[1]

Bai K, Jiang L, Wang T. 2022. Dimethylglycine sodium salt alleviates intrauterine growth restriction-induced low growth performance, redox status imbalance, and hepatic mitochondrial dysfunction in suckling piglets. Frontiers in Veterinary Science 9:905488

doi: 10.3389/fvets.2022.905488
[2]

Zhang W, Ma C, Xie P, Zhu Q, Wang X, et al. 2019. Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. Journal of Applied Microbiology 127:354−369

doi: 10.1111/jam.14304
[3]

Tang X, Xiong K, Li M. 2023. Effects of dietary epidermal growth factor supplementation on liver antioxidant capacity of piglets with intrauterine growth retardation. Journal of Animal Science 101:skad323

doi: 10.1093/jas/skad323
[4]

Zhang H, Li Y, Su W, Ying Z, Zhou L, et al. 2017. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Molecular Nutrition & Food Research 61:1600653

doi: 10.1002/mnfr.201600653
[5]

Zhang H, Chen Y, Chen Y, Ji S, Jia P, et al. 2021. Pterostilbene attenuates liver injury and oxidative stress in intrauterine growth–retarded weanling piglets. Nutrition 81:110940

doi: 10.1016/j.nut.2020.110940
[6]

Zhao Y, Niu Y, He J, Gan Z, Ji S, et al. 2020. Effects of dietary dihydroartemisinin supplementation on growth performance, hepatic inflammation, and lipid metabolism in weaned piglets with intrauterine growth retardation. Animal Science Journal 91:e13363

doi: 10.1111/asj.13363
[7]

Wu X, Liang H, Tang Y, Chen D, Yu B, et al. 2023. Dietary ferulic acid supplementation improves antioxidant capacity and lipid metabolism in liver of piglets with intrauterine growth retardation. Animal Biotechnology 34:4900−4909

doi: 10.1080/10495398.2023.2206863
[8]

Gao H, Zhang L, Wang L, Liu X, Hou X, et al. 2020. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development. BMC Genomics 21:701

doi: 10.1186/s12864-020-07094-9
[9]

Abdu SB, Al-Bogami FM. 2019. Influence of resveratrol on liver fibrosis induced by dimethylnitrosamine in male rats. Saudi Journal of Biological Sciences 26:201−209

doi: 10.1016/j.sjbs.2017.09.003
[10]

Ding L, Zhang B, Li J, Yang L, Wang Z. 2018. Beneficial effect of resveratrol on α-naphthyl isothiocyanate-induced cholestasis via regulation of the FXR pathway. Molecular Medicine Reports 17:1863−1872

doi: 10.3892/mmr.2017.8051
[11]

Yu B, Qin SY, Hu BL, Qin QY, Jiang HX, et al. 2019. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4). Biomedicine & Pharmacotherapy 117:109110

doi: 10.1016/j.biopha.2019.109110
[12]

Parekh P, Motiwale L, Naik N, Rao KVK. 2011. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Experimental and Toxicologic Pathology 63:167−173

doi: 10.1016/j.etp.2009.11.005
[13]

Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. 2017. The therapeutic potential of resveratrol: a review of clinical trials. npj Precision Oncology 1:35

doi: 10.1038/s41698-017-0038-6
[14]

Ding KN, Lu MH, Guo YN, Liang SS, Mou RW, et al. 2023. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the Nrf2-Keap1 signaling pathway. Ecotoxicology and Environmental Safety 249:114411

doi: 10.1016/j.ecoenv.2022.114411
[15]

Zhu C, Nie X, He Z, Xiong T, Li Y, et al. 2023. Research Note: dietary resveratrol supplementation improves the hepatic antioxidant capacity and attenuates lipopolysaccharide-induced inflammation in yellow-feathered broilers. Poultry Science 102:102370

doi: 10.1016/j.psj.2022.102370
[16]

Sridhar M, Suganthi RU, Thammiaha V. 2015. Effect of dietary resveratrol in ameliorating aflatoxin B1-induced changes in broiler birds. Journal of Animal Physiology and Animal Nutrition 99:1094−1104

doi: 10.1111/jpn.12260
[17]

Gao F, Liu H, Du Y, Fang X, Cheng B, et al. 2024. Dietary resveratrol ameliorates hepatic fatty acid metabolism and jejunal barrier in offspring induced by maternal oxidized soybean oil challenge. Journal of Agricultural and Food Chemistry 72:3730−3740

doi: 10.1021/acs.jafc.3c08553
[18]

