[1]

Duffy R, Yin M, Redding LE. 2023. A review of the impact of dietary zinc on livestock health. Journal of Trace Elements and Minerals 5:100085

doi: 10.1016/j.jtemin.2023.100085
[2]

Case CL, Carlson MS. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. Journal of Animal Science 80:1917−1924

doi: 10.2527/2002.8071917x
[3]

Grilli E, Tugnoli B, Vitari F, Domeneghini C, Morlacchini M, et al. 2015. Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal 9:1760−1768

doi: 10.1017/S1751731115001329
[4]

Zhu C, Lv H, Chen Z, Wang L, Wu X, et al. 2017. Dietary zinc oxide modulates antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Biological Trace Element Research 175:331−338

doi: 10.1007/s12011-016-0767-3
[5]

Poulsen HD, Larsen T. 1995. Zinc excretion and retention in growing pigs fed increasing levels of zinc oxide. Livestock Production Science 43:235−242

doi: 10.1016/0301-6226(95)00039-N
[6]

Ciesinski L, Guenther S, Pieper R, Kalisch M, Bednorz C, et al. 2018. High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut. PLoS One 13:e0191660

doi: 10.1371/journal.pone.0191660
[7]

Slifierz MJ, Friendship R, Weese JS. 2015. Zinc oxide therapy increases prevalence and persistence of methicillin-resistant Staphylococcus aureus in pigs: a randomized controlled trial. Zoonoses and Public Health 62:301−308

doi: 10.1111/zph.12150
[8]

Vahjen W, Pietruszyńska D, Starke IC, Zentek J. 2015. High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathogens 7:23

doi: 10.1186/s13099-015-0071-3
[9]

Barnett MC, Hegarty RS. 2016. Cysteamine: a human health dietary additive with potential to improve livestock growth rate and efficiency. Animal Production Science 56:1330−1338

doi: 10.1071/AN15339
[10]

Jeitner TM, Lawrence DA. 2001. Mechanisms for the cytotoxicity of cysteamine. Toxicological Sciences 63:57−64

doi: 10.1093/toxsci/63.1.57
[11]

Cahill MC, Gallagher GT, Szabo S. 1986. Cysteamine induces duodenal ulcer in the mouse. Digestion 34:1−8

doi: 10.1159/000199303
[12]

Hu L, Fang J, Zhang X, Li M, Li S. 2020. Synthesis, crystal structure of zinc(II)–cysteamine complex and improvement of cysteamine stability. Russian Journal of Inorganic Chemistry 65:1718−1725

doi: 10.1134/S0036023620110054
[13]

AOAC. 2007. Official methods of analysis of AOAC International. 16th Edition. Rockville, MD: AOAC International.

[14]

Shang L, Zhou J, Tu J, Zeng X, Qiao S. 2022. Evaluation of effectiveness and safety of Microcin C7 in weaned piglets. Animals 12:3267

doi: 10.3390/ani12233267
[15]

EMEA. Committee for Veterinary Medicinal Products (CVMP). Vienna, Austria: Springer. 32 pp. https://www.ema.europa.eu/en/committees/committee-veterinary-medicinal-products-cvmp

[16]

Bryant HU, Holaday JW, Bernton EW. 1989. Cysteamine produces dose-related bidirectional immunomodulatory effects in mice. The Journal of Pharmacology and Experimental Therapeutics 249:424−429

doi: 10.1016/S0022-3565(25)23413-9
[17]

Abdel Salam OME. 2002. Modulation of inflammatory paw oedema by cysteamine in the rat. Pharmacological Research 45:275−284

doi: 10.1006/phrs.2002.0955
[18]

Akhtar M, Alharthi AI, Alotaibi MA, Trendafilova N, Georgieva I, et al. 2017. Synthesis, X-ray structure, spectroscopic (IR, NMR) analysis and DFT modeling of a new polymeric Zinc(II) complex of cystamine, [Zn(Cym-Cym)Cl2]n. Polyhedron 122:105−115

doi: 10.1016/j.poly.2016.11.017
[19]

