[1]

Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, et al. 2022. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 67:150−200

doi: 10.1080/09506608.2021.1922047
[2]

Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, et al. 2020. Global carbon budget 2020. Earth System Science Data 12:3269−3340

doi: 10.5194/essd-12-3269-2020
[3]

Hussain MM, Mohy-Ud-Din W, Younas F, Niazi NK, Bibi I, et al. 2022. Biochar: a game changer for sustainable agriculture. In Sustainable Agriculture, ed. Bandh SA. Cham: Springer. pp. 143−157 doi: 10.1007/978-3-030-83066-3_8

[4]

Mukhtar MM, Ali Q, Ayyub M, Aon M, Ali HM, et al. 2025. Biochar and Pseudomonas aeruginosa M2 co-application: a sustainable strategy for enhancing growth and heavy metal tolerance in Brassica campestris. Journal of Soil Science and Plant Nutrition 25:2692−2708

doi: 10.1007/s42729-025-02292-4
[5]

Mustafa A, Saeed Q, Lu X, Farooqi ZUR, Arshad U, et al. 2026. Beyond one-size-fits-all: tailoring engineered biochar for purpose-specific rhizosphere engineering in crop production, protection, and soil remediation. Biochar 8:3

doi: 10.1007/s42773-025-00521-8
[6]

Beillouin D, Corbeels M, Demenois J, Berre D, Boyer A, et al. 2023. A global meta-analysis of soil organic carbon in the Anthropocene. Nature Communications 14:3700

doi: 10.1038/s41467-023-39338-z
[7]

Lian F, Xing B. 2017. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk. Environmental Science & Technology 51:13517−13532

doi: 10.1021/acs.est.7b02528
[8]

Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, et al. 2021. Biochar in climate change mitigation. Nature Geoscience 14:883−892

doi: 10.1038/s41561-021-00852-8
[9]

Wang J, Xiong Z, Kuzyakov Y. 2016. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512−523

doi: 10.1111/gcbb.12266
[10]

Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, et al. 2018. Microaggregates in soils. Journal of Plant Nutrition and Soil Science 181:104−136

doi: 10.1002/jpln.201600451
[11]

Deng L, Yuan H, Xie J, Ge L, Chen Y. 2022. Herbaceous plants are better than woody plants for carbon sequestration. Resources, Conservation and Recycling 184:106431

doi: 10.1016/j.resconrec.2022.106431
[12]

Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, et al. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5:459−462

doi: 10.1038/ngeo1486
[13]

Nazir MJ, Hussain MM. 2025. The role of nitrogen fertilization in enhancing soil carbon sequestration: a tool for sustainable agriculture. In Soils and Sustainable Agriculture, ed. Shaaban M. Cham: Springer. pp. 161−182 doi: 10.1007/978-3-031-91114-9_7

[14]

Yang Y, Sun K, Han L, Chen Y, Liu J, et al. 2022. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry 169:108657

doi: 10.1016/j.soilbio.2022.108657
[15]

Criscuoli I, Alberti G, Baronti S, Favilli F, Martinez C, et al. 2014. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil. PLoS One 9:e91114

doi: 10.1371/journal.pone.0091114
[16]

Ding X, Li G, Zhao X, Lin Q, Wang X. 2023. Biochar application significantly increases soil organic carbon under conservation tillage: an 11-year field experiment. Biochar 5:28

doi: 10.1007/s42773-023-00226-w
[17]

He K, He G, Wang C, Zhang H, Xu Y, et al. 2020. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Applied Soil Ecology 155:103674

doi: 10.1016/j.apsoil.2020.103674
[18]

Ding C, Wei L, Yang W, Tang Y, Hussain MM, et al. 2025. Biochar mitigated zerovalent iron-induced methane emissions in arsenic-contaminated paddy soil. Chemical Engineering Journal 522:168110

doi: 10.1016/j.cej.2025.168110
[19]

Ding Y, Liu Y, Liu S, Li Z, Tan X, et al. 2016. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development 36:36

doi: 10.1007/s13593-016-0372-z
[20]

