[1]

Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, et al. 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115−123

doi: 10.1002/smll.201201225
[2]

Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change 11:403−427

doi: 10.1007/s11027-005-9006-5
[3]

Ashiq A, Vithanage M. 2020. Biochar-mediated soils for efficient use of agrochemicals. In Agrochemicals Detection, Treatment and Remediation. UK: Butterworth-Heinemann. pp. 621–645 doi: 10.1016/b978-0-08-103017-2.00023-4

[4]

Gao X, Wu H. 2014. Aerodynamic properties of biochar particles: effect of grinding and implications. Environmental Science & Technology Letters 1:60−64

doi: 10.1021/ez400165g
[5]

Lehmann J, Joseph S. 2015. Biochar for environmental management: an introduction. In Biochar for Environmental Management. New York, USA: Routledge. pp. 1–13 https://biochar-international.org/wp-content/uploads/2018/11/prelim_ch1_2015biocharforenvironmentalmanagement_text.pdf

[6]

Lee J, Sarmah AK, Kwon EE. 2019. Production and Formation of Biochar. In Biochar from Biomass and Waste: Fundamentals and Applications. Amsterdam: Elsevier. pp. 3–18 doi: 10.1016/B978-0-12-811729-3.00001-7

[7]

He L, Yang S, Yang L, Shen S, Li Y, et al. 2023. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: insight into the mechanism of enhanced electron transfer. Environmental Pollution 316:120620

doi: 10.1016/J.ENVPOL.2022.120620
[8]

Song B, Cao X, Gao W, Aziz S, Gao S, et al. 2022. Preparation of nano-biochar from conventional biorefineries for high-value applications. Renewable and Sustainable Energy Reviews 157:112057

doi: 10.1016/j.rser.2021.112057
[9]

Lonappan L, Rouissi T, Das RK, Brar SK, Ramirez AA, et al. 2016. Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Management 49:537−544

doi: 10.1016/j.wasman.2016.01.015
[10]

Oni BA, Oziegbe O, Olawole OO. 2019. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences 64:222−236

doi: 10.1016/j.aoas.2019.12.006
[11]

Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, et al. 2012. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. International Journal of Molecular Sciences 13:6639−6650

doi: 10.3390/ijms13066639
[12]

Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, et al. 2013. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine 3:58−63

doi: 10.1016/S2221-1691(13)60024-6
[13]

Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, et al. 2011. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technology 102:6273−6278

doi: 10.1016/j.biortech.2011.03.006
[14]

Inyang M, Gao B, Zimmerman A, Zhang M, Chen H. 2014. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal 236:39−46

doi: 10.1016/j.cej.2013.09.074
[15]

Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, et al. 2016. Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresource Technology 212:318−333

doi: 10.1016/j.biortech.2016.04.093
[16]

Ramadan MM, Asran-Amal, Abd-Elsalam KA. 2020. Micro/nano biochar for sustainable plant health: present status and future prospects. In Carbon Nanomaterials for Agri-food and Environmental Applications, ed. Abd-Elsalam KA. Amsterdam: Elsevier. pp. 323–357 doi: 10.1016/B978-0-12-819786-8.00016-5

[17]

Saxena J, Rana G, Pandey M. 2013. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Scientia Horticulturae 162:351−356

doi: 10.1016/j.scienta.2013.08.002
[18]

Rawat KS, Tripathi VK. 2015. Hydro-chemical survey and quantifying spatial variations of groundwater quality in Dwarka, Sub-city of Delhi, India. Journal of The Institution of Engineers: Series A 96:99−108

doi: 10.1007/s40030-015-0116-0
[19]

Tan X, Liu Y, Zeng G, Wang X, Hu X, et al. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70−85

doi: 10.1016/j.chemosphere.2014.12.058
[20]

Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, et al. 2018. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding. International Journal of Biological Macromolecules 115:563−571

doi: 10.1016/j.ijbiomac.2018.04.105
[21]

Chen B, Chen Z, Lv S. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology 102:716−723

doi: 10.1016/j.biortech.2010.08.067
[22]

Harikishore Kumar Reddy D, Lee SM. 2014. Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 454:96−103

doi: 10.1016/j.colsurfa.2014.03.105
[23]

Noreen S, Abd-Elsalam KA. 2021. Biochar-based nanocomposites: a sustainable tool in wastewater bioremediation. In Aquananotechnology. Amsterdam: Elsevier. pp. 185–200 doi: 10.1016/B978-0-12-821141-0.00023-9