Cheng K, Jia P, Ji S, Song Z, Zhang H, et al. 2021. Improvement of the hepatic lipid status in intrauterine growth retarded pigs by resveratrol is related to the inhibition of mitochondrial dysfunction, oxidative stress and inflammation. Food & Function 12:278−290

doi: 10.1039/d0fo01459a
[19]

Qiu Y, Nie X, Yang J, Wang L, Zhu C, et al. 2022. Effect of resveratrol supplementation on intestinal oxidative stress, immunity and gut microbiota in weaned piglets challenged with Deoxynivalenol. Antioxidants 11:1775

doi: 10.3390/antiox11091775
[20]

National Research Council. 2012. Nutrient Requirements of Swine. 11th Edition. Washington, DC: National Academies Press. 420 pp. doi: 10.17226/13298

[21]

Cheng K, Yao J, Song Z, Huang J, Zhao H, et al. 2025. Effects of resveratrol on redox status, jejunal injury, and mitochondrial function in intrauterine growth-retarded weaned piglets. Animals 15:290

doi: 10.3390/ani15030290
[22]

Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, et al. 2024. Superoxide dismutase and neurological disorders. IBRO Neuroscience Reports 16:373−394

doi: 10.1016/j.ibneur.2023.11.007
[23]

Gülçin İ. 2010. Antioxidant properties of resveratrol: a structure–activity insight. Innovative Food Science & Emerging Technologies 11:210−218

doi: 10.1016/j.ifset.2009.07.002
[24]

Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, et al. 2016. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. The American Journal of Clinical Nutrition 103:579−588

doi: 10.3945/ajcn.115.119834
[25]

Adhami VM, Afaq F, Ahmad N. 2003. Suppression of ultraviolet B exposure-mediated activation of NF-κB in normal human keratinocytes by resveratrol. Neoplasia 5:74−82

doi: 10.1016/S1476-5586(03)80019-2
[26]

Pirola L, Fröjdö S. 2008. Resveratrol: one molecule, many targets. IUBMB Life 60:323−332

doi: 10.1002/iub.47
[27]

Meng T, Xiao D, Muhammed A, Deng J, Chen L, et al. 2021. Anti-inflammatory action and mechanisms of resveratrol. Molecules 26:229

doi: 10.3390/molecules26010229
[28]

Li X, Li F, Wang F, Li J, Lin C, et al. 2018. Resveratrol inhibits the proliferation of A549 cells by inhibiting the expression of COX-2. OncoTargets and Therapy 11:2981−2989

doi: 10.2147/OTT.S157613
[29]

He S, Yu Q, He Y, Hu R, Xia S, et al. 2019. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poultry Science 98:6378−6387

doi: 10.3382/ps/pez471
[30]

Yang H, Wang Y, Jin S, Pang Q, Shan A, et al. 2022. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). Journal of Animal Physiology and Animal Nutrition 106:1306−1320

doi: 10.1111/jpn.13657
[31]

Qiu Y, Yang J, Wang L, Yang X, Gao K, et al. 2021. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. Journal of Animal Science and Biotechnology 12:71

doi: 10.1186/s40104-021-00596-w
[32]

Yang H, Wang Y, Yu C, Jiao Y, Zhang R, et al. 2022. Dietary resveratrol alleviates AFB1-induced ileum damage in ducks via the Nrf2 and NF-κB/NLRP3 signaling pathways and CYP1A1/2 expressions. Agriculture 12:54

doi: 10.3390/agriculture12010054
[33]

Fernandez-Vizarra E, Zeviani M. 2021. Mitochondrial disorders of the OXPHOS system. FEBS Letters 595:1062−1106

doi: 10.1002/1873-3468.13995
[34]

Nassir F, Ibdah JA. 2014. Role of mitochondria in nonalcoholic fatty liver disease. International Journal of Molecular Sciences 15:8713−8742

doi: 10.3390/ijms15058713
[35]

Miao MQ, Han YB, Liu L. 2023. Mitophagy in metabolic syndrome. The Journal of Clinical Hypertension 25:397−403

doi: 10.1111/jch.14650
[36]

Li Y, Zheng W, Lu Y, Zheng Y, Pan L, et al. 2022. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death & Disease 13:14

doi: 10.1038/s41419-021-04469-y
[37]

Zhang H, Ma Y, Wang M, Elsabagh M, Loor JJ, Wang H. 2020. Dietary supplementation of ʟ-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction. Food & Function 11:4456−4470

doi: 10.1039/d0fo00019a
[38]

Liu H, Song Y, Wang H, Zhou Y, Xu M, et al. 2025. Deciphering the power of resveratrol in mitophagy: from molecular mechanisms to therapeutic applications. Phytotherapy Research 39:1319−1343

doi: 10.1002/ptr.8433