Liu G, Wang Z, Wu D, Zhou A, Liu G. 2009. Effects of dietary cysteamine supplementation on growth performance and whole-body protein turnover in finishing pigs. Livestock Science 122:86−89

doi: 10.1016/j.livsci.2008.07.027
[20]

Paulk CB, Burnett DD, Tokach MD, Nelssen JL, Dritz SS, et al. 2015. Effect of added zinc in diets with ractopamine hydrochloride on growth performance, carcass characteristics, and ileal mucosal inflammation mRNA expression of finishing pigs. Journal of Animal Science 93:185−196

doi: 10.2527/jas.2014-8286
[21]

Villagómez-Estrada S, Pérez JF, van Kuijk S, Melo-Durán D, Karimirad R, et al. 2021. Effects of two zinc supplementation levels and two zinc and copper sources with different solubility characteristics on the growth performance, carcass characteristics and digestibility of growing-finishing pigs. Journal of Animal Physiology and Animal Nutrition 105:59−71

doi: 10.1111/jpn.13447
[22]

Zhou P, Luo Y, Zhang L, Li J, Zhang B, et al. 2017. Effects of cysteamine supplementation on the intestinal expression of amino acid and peptide transporters and intestinal health in finishing pigs. Animal Science Journal 88:314−321

doi: 10.1111/asj.12626
[23]

Baholet D, Skalickova S, Weisbauerova E, Batik A, Kolackova I, et al. 2023. Short-term supplementation of zinc nanoparticles in weaned piglets affects zinc bioaccumulation and carcass classification. Livestock Science 270:105191

doi: 10.1016/j.livsci.2023.105191
[24]

Ma X, Qian M, Yang Z, Xu T, Han X. 2021. Effects of zinc sources and levels on growth performance, zinc status, expressions of zinc transporters, and zinc bioavailability in weaned piglets. Animals 11:2515

doi: 10.3390/ani11092515
[25]

Liu G, Wei Y, Wang Z, Wu D, Zhou A. 2008. Effects of dietary supplementation with cysteamine on growth hormone receptor and insulin-like growth factor system in finishing pigs. Journal of Agricultural and Food Chemistry 56:5422−5427

doi: 10.1021/jf800575p
[26]

Wan Y, Zhang B. 2022. The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules 12:900

doi: 10.3390/biom12070900
[27]

Moreno-Olivas F, Tako E, Mahler GJ. 2019. ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestine. Food and Chemical Toxicology 124:112−127

doi: 10.1016/j.fct.2018.11.048
[28]

Schiaffino S, Reggiani C. 2011. Fiber types in mammalian skeletal muscles. Physiological Reviews 91:1447−1531

doi: 10.1152/physrev.00031.2010
[29]

Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. 2024. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutrition Research Reviews 37:273−286

doi: 10.1017/S0954422423000197
[30]

Morales A, Sánchez V, Pérez B, Camacho RL, Arce N, et al. 2023. Effect of dl-methionine supplementation above requirement on performance; intestinal morphology, antioxidant activity, and gene expression; and serum concentration of amino acids in heat stressed pigs. Journal of Animal Science 101:skac379

doi: 10.1093/jas/skac379
[31]

Fang CC, Feng L, Jiang WD, Wu P, Liu Y, et al. 2021. Effects of dietary methionine on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis of on-growing grass carp (Ctenopharyngodon idella). British Journal of Nutrition 126:321−336

doi: 10.1017/S0007114520002998
[32]

Ham DJ, Caldow MK, Lynch GS, Koopman R. 2014. Leucine as a treatment for muscle wasting: a critical review. Clinical Nutrition 33:937−945

doi: 10.1016/j.clnu.2014.09.016
[33]

Zhao CJ, Schieber A, Gänzle MG. 2016. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – a review. Food Research International 89:39−47

doi: 10.1016/j.foodres.2016.08.042
[34]

Wang C, Matarneh SK, Gerrard D, Tan J. 2022. Contributions of energy pathways to ATP production and pH variations in postmortem muscles. Meat Science 189:108828

doi: 10.1016/j.meatsci.2022.108828