[24]

Ramanayaka S, Tsang DCW, Hou D, Ok YS, Vithanage M. 2020. Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. Science of the Total Environment 706:135725

doi: 10.1016/j.scitotenv.2019.135725
[25]

Greco C, Cosentino U, Pitea D, Moro G, Santangelo S, et al. 2019. Role of the carbon defects in the catalytic oxygen reduction by graphite nanoparticles: a spectromagnetic, electrochemical and computational integrated approach. Physical Chemistry Chemical Physics 21:6021−6032

doi: 10.1039/C8CP07023G
[26]

Wang D, Zhang W, Hao X, Zhou D. 2013. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environmental Science & Technology 47:821−828

doi: 10.1021/es303794d
[27]

Gámiz B, Cox L, Hermosín MC, Spokas K, Celis R. 2017. Assessing the effect of organoclays and biochar on the fate of abscisic acid in soil. Journal of Agricultural and Food Chemistry 65:29−38

doi: 10.1021/acs.jafc.6b03668
[28]

Sani MNH, Amin M, Siddique AB, Nasif SO, Ghaley BB, et al. 2023. Waste-derived nanobiochar: a new avenue towards sustainable agriculture, environment, and circular bioeconomy. Science of the Total Environment 905:166881

doi: 10.1016/j.scitotenv.2023.166881
[29]

United Nations Convention to Combat Desertification (UNCCD). 2017. The Global Land Outlook. 1st Edition. Bonn, Germany: UNCCD. www.unccd.int/sites/default/files/documents/2017-09/GLO_Full_Report_low_res.pdf

[30]

Wang J, Huang R, Zhu L, Guan H, Lin L, et al. 2022. The effects of biochar on microbial community composition in and beneath biological soil crusts in a Pinus massoniana lamb. plantation. Forests 13:1141

doi: 10.3390/f13071141
[31]

Wang Z, Liu X, Sun F, Jiang Q, Shang H, et al. 2025. Effect of biochar and cyanobacteria crust incorporation on soil wind erosion in arid mining area under freeze-thaw action. Scientific Reports 15:16363

doi: 10.1038/s41598-025-96688-y
[32]

Meyer S, Glaser B, Quicker P. 2011. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental Science & Technology 45:9473−9483

doi: 10.1021/es201792c
[33]

Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, et al. 2021. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: state-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production 297:126645

doi: 10.1016/j.jclepro.2021.126645
[34]

Ramanayaka S, Vithanage M, Alessi DS, Liu WJ, Jayasundera ACA, et al. 2020. Nanobiochar: production, properties, and multifunctional applications. Environmental Science: Nano 7:3279−3302

doi: 10.1039/D0EN00486C
[35]

Pourkarimi S, Hallajisani A, Alizadehdakhel A, Nouralishahi A. 2019. Biofuel production through micro-and macroalgae pyrolysis–A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis 142:104599

doi: 10.1016/j.jaap.2019.04.015
[36]

Zabot GL, Tres MV, Ferreira PAA, Dal Molin A, Mazutti MA. 2020. Power the future with bioenergy from organic wastes. In Recent Developments in Bioenergy Research. Amsterdam: Elsevier. pp. 85–114 doi: 10.1016/B978-0-12-819597-0.00004-0

[37]

Cheah S, Jablonski WS, Olstad JL, Carpenter DL, Barthelemy KD, et al. 2016. Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition. Green Chemistry 18:6291−6304

doi: 10.1039/C6GC01661H
[38]

Ramanayaka S, Vithanage M, Sarmah A, An T, Kim KH, et al. 2019. Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Advances 9:34359−34376

doi: 10.1039/C9RA06879A
[39]

Lyu H, Gao B, He F, Zimmerman AR, Ding C, et al. 2018. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environmental Pollution 233:54−63

doi: 10.1016/j.envpol.2017.10.037
[40]

Oleszczuk P, Ćwikła-Bundyra W, Bogusz A, Skwarek E, Ok YS. 2016. Characterization of nanoparticles of biochars from different biomass. Journal of Analytical and Applied Pyrolysis 121:165−172

doi: 10.1016/J.JAAP.2016.07.017
[41]

Karinkanta P, Ämmälä A, Illikainen M, Niinimäki J. 2018. Fine grinding of wood–Overview from wood breakage to applications. Biomass and Bioenergy 113:31−44

doi: 10.1016/j.biombioe.2018.03.007
[42]