Wang Y, Pang J, Zhang M, Tian Z, Wei T, et al. 2023. Is adding biochar be better than crop straw for improving soil aggregates stability and organic carbon contents in film mulched fields in semiarid regions? –Evidence of 5-year field experiment. Journal of Environmental Management 338:117711

doi: 10.1016/j.jenvman.2023.117711
[21]

Rasul M, Cho J, Shin HS, Hur J. 2022. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: a review. Science of The Total Environment 805:150304

doi: 10.1016/j.scitotenv.2021.150304
[22]

Xu Y, Sun L, Gao X, Wang J. 2022. Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization. Scientific Reports 12:17834

doi: 10.1038/s41598-022-22064-9
[23]

Hussain M, Farooq M, Nawaz A, Al-Sadi AM, Solaiman ZM, et al. 2017. Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments 17:685−716

doi: 10.1007/s11368-016-1360-2
[24]

Zhu Z, Fang Y, Liang Y, Li Y, Liu S, et al. 2022. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biology and Biochemistry 169:108669

doi: 10.1016/j.soilbio.2022.108669
[25]

Zheng T, Zhang J, Tang C, Liao K, Guo L. 2021. Positive and negative priming effects in an Ultisol in relation to aggregate size class and biochar level. Soil and Tillage Research 208:104874

doi: 10.1016/j.still.2020.104874
[26]

Zimmerman AR, Gao B, Ahn MY. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43:1169−1179

doi: 10.1016/j.soilbio.2011.02.005
[27]

Bass AM, Bird MI, Kay G, Muirhead B. 2016. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of The Total Environment 550:459−470

doi: 10.1016/j.scitotenv.2016.01.143
[28]

Pei J, Dijkstra FA, Li J, Fang C, Su J, et al. 2020. Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2. Soil Biology and Biochemistry 142:107700

doi: 10.1016/j.soilbio.2019.107700
[29]

Lu W, Ding W, Zhang J, Li Y, Luo J, et al. 2014. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biology and Biochemistry 76:12−21

doi: 10.1016/j.soilbio.2014.04.029
[30]

Guo F, Xu F, Cai R, Li D, Xu Q, et al. 2022. Enhancement of denitrification in biofilters by immobilized biochar under low-temperature stress. Bioresource Technology 347:126664

doi: 10.1016/j.biortech.2021.126664
[31]

Tao W, Zhang P, Li H, Yang Q, Oleszczuk P, et al. 2022. Generation mechanism of persistent free radicals in lignocellulose-derived biochar: roles of reducible carbonyls. Environmental Science & Technology 56:10638−10645

doi: 10.1021/acs.est.1c06997
[32]

Lian F, Yu W, Zhou Q, Gu S, Wang Z, et al. 2020. Size matters: nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments. Environmental Science & Technology 54:8821−8829

doi: 10.1021/acs.est.0c02227
[33]

Liang L, Xi F, Tan W, Meng X, Hu B, et al. 2021. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255−281

doi: 10.1007/s42773-021-00101-6
[34]

Liu X, Zheng J, Zhang D, Cheng K, Zhou H, et al. 2016. Biochar has no effect on soil respiration across chinese agricultural soils. Science of The Total Environment 554-555:259−265

doi: 10.1016/j.scitotenv.2016.02.179
[35]

Ippolito JA, Spokas KA, Novak JM, Lentz RD, Cantrell KB. 2015. Biochar elemental composition and factors influencing nutrient retention. In Biochar for environmental management, 2nd Edition. London: Routledge. pp. 139−163 doi: 10.4324/9780203762264-7

[36]

Xu H, Cai A, Wu D, Liang G, Xiao J, et al. 2021. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C: N ratio and soil pH: a global meta-analysis. Soil and Tillage Research 213:105125

doi: 10.1016/j.still.2021.105125
[37]

Gong H, Li Y, Li S. 2021. Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: a review. Global Ecology and Conservation 26:e01449

doi: 10.1016/j.gecco.2020.e01449
[38]

Chen D, Wang C, Shen J, Li Y, Wu J. 2018. Response of CH4 emissions to straw and biochar applications in double-rice cropping systems: insights from observations and modeling. Environmental Pollution 235:95−103

doi: 10.1016/j.envpol.2017.12.041
[39]

