[1]

Ding W, Zhang G, Xie H, Chang N, Zhang J, et al. 2023. Balancing high yields and low N2O emissions from greenhouse vegetable fields with large water and fertilizer input: a case study of multiple-year irrigation and nitrogen fertilizer regimes. Plant and Soil 483:131−152

doi: 10.1007/s11104-022-05730-9
[2]

Ma X, Zhang F, Liu F, Guo G, Cheng T, et al. 2022. An integrated nitrogen management strategy promotes open-field pepper yield, crop nitrogen uptake, and nitrogen use efficiency in Southwest China. Agriculture 12:524

doi: 10.3390/agriculture12040524
[3]

Wang X, Dou Z, Shi X, Zou C, Liu D, et al. 2021. Innovative management programme reduces environmental impacts in Chinese vegetable production. Nature Food 2:47−53

doi: 10.1038/s43016-020-00199-0
[4]

Sun H, Chen Y, Yi Z. 2022. After-effects of hydrochar amendment on water spinach production, N leaching, and N2O emission from a vegetable soil under varying N-inputs. Plants 11:3444

doi: 10.3390/plants11243444
[5]

Guo Y, Ji Y, Zhang J, Liu Q, Han J, et al. 2022. Effects of water and nitrogen management on N2O emissions and NH3 volatilization from a vineyard in North China. Agricultural Water Management 266:107601

doi: 10.1016/j.agwat.2022.107601
[6]

Xiang Y, Li Y, Luo X, Liu Y, Yue X, et al. 2022. Manure properties, soil conditions and managerial factors regulate greenhouse vegetable yield with organic fertilizer application across China. Frontiers in Plant Science 13:1009631

doi: 10.3389/fpls.2022.1009631
[7]

Wang H, Ma S, Dittert K. 2020. Straw amendments did not induce high N2O emissions in non-frozen wintertime conditions: a study in northern Germany. Soil Use and Management 36:693−703

doi: 10.1111/sum.12643
[8]

Shakoor A, Shahzad SM, Chatterjee N, Arif MS, Farooq TH, et al. 2021. Nitrous oxide emission from agricultural soils: application of animal manure or biochar? A global meta-analysis. Journal of Environmental Management 285:112170

doi: 10.1016/j.jenvman.2021.112170
[9]

Cen Y, Guo L, Liu M, Gu X, Li C, et al. 2020. Using organic fertilizers to increase crop yield, economic growth, and soil quality in a temperate farmland. PeerJ 8:e9668

doi: 10.7717/peerj.9668
[10]

Tian S, Zhu B, Yin R, Wang M, Jiang Y, et al. 2022. Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology and Biochemistry 165:108533

doi: 10.1016/j.soilbio.2021.108533
[11]

Gu S, Lian F, Yang H, Han Y, Zhang W, et al. 2021. Synergic effect of microorganism and colloidal biochar-based organic fertilizer on the growth and fruit quality of tomato. Coatings 11:1453

doi: 10.3390/coatings11121453
[12]

Wang Z, Yang H, Ma Y, Jiang G, Mei X, et al. 2022. WGCNA analysis revealing molecular mechanism that bio-organic fertilizer improves pear fruit quality by increasing sucrose accumulation and reducing citric acid metabolism. Frontiers in Plant Science 13:1039671

doi: 10.3389/fpls.2022.1039671
[13]

Abalos D, Recous S, Butterbach-Bahl K, De Notaris C, Rittl TF, et al. 2022. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of The Total Environment 828:154388

doi: 10.1016/j.scitotenv.2022.154388
[14]

Gao N, Shen W, Camargo E, Shiratori Y, Nishizawa T, et al. 2017. Nitrous oxide (N2O)-reducing denitrifier-inoculated organic fertilizer mitigates N2O emissions from agricultural soils. Biology and Fertility of Soils 53:885−898

doi: 10.1007/s00374-017-1231-z
[15]

Gao N, Zhang H, Hu C, Li Q, Li L, et al. 2024. Inoculation with stutzerimonas stutzeri strains decreases N2O emissions from vegetable soil by altering microbial community composition and diversity. Microbiology Spectrum 12:e00186-24

doi: 10.1128/spectrum.00186-24
[16]

Yan S, Wang P, Cai X, Wang C, Van Zwieten L, et al. 2025. Biochar-based fertilizer enhanced tobacco yield and quality by improving soil quality and soil microbial community. Environmental Technology & Innovation 37:103964

doi: 10.1016/j.eti.2024.103964
[17]

De Oliveira KS, Volsi B, Telles TS, Mendes ADR, Yunes JS, et al. 2025. Co-inoculation with Rhizobium, Azospirillum, and microalgae increases common bean yield and profitability. Agronomy Journal 117:e21719

doi: 10.1002/agj2.21719
[18]

Geng Y, Yuan Y, Miao Y, Zhi J, Huang M, et al. 2021. Decreased nitrous oxide emissions associated with functional microbial genes under bio-organic fertilizer application in vegetable fields. Pedosphere 31:279−288

doi: 10.1016/S1002-0160(20)60075-3
[19]

Semedo M, Wittorf L, Hallin S, Song B. 2020. Differential expression of clade I and II N2O reductase genes in denitrifying Thauera linaloolentis 47LolT under different nitrogen conditions. FEMS Microbiology Letters 367:fnaa205

doi: 10.1093/femsle/fnaa205
[20]