Curcio I, Gigli R, Mormile F, Mormile C. 2025. A comprehensive review on biochar, with a particular focus on nano properties and applications. Nano Trends 10:100117

doi: 10.1016/j.nwnano.2025.100117
[43]

Kumar M, Xiong X, Wan Z, Sun Y, Tsang DCW, et al. 2020. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology 312:123613

doi: 10.1016/j.biortech.2020.123613
[44]

Fan X, Chang DW, Chen X, Baek JB, Dai L. 2016. Functionalized graphene nanoplatelets from ball milling for energy applications. Current Opinion in Chemical Engineering 11:52−58

doi: 10.1016/j.coche.2016.01.003
[45]

Tang J, Lv H, Gong Y, Huang Y. 2015. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology 196:355−363

doi: 10.1016/j.biortech.2015.07.047
[46]

Chen L, Chen XL, Zhou CH, Yang HM, Ji SF, et al. 2017. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production 156:648−659

doi: 10.1016/j.jclepro.2017.04.050
[47]

Lin L, Li Z, Liu X, Qiu W, Song Z. 2019. Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environmental Pollution 244:600−607

doi: 10.1016/j.envpol.2018.10.011
[48]

Ramos R, Abdelkader-Fernández VK, Matos R, Peixoto AF, Fernandes DM. 2022. Metal-supported biochar catalysts for sustainable biorefinery, electrocatalysis, and energy storage applications: a review. Catalysts 12:207

doi: 10.3390/catal12020207
[49]

Mahor A, Singh PP, Bharadwaj P, Sharma N, Yadav S, et al. 2021. Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology. C 7:19

doi: 10.3390/c7010019
[50]

Yang M, Li C, Zhang Y, Jia D, Zhang X, et al. 2018. Microscale bone grinding temperature by dynamic heat flux in nanoparticle jet mist cooling with different particle sizes. Materials and Manufacturing Processes 33:58−68

doi: 10.1080/10426914.2016.1244846
[51]

Anupama, Khare P. 2021. A comprehensive evaluation of inherent properties and applications of nano-biochar prepared from different methods and feedstocks. Journal of Cleaner Production 320:128759

doi: 10.1016/j.jclepro.2021.128759
[52]

Zhao L, Zhang Y, Wang L, Lyu H, Xia S, et al. 2022. Effective removal of Hg (II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: effect of different pyrolysis temperatures. Chemosphere 294:133820

doi: 10.1016/j.chemosphere.2022.133820
[53]

Ma S, Jing F, Sohi SP, Chen J. 2019. New insights into contrasting mechanisms for PAE adsorption on millimeter, micron-and nano-scale biochar. Environmental Science and Pollution Research 26:18636−18650

doi: 10.1007/s11356-019-05181-3
[54]

Wallace CA, Afzal MT, Saha GC. 2019. Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing 6:33

doi: 10.1186/s40643-019-0268-2
[55]

Genovese M, Jiang J, Lian K, Holm N. 2015. High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. Journal of Materials Chemistry A 3:2903−2913

doi: 10.1039/C4TA06110A
[56]

Mahfoz W, Shah SS, Das M, Basha SI, Ogawa T, et al. 2025. Ball milling approaches for biomass‐derived nanocarbon in advanced sustainable applications. The Chemical Record 25:2500095

doi: 10.1002/tcr.202500095
[57]

Cui R, Shen Y, Zhang Z, Huang Q, Zhu J, et al. 2025. Mechanochemical remediation of heavy metal-polluted soil by ball milling with monocalcium phosphate. Journal of Environmental Chemical Engineering 13:118373

doi: 10.1016/j.jece.2025.118373
[58]

Dutta V, Verma R, Gopalkrishnan C, Yuan MH, Batoo KM, et al. 2022. Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: a state-of-the-art review. Inorganics 10:169

doi: 10.3390/inorganics10100169
[59]

Abed Hussein B, Mahdi AB, Emad Izzat S, Acwin Dwijendra NK, Romero Parra RM, et al. 2022. Production, structural properties nano biochar and effects nano biochar in soil: a review. Egyptian Journal of Chemistry 65:607−618

doi: 10.21608/EJCHEM.2022.131162.5772
[60]