Van Zwieten L, Kammann C, Cayuela ML, Singh BP, Joseph S, et al. 2015. Biochar effects on nitrous oxide and methane emissions from soil. In Biochar for Environmental Management, 2nd Edition. London: Routledge. pp. 489−520 doi: 10.4324/9780203762264-17

[40]

He T, Yun F, Liu T, Jin J, Yang Y, et al. 2021. Differentiated mechanisms of biochar- and straw-induced greenhouse gas emissions in tobacco fields. Applied Soil Ecology 166:103996

doi: 10.1016/j.apsoil.2021.103996
[41]

Yuan HY, Ding LJ, Zama EF, Liu PP, Hozzein WN, et al. 2018. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate. Environmental Science & Technology 52:12198−12207

doi: 10.1021/acs.est.8b04121
[42]

Yuan H, Zhang Z, Li M, Clough T, Wrage-Mönnig N, et al. 2019. Biochar's role as an electron shuttle for mediating soil N2O emissions. Soil Biology and Biochemistry 133:94−96

doi: 10.1016/j.soilbio.2019.03.002
[43]

Fang Y, Singh B, Singh BP. 2015. Effect of temperature on biochar priming effects and its stability in soils. Soil Biology and Biochemistry 80:136−145

doi: 10.1016/j.soilbio.2014.10.006
[44]

Sun T, Levin BDA, Schmidt MP, Guzman JJL, Enders A, et al. 2018. Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environmental Science & Technology 52:8538−8547

doi: 10.1021/acs.est.8b02340
[45]

Wang C, Shen J, Liu J, Qin H, Yuan Q, et al. 2019. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: a four-year study. Soil Biology and Biochemistry 135:251−263

doi: 10.1016/j.soilbio.2019.05.012
[46]

Zheng X, Xu W, Dong J, Yang T, Shangguan Z, et al. 2022. The effects of biochar and its applications in the microbial remediation of contaminated soil: a review. Journal of Hazardous Materials 438:129557

doi: 10.1016/j.jhazmat.2022.129557
[47]

Ko VY, Wang J, He I, Ryan D, Zhang X, et al. 2023. Adsorption of methane on biochar for emission reduction in oil and gas fields. Biochar 5:15

doi: 10.1007/s42773-023-00209-x
[48]

Xie WH, Yao X, Li H, Li HR, He LN. 2022. Biomass-based N-rich porous carbon materials for CO2 capture and in-situ conversion. ChemSusChem 15:e202201004

doi: 10.1002/cssc.202201004
[49]

Cornelissen G, Rutherford DW, Arp HPH, Dörsc P, Kelly CN, et al. 2013. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environmental Science & Technology 47:7704−7712

doi: 10.1021/es400676q
[50]

Hu J, Guo H, Xue Y, Gao MT, Zhang S, et al. 2019. Using a mixture of microalgae, biochar, and organic manure to increase the capacity of soil to act as carbon sink. Journal of Soils and Sediments 19:3718−3727

doi: 10.1007/s11368-019-02337-z
[51]

Abu Zied Amin AEE. 2020. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Science of The Total Environment 726:138489

doi: 10.1016/j.scitotenv.2020.138489
[52]

Liang Y, Wang Q, Huang L, Liu M, Wang N, et al. 2020. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: microbial community structure, functional genes and enzyme activity. Bioresource Technology 307:123249

doi: 10.1016/j.biortech.2020.123249
[53]

Liu Y, Chen Y, Wang Y, Lu H, He L, et al. 2018. Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degradation & Development 29:3985−3994

doi: 10.1002/ldr.3147
[54]

Molnár M, Vaszita E, Farkas É, Ujaczki É, Fekete-Kertész I, et al. 2016. Acidic sandy soil improvement with biochar—amicrocosm study. Science of The Total Environment 563−564:855−865

doi: 10.1016/j.scitotenv.2016.01.091
[55]

Liu X, Wang Q, Qi Z, Han J, Li L. 2016. Response of N2O emissions to biochar amendment in a cultivated sandy loam soil during freeze-thaw cycles. Scientific Reports 6:35411

doi: 10.1038/srep35411
[56]

Yoo G, Lee YO, Won TJ, Hyun JG, Ding W. 2018. Variable effects of biochar application to soils on nitrification-mediated N2O emissions. Science of The Total Environment 626:603−611

doi: 10.1016/j.scitotenv.2018.01.098
[57]