Aamer M, Huang G, Zhang J, Wei H, Rasul F, et al. 2025. Biochar-seaweed fertilizer blend: a multifaceted strategy for mitigating nitrous oxide emissions, soil rejuvenation, and improving rice crop performance. Journal of Soil Science and Plant Nutrition 25(4):8909−8923

doi: 10.1007/s42729-025-02702-7
[21]

Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, et al. 2024. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. Science of The Total Environment 954:176104

doi: 10.1016/j.scitotenv.2024.176104
[22]

Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, van Loosdrecht MCM, et al. 2018. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. The ISME Journal 12:1142−1153

doi: 10.1038/s41396-018-0063-7
[23]

Zhang H, Hu C, Li L, Lei P, Shen W, et al. 2024. Effect of n-hexadecanoic acid on N2O emissions from vegetable soil and its synergism with Pseudomonas stutzeri NRCB010. Applied Soil Ecology 199:105410

doi: 10.1016/j.apsoil.2024.105410
[24]

Sasaki T, Lauenroth WK. 2011. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166:761−768

doi: 10.1007/s00442-011-1916-1
[25]

Han L, Li L, Xu Y, Xu X, Ye W, et al. 2024. Short-term high-temperature pretreated compost increases its application value by altering key bacteria phenotypes. Waste Management 180:135−148

doi: 10.1016/j.wasman.2024.03.034
[26]

Sun Y, Tang L, Cui Y, Yang D, Gao H, et al. 2025. Inoculation of plant growth-promoting rhizobacteria and rhizobia changes the protist community of alfalfa rhizosphere soil under saline-alkali environment. Applied Soil Ecology 206:105775

doi: 10.1016/j.apsoil.2024.105775
[27]

Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, et al. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology 8:732−740

doi: 10.1111/j.1462-2920.2005.00956.x
[28]

Wang C, Shi Z, Li A, Geng T, Liu L, et al. 2024. Long-term nitrogen input reduces soil bacterial network complexity by shifts in life history strategy in temperate grassland. iMeta 3:e194

doi: 10.1002/imt2.194
[29]

Adviento-Borbe MAA, Doran JW, Drijber RA, Dobermann A. 2006. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. Journal of Environmental Quality 35:1999−2010

doi: 10.2134/jeq2006.0109
[30]

Calvo P, Watts DB, Kloepper JW, Torbert HA. 2016. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens. Canadian Journal of Microbiology 62(12):1041−1056

doi: 10.1139/cjm-2016-0122
[31]

Pintarič M, Štuhec A, Tratnik E, Langerholc T. 2024. Spent mushroom substrate improves microbial quantities and enzymatic activity in soils of different farming systems. Microorganisms 12(8):1521

doi: 10.3390/microorganisms12081521
[32]

van Dijk H, Geers-Lucas M, Henjes S, Rohe L, Vogel HJ, et al. 2025. Moderate effects of distance to air-filled macropores on denitrification potentials in soils. Biology and Fertility of Soils 61:385−399

doi: 10.1007/s00374-024-01864-3
[33]

Li F, Kong Q, Zhang Q, Wang H, Wang L, et al. 2020. Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Applied Soil Ecology 149:103489

doi: 10.1016/j.apsoil.2019.103489
[34]

Yang G, Ma Y, Ma X, Wang X, Lu C, et al. 2024. Changes in soil organic carbon components and microbial community following spent mushroom substrate application. Frontiers in Microbiology 15:1351921

doi: 10.3389/fmicb.2024.1351921
[35]

Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA, et al. 2014. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio 5:01193-14

doi: 10.1128/mbio.01193-14
[36]

Wang C, Wang Y, Ru H, He T, Sun N. 2021. Study on microbial community succession and functional analysis during biodegradation of mushroom residue. BioMed Research International 2021:6620574

doi: 10.1155/2021/6620574
[37]

Intrator N, Jayakumar A, Ward BB. 2024. Aquatic nitrous oxide reductase gene (nosZ) phylogeny and environmental distribution. Frontiers in Microbiology 15:1407573

doi: 10.3389/fmicb.2024.1407573
[38]

Bowen H, Maul JE, Cavigelli MA, Yarwood S. 2020. Denitrifier abundance and community composition linked to denitrification activity in an agricultural and wetland soil. Applied Soil Ecology 151:103521

doi: 10.1016/j.apsoil.2020.103521
[39]

Zhang L, Zeng G, Zhang J, Chen Y, Yu M, et al. 2015. Response of denitrifying genes coding for nitrite (nirK or nirS) and nitrous oxide (nosZ) reductases to different physico-chemical parameters during agricultural waste composting. Applied Microbiology and Biotechnology 99:4059−4070

doi: 10.1007/s00253-014-6293-3
[40]

Azziz G, Monza J, Etchebehere C, Irisarri P. 2017. nirS- and nirK-type denitrifier communities are differentially affected by soil type, rice cultivar and water management. European Journal of Soil Biology 78:20−28

doi: 10.1016/j.ejsobi.2016.11.003
[41]

Sah S, Krishnani S, Singh R. 2021. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Current Research in Microbial Sciences 2:100084

doi: 10.1016/j.crmicr.2021.100084