Sun Y, Zong T, Wu Q, Wang X, Hou H, et al. 2025. Fabrication of rice straw nano-biochar by ball milling for efficient adsorption of ammonium nitrogen and reduction of ammonia volatilization: effects and mechanisms. Environmental Science: Nano 12:3122−3138

doi: 10.1039/D5EN00103J
[61]

Yu X, Wu S, Zhang Z, Wang C. 2025. Application of ball milling technology in removal of PFAS and ball milling modified materials: a review. Journal of Hazardous Materials Advances 18:100709

doi: 10.1016/j.hazadv.2025.100709
[62]

Bhandari G, Gangola S, Dhasmana A, Rajput V, Gupta S, et al. 2023. Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Frontiers in Microbiology 14:1214870

doi: 10.3389/fmicb.2023.1214870
[63]

Rao N, Singh R, Bashambu L. 2021. Carbon-based nanomaterials: Synthesis and prospective applications. Materials Today: Proceedings 44:608−614

doi: 10.1016/j.matpr.2020.10.593
[64]

Song B, Chen M, Zhao L, Qiu H, Cao X. 2019. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Science of the Total Environment 661:685−695

doi: 10.1016/j.scitotenv.2019.01.193
[65]

Naghdi M, Taheran M, Pulicharla R, Rouissi T, Brar SK, et al. 2019. Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: adsorption behavior and influential parameters. Arabian Journal of Chemistry 12:5292−5301

doi: 10.1016/j.arabjc.2016.12.025
[66]

Yue L, Lian F, Han Y, Bao Q, Wang Z, et al. 2019. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: implications for agronomic benefits and potential risk. Science of the Total Environment 656:9−18

doi: 10.1016/j.scitotenv.2018.11.364
[67]

Nath BK, Chaliha C, Kalita E. 2019. Iron oxide permeated mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): Chemometric modelling and adsorption dynamics. Journal of Environmental Management 246:397−409

doi: 10.1016/j.jenvman.2019.06.008
[68]

Ali Baig S, Zhu J, Muhammad N, Sheng T, Xu X. 2014. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass and Bioenergy 71:299−310

doi: 10.1016/j.biombioe.2014.09.027
[69]

Wang MC, Sheng GD, Qiu YP. 2015. A novel manganese-oxide/biochar composite for efficient removal of lead (II) from aqueous solutions. International Journal of Environmental Science and Technology 12:1719−1726

doi: 10.1007/s13762-014-0538-7
[70]

Zhang M, Gao B, Yao Y, Xue Y, Inyang M. 2012. Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment 435:567−572

doi: 10.1016/j.scitotenv.2012.07.038
[71]

Yan L, Kong L, Qu Z, Li L, Shen G. 2015. Magnetic biochar decorated with ZnS nanocrytals for Pb(II) removal. ACS Sustainable Chemistry & Engineering 3:125−132

doi: 10.1021/sc500619r
[72]

Iqbal A, He L, Ali I, Yuan P, Khan A, et al. 2022. Partial substation of organic fertilizer with chemical fertilizer improves soil biochemical attributes, rice yields, and restores bacterial community diversity in a paddy field. Frontiers in Plant Science 13:895230

doi: 10.3389/fpls.2022.895230
[73]

Bah A, Husni MHA, Teh CBS, Rafii MY, Syed Omar SR, et al. 2014. Reducing runoff loss of applied nutrients in oil palm cultivation using controlled‐release fertilizers. Advances in Agriculture 2014:285387

doi: 10.1155/2014/285387
[74]

Salem HM, Schott LR, Piaskowski J, Chapagain A, Yost JL, et al. 2024. Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability 16:645

doi: 10.3390/su16020645
[75]

Salem HM, Schott LR, Ali AM. 2025. Advancements in smart farming: leveraging artificial intelligence and internet of things for sustainable agricultural management. In Future of AI, IoT, and Sustainability. Cham, Switzerland: Springer Nature. pp. 53–72 doi: 10.1007/978-3-031-76286-4_4

[76]

Ali AM, Salem HM, Bijay-Singh. 2024. Site-Specific Nitrogen Fertilizer Management Using Canopy Reflectance Sensors, Chlorophyll Meters and Leaf Color Charts: A Review. Nitrogen 5:828−856

doi: 10.3390/nitrogen5040054
[77]

Das SK, Ghosh GK. 2023. Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield. Biomass Conversion and Biorefinery 13:13051−13063

doi: 10.1007/s13399-021-02069-6
[78]