Case SDC, McNamara NP, Reay DS, Whitaker J. 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – The role of soil aeration. Soil Biology and Biochemistry 51:125−134

doi: 10.1016/j.soilbio.2012.03.017
[58]

Huang D, Yang L, Xu W, Chen Q, Ko JH, et al. 2020. Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. Environmental Pollution 263:114413

doi: 10.1016/j.envpol.2020.114413
[59]

Ding H, Hu Q, Cai M, Cao C, Jiang Y. 2022. Effect of dissolved organic matter (DOM) on greenhouse gas emissions in rice varieties. Agriculture, Ecosystems & Environment 330:107870

doi: 10.1016/j.agee.2022.107870
[60]

Kameyama K, Miyamoto T, Shiono T, Shinogi Y. 2012. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality 41:1131−1137

doi: 10.2134/jeq2010.0453
[61]

Pu Y, Zhu B, Dong Z, Liu Y, Wang C, et al. 2019. Soil N2O and NOx emissions are directly linked with N-cycling enzymatic activities. Applied Soil Ecology 139:15−24

doi: 10.1016/j.apsoil.2019.03.007
[62]

Zhao K, Wang N, Jiang S, Li F, Luo S, et al. 2022. Potential implications of biochar and compost on the stoichiometry-based assessments of soil enzyme activity in heavy metal-polluted soils. Carbon Research 1:29

doi: 10.1007/s44246-022-00029-x
[63]

Li Y, Hu S, Chen J, Müller K, Li Y, et al. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments 18:546−563

doi: 10.1007/s11368-017-1906-y
[64]

Luo Y, Lin Q, Durenkamp M, Dungait AJ, Brookes PC. 2017. Soil priming effects following substrates addition to biochar-treated soils after 431 days of pre-incubation. Biology and Fertility of Soils 53:315−326

doi: 10.1007/s00374-017-1180-6
[65]

Liu Q, Li Y, Liu S, Gao W, Shen J, et al. 2022. Anaerobic primed CO2 and CH4 in paddy soil are driven by Fe reduction and stimulated by biochar. Science of the Total Environment 808:151911

doi: 10.1016/j.scitotenv.2021.151911
[66]

Zhang Y, Yan C, Wang T, Zhang G, Bahn M, et al. 2025. Biochar strategy for long-term N2O emission reduction: insights into soil physical structure and microbial interaction. Soil Biology and Biochemistry 202:109685

doi: 10.1016/j.soilbio.2024.109685
[67]

Wu D, Senbayram M, Zang H, Ugurlar F, Aydemir S, et al. 2018. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology 129:121−127

doi: 10.1016/j.apsoil.2018.05.009
[68]

Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, et al. 2014. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems & Environment 191:5−16

doi: 10.1016/j.agee.2013.10.009
[69]

Wang J, Pan X, Liu Y, Zhang X, Xiong Z. 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil 360:287−298

doi: 10.1007/s11104-012-1250-3
[70]

Steinbeiss S, Gleixner G, Antonietti M. 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry 41:1301−1310

doi: 10.1016/j.soilbio.2009.03.016
[71]

Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, et al. 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar 1:3−22

doi: 10.1007/s42773-019-00009-2
[72]

Chen K, Li N, Zhang S, Liu N, Yang J, et al. 2022. Biochar-induced changes in the soil diazotroph community abundance and structure in a peanut field trial. Biochar 4:26

doi: 10.1007/s42773-022-00133-6
[73]

Hilber I, Blum F, Leifeld J, Schmidt HP, Bucheli TD. 2012. Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. Journal of Agricultural and Food Chemistry 60:3042−3050

doi: 10.1021/jf205278v
[74]

Iqbal S, Xu J, Khan S, Worthy FR, Khan HZ, et al. 2023. Regenerative fertilization strategies for climate-smart agriculture: consequences for greenhouse gas emissions from global drylands. Journal of Cleaner Production 398:136650

doi: 10.1016/j.jclepro.2023.136650
[75]

Li Y, Zhang W, Li J, Zhou F, Liang X, et al. 2023. Complementation between microbial necromass and plant debris governs the long-term build-up of the soil organic carbon pool in conservation agriculture. Soil Biology and Biochemistry 178:108963

doi: 10.1016/j.soilbio.2023.108963
[76]

