Review of Plant Biology 75:489−519

doi: 10.1146/annurev-arplant-062923-023852
[6]

Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, et al. 1994. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120(9):2475−2487

doi: 10.1242/dev.120.9.2475
[7]

Manghwar H, Hussain A, Ali Q, Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. International Journal of Molecular Sciences 23(3):1012

doi: 10.3390/ijms23031012
[8]

Clark NM, Nolan TM, Wang P, Song G, Montes C, et al. 2021. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nature Communications 12(1):5858

doi: 10.1038/s41467-021-26165-3
[9]

Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, et al. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development 146(5):dev151894

doi: 10.1242/dev.151894
[10]

Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32(2):295−318

doi: 10.1105/tpc.19.00335
[11]

Minami A, Takahashi K, Inoue SI, Tada Y, Kinoshita T. 2019. Brassinosteroid induces phosphorylation of the plasma membrane H+−ATPase during hypocotyl elongation in Arabidopsis thaliana. Plant & Cell Physiology 60(5):935−944

doi: 10.1093/pcp/pcz005
[12]

Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, et al. 2013. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytologist 197(2):490−502

doi: 10.1111/nph.12036
[13]

Jiang J, Zhang C, Wang X. 2015. A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. The Plant Cell 27(2):361−374

doi: 10.1105/tpc.114.133678
[14]

Nolan TM, Vukašinović N, Hsu CW, Zhang J, Vanhoutte I, et al. 2023. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 379(6639):eadf4721

doi: 10.1126/science.adf4721
[15]

Furuya T, Saito M, Uchimura H, Satake A, Nosaki S, et al. 2021. Gene co-expression network analysis identifies BEH3 as a stabilizer of secondary vascular development in Arabidopsis. The Plant Cell 33(8):2618−2636

doi: 10.1093/plcell/koab151
[16]

Clouse SD. 2011. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23(4):1219−1230

doi: 10.1105/tpc.111.084475
[17]

Vert G, Chory J. 2006. Downstream nuclear events in brassinosteroid signalling. Nature 441:96−100

doi: 10.1038/nature04681
[18]

Park CH, Kim TW, Son SH, Hwang JY, Lee SC, et al. 2010. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71(4):380−387

doi: 10.1016/j.phytochem.2009.11.003
[19]

Zhu L, Wang H, Zhu J, Wang X, Jiang B, et al. 2023. A conserved brassinosteroid-mediated BES1-CERP-EXPA3 signaling cascade controls plant cell elongation. Cell Reports 42(4):112374

doi: 10.1016/j.celrep.2023.112374
[20]

Cai X, Chang L, Zhang T, Chen H, Zhang L, Freeling, M, Wang, X, et al. 2021. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology 22(1):166

doi: 10.1186/s13059-021-02383-2
[21]

Cheng F, Sun R, Hou X, Zheng H, Zhang F, et al. 2016. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nature Genetics 48(10):1218−1224

doi: 10.1038/ng.3634
[22]

Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, et al. 2014. Beyond genomic variation-comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics 15:1−1711

doi: 10.1186/1471-2164-15-250
[23]

Lee HN, Kim YJ. 2023. Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester. Journal of Drive and Control 20(3):35−41 (in Korean)

doi: 10.7839/ksfc.2023.20.3.035
[24]

Wang TW, Cosgrove DJ, Arteca RN. 1993. Brassinosteroid stimulation of hypocotyl elongation and wall relaxation in pakchoi (Brassica chinensis cv Lei-choi). Plant Physiology 101(3):965−968

doi: 10.1104/pp.101.3.965
[25]

Zhang X, Ma W, Liu M, Li X, Li J, et al. 2022. OCTOPUS regulates BIN2 to control leaf curvature in Chinese cabbage. Proceedings of the National Academy of Sciences of the United States of America 119(34):e2208978119

doi: 10.1073/pnas.2208978119
[26]

Wang H, Shang Q. 2019. Identification and functional analysis of proteins in response to light intensity, temperature and water potential in Brassica rapa hypocotyl. Physiologia Plantarum 167(1):48−63

doi: 10.1111/ppl.12865
[27]