Singh Yadav SP, Bhandari S, Bhatta D, Poudel A, Bhattarai S, et al. 2023. Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research 11:100498

doi: 10.1016/j.jafr.2023.100498
[79]

Xia H, Riaz M, Zhang M, Liu B, Li Y, et al. 2022. Biochar-N fertilizer interaction increases N utilization efficiency by modifying soil C/N component under N fertilizer deep placement modes. Chemosphere 286:131594

doi: 10.1016/j.chemosphere.2021.131594
[80]

Hou J, Pugazhendhi A, Sindhu R, Vinayak V, Thanh NC, et al. 2022. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environmental Research 214:113909

doi: 10.1016/j.envres.2022.113909
[81]

Murtaza G, Ahmed Z, Eldin SM, Ali B, Bawazeer S, et al. 2023. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Frontiers in Environmental Science 11:1059449

doi: 10.3389/fenvs.2023.1059449
[82]

Crane-Droesch A, Abiven S, Jeffery S, Torn MS. 2013. Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environmental Research Letters 8:044049

doi: 10.1088/1748-9326/8/4/044049
[83]

Graber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, et al. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil 337:481−496

doi: 10.1007/s11104-010-0544-6
[84]

Bopp C, Christl I, Schulin R, Evangelou MWH. 2016. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils. Environmental Science and Pollution Research 23:17449−17458

doi: 10.1007/s11356-016-6935-3
[85]

Bonanomi G, Ippolito F, Cesarano G, Nanni B, Lombardi N, et al. 2017. Biochar as plant growth promoter: better off alone or mixed with organic amendments?. Frontiers in Plant Science 8:1570

doi: 10.3389/fpls.2017.01570
[86]

Scheifele M, Hobi A, Buegger F, Gattinger A, Schulin R, et al. 2017. Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation. Journal of Plant Nutrition and Soil Science 180:199−211

doi: 10.1002/jpln.201600419
[87]

Salem HM. 2014. Effect of conservation tillage on soil physical properties, in-situ rainwater harvesting, and erosion control in arid and semi-arid regions. Doctoral dissertation. E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain. doi: 10.20868/UPM.thesis.30473

[88]

Salem HM, Muñoz-García MÁ, Rodríguez MG. 2020. Soil physical properties and soil water tension monitoring by wireless sensor network after reservoir and minimum tillage practices. Soil Research 59:309−317

doi: 10.1071/SR20129
[89]

Rabbi SMF, Minasny B, Salami ST, McBratney AB, Young IM. 2021. Greater, but not necessarily better: the influence of biochar on soil hydraulic properties. European Journal of Soil Science 72:2033−2048

doi: 10.1111/ejss.13105
[90]

Adhikari S, Timms W, Parvez Mahmud MA. 2022. Optimising water holding capacity and hydrophobicity of biochar for soil amendment–a review. Science of the Total Environment 851:158043

doi: 10.1016/j.scitotenv.2022.158043
[91]

Ali AM, Salem HM. 2024. Salinity-induced desertification in oasis ecosystems: challenges and future directions. Environmental Monitoring and Assessment 196:696

doi: 10.1007/s10661-024-12804-x
[92]

Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, et al. 2014. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant and Soil 374:753−766

doi: 10.1007/s11104-013-1918-3
[93]

Xiao L, Meng F. 2020. Evaluating the effect of biochar on salt leaching and nutrient retention of Yellow River Delta soil. Soil Use and Management 36:740−750

doi: 10.1111/sum.12638
[94]

Farouk S, Al-Huqail AA. 2022. Sustainable biochar and/or melatonin improve salinity tolerance in borage plants by modulating osmotic adjustment, antioxidants, and ion homeostasis. Plants 11:765

doi: 10.3390/plants11060765
[95]

Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Asghar RMA, et al. 2023. A systematic review on the bioremediation of metal contaminated soils using biochar and slag: current status and future outlook. Environmental Monitoring and Assessment 195:961

doi: 10.1007/s10661-023-11561-7
[96]

Amorim TL, Santos HRB, Neto JB, Hermínio PJ, Silva JRI, et al. 2023. Resistant rootstocks mitigate ionic toxicity with beneficial effects for growth and photosynthesis in grapevine grafted plants under salinity. Scientia Horticulturae 317:112053

doi: 10.1016/j.scienta.2023.112053
[97]