Dong Z, Li H, Xiao J, Sun J, Liu R, et al. 2022. Soil multifunctionality of paddy field is explained by soil pH rather than microbial diversity after 8-years of repeated applications of biochar and nitrogen fertilizer. Science of The Total Environment 853:158620

doi: 10.1016/j.scitotenv.2022.158620
[77]

Niu G, Yin G, Mo X, Mao Q, Mo J, et al. 2022. Do long-term high nitrogen inputs change the composition of soil dissolved organic matter in a primary tropical forest? Environmental Research Letters 17(9):095015

doi: 10.1088/1748-9326/ac8e87
[78]

Wardle DA, Nilsson MC, Zackrisson O. 2008. Fire-derived charcoal causes loss of forest humus. Science 320:629

doi: 10.1126/science.1154960
[79]

Qu ZL, Li XL, Ge Y, Palviainen M, Zhou X, et al. 2022. The impact of biochar on wood-inhabiting bacterial community and its function in a boreal pine forest. Environmental Microbiome 17:45

doi: 10.1186/s40793-022-00439-9
[80]

Razanamalala K, Razafimbelo T, Maron PA, Ranjard L, Chemidlin N, et al. 2018. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. The ISME Journal 12:451−462

doi: 10.1038/ismej.2017.178
[81]

Yu G, Zhao H, Chen J, Zhang T, Cai Z, et al. 2020. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues. Science of The Total Environment 737:139708

doi: 10.1016/j.scitotenv.2020.139708
[82]

Johnson MS, Webster C, Jassal RS, Hawthorne I, Black TA. 2017. Biochar influences on soil CO2 and CH4 fluxes in response to wetting and drying cycles for a forest soil. Scientific Reports 7:6780

doi: 10.1038/s41598-017-07224-6
[83]

Zhou S, Wang J, Chen L, Wang J, Zhao F. 2022. Microbial community structure and functional genes drive soil priming effect following afforestation. Science of The Total Environment 825:153925

doi: 10.1016/j.scitotenv.2022.153925
[84]

Zhu X, Chen B, Zhu L, Xing B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution 227:98−115

doi: 10.1016/j.envpol.2017.04.032
[85]

Zhang Y, Zhang Z, Chen Y. 2021. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environmental Science & Technology 55:8068−8078

doi: 10.1021/acs.est.1c01976
[86]

Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC. 2009. Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28:386−396

doi: 10.1002/ep.10378
[87]

Klüpfel L, Keiluweit M, Kleber M, Sander M. 2014. Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology 48:5601−5611

doi: 10.1021/es500906d
[88]

Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, et al. 2014. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environmental Science & Technology Letters 1:339−344

doi: 10.1021/ez5002209
[89]

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451:293−296

doi: 10.1038/nature06592
[90]

Cayuela ML, Sanchez-Monedero MA, Roig A, Hanley K, Enders A, et al. 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports 3:1732

doi: 10.1038/srep01732
[91]

Su X, Wang Y, He Q, Hu X, Chen Y. 2019. Biochar remediates denitrification process and N2O emission in pesticide chlorothalonil-polluted soil: role of electron transport chain. Chemical Engineering Journal 370:587−594

doi: 10.1016/j.cej.2019.03.195
[92]

Zhang S, Kong Z, Wang H, Yan Q, Vayenas DV, et al. 2022. Enhanced nitrate removal by biochar supported nano zero-valent iron (nZVI) at biocathode in bioelectrochemical system (BES). Chemical Engineering Journal 433:133535

doi: 10.1016/j.cej.2021.133535
[93]

Chen S, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, et al. 2014. Promoting interspecies electron transfer with biochar. Scientific Reports 4:5019

doi: 10.1038/srep05019
[94]

Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, et al. 2014. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal 8:660−674

doi: 10.1038/ismej.2013.160
[95]

Yuan D, Wang G, Hu C, Zhou S, Clough TJ, et al. 2022. Electron shuttle potential of biochar promotes dissimilatory nitrate reduction to ammonium in paddy soil. Soil Biology and Biochemistry 172:108760

doi: 10.1016/j.soilbio.2022.108760
[96]