Wang H, Shang Q. 2020. The combined effects of light intensity, temperature, and water potential on wall deposition in regulating hypocotyl elongation of Brassica rapa. PeerJ 8:e9106

doi: 10.7717/peerj.9106
[28]

Nguyen NH, Sng BJR, Yeo HC, Jang IC. 2021. Comparative phenotypic and transcriptomic analyses unravel conserved and distinct mechanisms underlying shade avoidance syndrome in Brassicaceae vegetables. BMC Genomics 22(1):760

doi: 10.1186/s12864-021-08076-1
[29]

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

doi: 10.1186/1746-4811-1-13
[30]

Fujikawa Y, Kato N. 2007. TECHNICAL ADVANCE: split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. The Plant Journal 52:185−195

doi: 10.1111/j.1365-313x.2007.03214.x
[31]

Oh E, Zhu JY, Wang ZY. 2012. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology 14(8):802−809

doi: 10.1038/ncb2545
[32]

Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, et al. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. The Plant Cell 10(2):231−243

doi: 10.2307/3870701
[33]

Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, et al. 2000. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiology 123(1):93−100

doi: 10.1104/pp.123.1.93
[34]

Chen LG, Gao Z, Zhao Z, Liu X, Li Y, et al. 2019. BZR1 family transcription factors function redundantly and indispensably in BR signaling but exhibit BRI1-independent function in regulating anther development in Arabidopsis. Molecular Plant 12(10):1408−1415

doi: 10.1016/j.molp.2019.06.006
[35]

Jiang B, Zhong Z, Su J, Zhu T, Yueh T, et al. 2023. Co-condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. Science Advances 9(32):eadh4048

doi: 10.1126/sciadv.adh4048
[36]

Favero DS, Lambolez A, Sugimoto K. 2021. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. The Plant Journal 105(2):392−420

doi: 10.1111/tpj.14996
[37]

Wen J, Liu Y, Yang S, Yang Y, Wang C. 2022. Genome-wide characterization of laccase gene family from turnip and Chinese cabbage and the role in xylem lignification in hypocotyls. Horticulturae 8(6):522

doi: 10.3390/horticulturae8060522
[38]

Yokota T, Ohnishi T, Shibata K, Asahina M, Nomura T, et al. 2017. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry 136:46−55

doi: 10.1016/j.phytochem.2016.12.020
[39]

Bajguz A, Chmur M, Gruszka D. 2020. Comprehensive overview of the brassinosteroid biosynthesis pathways: substrates, products, inhibitors, and connections. Frontiers in Plant Science 11:1034

doi: 10.3389/fpls.2020.01034
[40]

Joo SH, Kim TW, Son SH, Lee WS, Yokota T, et al. 2012. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. Journal of Experimental Botany 63(5):1823−1833

doi: 10.1093/jxb/err354
[41]

Su D, Xiang W, Wen L, Lu W, Shi Y, et al. 2021. Genome-wide identification, characterization and expression analysis of BES1 gene family in tomato. BMC Plant Biology 21(1):161

doi: 10.1186/s12870-021-02933-7
[42]

Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, et al. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109(2):181−191

doi: 10.1016/s0092-8674(02)00721-3
[43]

Shi H, Li X, Lv M, Li J. 2022. BES1/BZR1 family transcription factors regulate plant development via brassinosteroid-dependent and independent pathways. International Journal of Molecular Sciences 23(17):10149

doi: 10.3390/ijms231710149
[44]

Wang W, Lu X, Li L, Lian H, Mao Z, et al. 2018. Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis. The Plant Cell 30(9):1989−2005

doi: 10.1105/tpc.17.00994
[45]

Hao Y, Zeng Z, Zhang X, Xie D, Li X, et al. 2023. Green means go: Green light promotes hypocotyl elongation via brassinosteroid signaling. The Plant Cell 35(5):1304−1317

doi: 10.1093/plcell/koad022
[46]

Spears BJ, McInturf SA, Collins C, Chlebowski M, Cseke LJ, et al. 2022. Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes. Plant Physiology 190(2):1457−1473

doi: 10.1093/plphys/kiac332