Lee X, Yang F, Xing Y, Huang Y, Xu L, et al. 2022. Use of biochar to manage soil salts and water: effects and mechanisms. CATENA 211:106018

doi: 10.1016/j.catena.2022.106018
[98]

Bigot S, Fuksová M, Martínez JP, Lutts S, Quinet M. 2023. Sodium and chloride accumulation and repartition differed between the cultivated tomato (Solanum lycopersicum) and its wild halophyte relative Solanum chilense under salt stress. Scientia Horticulturae 321:112324

doi: 10.1016/j.scienta.2023.112324
[99]

Liu W, Li Y, Feng Y, Qiao J, Zhao H, et al. 2020. The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil. Scientific Reports 10:858

doi: 10.1038/s41598-020-57954-3
[100]

Wang C, Luo D, Zhang X, Huang R, Cao Y, et al. 2022. Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review. Environmental Science and Ecotechnology 10:100167

doi: 10.1016/j.ese.2022.100167
[101]

González ME, Cea M, Medina J, González A, Diez MC, et al. 2015. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of the Total Environment 505:446−453

doi: 10.1016/j.scitotenv.2014.10.014
[102]

Rashid MI, Shah GA, Sadiq M, Amin NU, Ali AM, et al. 2023. Nanobiochar and copper oxide nanoparticles mixture synergistically increases soil nutrient availability and improves wheat production. Plants 12:1312

doi: 10.3390/plants12061312
[103]

Chaudhary T, Priya P, Maurya A, Sharma V, Balyan G, et al. 2024. Carbon nitride nano-biochar exhibit dose-dependent effect on rice growth. BIO Web of Conferences 110:01007

doi: 10.1051/bioconf/202411001007
[104]

Chen X, Zhou B, Wang Q, Tao W, Lin H. 2020. Nano-biochar reduced soil erosion and nitrate loss in sloping fields on the Loess Plateau of China. CATENA 187:104346

doi: 10.1016/j.catena.2019.104346
[105]

Zhao F, Xin X, Cao Y, Su D, Ji P, et al. 2021. Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials 11:2717

doi: 10.3390/nano11102717
[106]

Yang Y, Zhou B, Hu Z, Lin H. 2020. The effects of nano-biochar on maize growth in Northern Shaanxi province on the loess plateau. Applied Ecology and Environmental Research 18:2863−2877

doi: 10.15666/aeer/1802_28632877
[107]

Brar B, Saharan BS, Seth CS, Kamboj A, Surekha, et al. 2024. Nanobiochar: soil and plant interactions and their implications for sustainable agriculture. Biocatalysis and Agricultural Biotechnology 57:103077

doi: 10.1016/j.bcab.2024.103077
[108]

Helal MI, Husein ME, Walaa G, Mostafa ED. 2019. Characterization of agricultural residues-based nano biochar and its efficiency in adsorption/desorption of nutrients. International Journal of Environment 8:130−141

[109]

Lateef A, Nazir R, Jamil N, Alam S, Shah R, et al. 2019. Synthesis and characterization of environmental friendly corncob biochar based nano-composite–a potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring & Management 11:100212

doi: 10.1016/j.enmm.2019.100212
[110]

Das SK, Ghosh GK. 2022. Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: a step towards pollution free environment. Energy 242:122977

doi: 10.1016/j.energy.2021.122977
[111]

Herrmann L, Lesueur D, Robin A, Robain H, Wiriyakitnateekul W, et al. 2019. Impact of biochar application dose on soil microbial communities associated with rubber trees in North East Thailand. Science of the Total Environment 689:970−979

doi: 10.1016/j.scitotenv.2019.06.441
[112]

Yin D, Li H, Wang H, Guo X, Wang Z, et al. 2021. Impact of different biochars on microbial community structure in the rhizospheric soil of rice grown in albic soil. Molecules 26:4783

doi: 10.3390/molecules26164783
[113]

Taheran M, Naghdi M, Brar SK, Verma M, Surampalli RY. 2018. Emerging contaminants: here today, there tomorrow!. Environmental Nanotechnology, Monitoring & Management 10:122−126

doi: 10.1016/j.enmm.2018.05.010
[114]

Jadhav V, Ahire B, Pawar A, Roy A, Kumar A, et al. 2025. Nanobiochar: a sustainable solution for environmental remediation. Environmental Nanotechnology, Monitoring & Management 23:101061

doi: 10.1016/j.enmm.2025.101061
[115]