Bastida F, García C, Fierer N, Eldridge DJ, Bowker MA, et al. 2019. Global ecological predictors of the soil priming effect. Nature Communications 10:3481

doi: 10.1038/s41467-019-11472-7
[97]

Feng J, Tang M, Zhu B. 2021. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Global Change Biology 27:2793−2806

doi: 10.1111/gcb.15587
[98]

Ren C, Wang J, Bastida F, Delgado-Baquerizo M, Yang Y, et al. 2022. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology 28:1516−1528

doi: 10.1111/gcb.16004
[99]

Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y. 2007. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology 37:95−105

doi: 10.1016/j.apsoil.2007.05.002
[100]

Dai Z, Xiong X, Zhu H, Xu H, Leng P, et al. 2021. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 3:239−254

doi: 10.1007/s42773-021-00099-x
[101]

Feng J, Zhu B. 2021. Does calculation method affect the nutrient-addition effect on priming? Geoderma 393:115040

doi: 10.1016/j.geoderma.2021.115040
[102]

Meyer N, Welp G, Rodionov A, Borchard N, Martius C, et al. 2018. Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biology and Biochemistry 119:152−161

doi: 10.1016/j.soilbio.2018.01.024
[103]

Craig H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3:53−92

doi: 10.1016/0016-7037(53)90001-5
[104]

Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R. 2008. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Advances in Agronomy 100:155−250

doi: 10.1016/s0065-2113(08)00606-8
[105]

Cross A, Sohi SP. 2011. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology and Biochemistry 43:2127−2134

doi: 10.1016/j.soilbio.2011.06.016
[106]

Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32:1485−1498

doi: 10.1016/S0038-0717(00)00084-5
[107]

Singh BP, Cowie AL, Smernik RJ. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental Science & Technology 46:11770−11778

doi: 10.1021/es302545b
[108]

Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC. 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry 43:2304−2314

doi: 10.1016/j.soilbio.2011.07.020
[109]

Ramírez-Melgarejo M, Reyes-Figueroa AD, Gassó-Domingo S, Güereca LP. 2020. Analysis of empirical methods for the quantification of N2O emissions in wastewater treatment plants: comparison of emission results obtained from the IPCC Tier 1 methodology and the methodologies that integrate operational data. Science of The Total Environment 747:141288

doi: 10.1016/j.scitotenv.2020.141288
[110]

Zhang X, Luo L, Skitmore M. 2015. Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects. Journal of Cleaner Production 103:873−883

doi: 10.1016/j.jclepro.2015.04.024
[111]

Han M, Zhao Q, Li W, Ciais P, Wang YP, et al. 2022. Global soil organic carbon changes and economic revenues with biochar application. GCB Bioenergy 14:364−377

doi: 10.1111/gcbb.12915
[112]

Niu B, Peng S, Li C, Liang Q, Li X, et al. 2020. Nexus of embodied land use and greenhouse gas emissions in global agricultural trade: a quasi-input–output analysis. Journal of Cleaner Production 267:122067

doi: 10.1016/j.jclepro.2020.122067
[113]

Maavara T, Lauerwald R, Laruelle GG, Akbarzadeh Z, Bouskill NJ, et al. 2019. Nitrous oxide emissions from inland waters: are IPCC estimates too high? Global Change Biology 25:473−488

doi: 10.1111/gcb.14504
[114]

Liu X, Yu H, Liu H, Sun Z. 2025. Multi-factor carbon emissions prediction in coal-fired power plants: a machine learning approach for carbon footprint management. Energies 18:1715

doi: 10.3390/en18071715
[115]

Wang X, Yang M, Zhu X, Zhu L, Wang S. 2020. Experimental study and life cycle assessment of CO2 methanation over biochar supported catalysts. Applied Energy 280:115919

doi: 10.1016/j.apenergy.2020.115919
[116]

Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J, et al. 2021. Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology 27:237−256

doi: 10.1111/gcb.15342
[117]

Sykes AJ, Macleod M, Eory V, Rees RM, Payen F, et al. 2020. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology 26:1085−1108

doi: 10.1111/gcb.14844
[118]

Zhou X, Moghaddam TB, Chen M, Wu S, Adhikari S, et al. 2020. Life cycle assessment of biochar modified bioasphalt derived from biomass. ACS Sustainable Chemistry & Engineering 8:14568−14575

doi: 10.1021/acssuschemeng.0c05355
[119]

Azzi ES, Karltun E, Sundberg C. 2019. Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm. Environmental Science & Technology 53:8466−8476

doi: 10.1021/acs.est.9b01615
[120]

Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. 2010. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science & Technology 44:827−833

doi: 10.1021/es902266r
[121]

Li X, Wang R, Shao C, Li D, Bai S, et al. 2022. Biochar and hydrochar from agricultural residues for soil conditioning: life cycle assessment and microbially mediated C and N cycles. ACS Sustainable Chemistry & Engineering 10:3574−3583

doi: 10.1021/acssuschemeng.1c08074
[122]

Matuštík J, Hnátková T, Kočí V. 2020. Life cycle assessment of biochar-to-soil systems: a review. Journal of Cleaner Production 259:120998

doi: 10.1016/j.jclepro.2020.120998
[123]

Matuštík J, Pohořelý M, Kočí V. 2022. Is application of biochar to soil really carbon negative? The effect of methodological decisions in Life Cycle Assessment. Science of The Total Environment 807:151058

doi: 10.1016/j.scitotenv.2021.151058
[124]

Long Y, Yoshida Y, Fang K, Zhang H, Dhondt M. 2019. City-level household carbon footprint from purchaser point of view by a modified input-output model. Applied Energy 236:379−387

doi: 10.1016/j.apenergy.2018.12.002
[125]

Yin X, Hao Y, Yang Z, Zhang L, Su M, et al. 2020. Changing carbon footprint of urban household consumption in Beijing: insight from a nested input-output analysis. Journal of Cleaner Production 258:120698

doi: 10.1016/j.jclepro.2020.120698
[126]

Cheng Y, Wang C, Fan T. 2021. Forecast of the time lag effect of carbon emissions based on a temporal input-output approach. Journal of Cleaner Production 293:126131

doi: 10.1016/j.jclepro.2021.126131
[127]

Zhou S, Kong F, Lu L, Wang P, Jiang Z. 2022. Biochar—An effective additive for improving quality and reducing ecological risk of compost: a global meta-analysis. Science of The Total Environment 806:151439

doi: 10.1016/j.scitotenv.2021.151439
[128]

Jiang BN, Lu MB, Zhang ZY, Xie BL, Song HL. 2023. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: a multi-level meta-analysis. Science of The Total Environment 855:158688

doi: 10.1016/j.scitotenv.2022.158688
[129]

Telfeyan K, Breaux A, Kim J, Cable JE, Kolker AS, et al. 2017. Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA. Marine Chemistry 192:32−48

doi: 10.1016/j.marchem.2017.03.010
[130]

Yang Y, Sun K, Liu J, Chen Y, Han L. 2022. Changes in soil properties and CO2 emissions after biochar addition: role of pyrolysis temperature and aging. Science of The Total Environment 839:156333

doi: 10.1016/j.scitotenv.2022.156333
[131]

Feng Y, Feng Y, Liu Q, Chen S, Hou P, et al. 2022. How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils? Environmental Pollution 294:118598

doi: 10.1016/j.envpol.2021.118598
[132]

Mohammadi A, Cowie A, Mai TLA, de la Rosa RA, Brandão M, et al. 2016. Quantifying the greenhouse gas reduction benefits of utilising straw biochar and enriched biochar. Energy Procedia 97:254−261

doi: 10.1016/j.egypro.2016.10.069
[133]

IPCC. 2018. Global Warming of 1.5 °C. Special Report. Cambridge University Press, Cambridge, UK and New York, NY, USA. 616 pp. www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_HR.pdf

[134]

Wiedmann T, Minx JC. 2008. A definition of 'carbon footprint'. In Economics Research Trends. Hauppauge NY, USA: Nova Science Publishers. pp. 1−11. www.novapublishers.com/catalog/product_info.php?products_id=5999

[135]

Miller RE, Blair PD. 2009. Input-output analysis, 2nd Edition. Cambridge, UK: Cambridge University Press. doi: 10.1017/CBO9780511626982