Raczkiewicz M, Mašek O, Ok YS, Oleszczuk P. 2024. Size reduction of biochar to nanoscale decrease polycyclic aromatic hydrocarbons (PAHs) and metals content and bioavailability in nanobiochar. Science of the Total Environment 937:173372

doi: 10.1016/j.scitotenv.2024.173372
[116]

Pathak HK, Seth CS, Chauhan PK, Dubey G, Singh G, et al. 2024. Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: mechanism, adsorption kinetic model, plant growth and development. Environmental Research 255:119136

doi: 10.1016/j.envres.2024.119136
[117]

Rajput P, Kumar P, Priya AK, Kumari S, Shiade SRG, et al. 2024. Nanomaterials and biochar mediated remediation of emerging contaminants. Science of the Total Environment 916:170064

doi: 10.1016/j
[118]

Goswami L, Kushwaha A, Singh A, Saha P, Choi Y, et al. 2022. Nano-Biochar as a sustainable catalyst for anaerobic digestion: a synergetic Closed-Loop approach. Catalysts 12:186

doi: 10.3390/catal12020186
[119]

Zhu Y, Hu J, Wang J. 2012. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials 221:155−161

doi: 10.1016/j.jhazmat.2012.04.026
[120]

Gan C, Liu Y, Tan X, Wang S, Zeng G, et al. 2015. Effect of porous zinc–biochar nanocomposites on Cr (VI) adsorption from aqueous solution. RSC Advances 5:35107−35115

doi: 10.1039/C5RA04416B
[121]

Cope CO, Webster DS, Sabatini DA. 2014. Arsenate adsorption onto iron oxide amended rice husk char. Science of the Total Environment 488:554−561

doi: 10.1016/j.scitotenv.2013.12.120
[122]

Huang X, Liu Y, Liu S, Tan X, Ding Y, et al. 2016. Effective removal of Cr(VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances 6:94−104

doi: 10.1039/C5RA22886G
[123]

Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, et al. 2017. Adsorption properties of nano-MnO2–biochar composites for copper in aqueous solution. Molecules 22:173

doi: 10.3390/molecules22010173
[124]

Bakshi S, Banik C, Rathke SJ, Laird DA. 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research 137:153−163

doi: 10.1016/j.watres.2018.03.021
[125]

Li C, Zhang L, Gao Y, Li A. 2018. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb (II), Cu (II) and Cr (VI) removals. Waste Management 79:625−637

doi: 10.1016/j.wasman.2018.08.035
[126]

Wang YY, Liu YX, Lu HH, Yang RQ, Yang SM. 2018. Competitive adsorption of Pb (II), Cu (II), and Zn (II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. Journal of Solid State Chemistry 261:53−61

doi: 10.1016/j.jssc.2018.02.010
[127]

Mahmoud ME, El-Ghanam AM, Saad SR, Mohamed RHA. 2020. Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves. Sustainable Chemistry and Pharmacy 18:100336

doi: 10.1016/j.scp.2020.100336
[128]

Li R, Zhang Y, Deng H, Zhang Z, Wang JJ, et al. 2020. Removing tetracycline and Hg (II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. Journal of Hazardous Materials 384:121095

doi: 10.1016/j.jhazmat.2019.121095
[129]

Mohan D, Kumar S, Srivastava A. 2014. Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering 73:798−808

doi: 10.1016/j.ecoleng.2014.08.017
[130]

Yao Y, Gao B, Fang J, Zhang M, Chen H, et al. 2014. Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal 242:136−143

doi: 10.1016/j.cej.2013.12.062
[131]

Yao Y, Gao B, Chen J, Zhang M, Inyang M, et al. 2013. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresource Technology 138:8−13

doi: 10.1016/j.biortech.2013.03.057
[132]

Wang Z, Tong H, Sun F, Wang W, Jiang Q, et al. 2025. Biochar assists desert cyanobacteria to resist Cd stress and enhance Cd adsorption. Algal Research 90:104197

doi: 10.1016/j.algal.2025.104197
[133]

Li XR, Jia RL, Zhang ZS, Zhang P, Hui R. 2018. Hydrological response of biological soil crusts to global warming: a ten-year simulative study. Global Change Biology 24:4960−4971

doi: 10.1111/gcb.14378
[134]

Li Z, Chen C, Gao Y, Wang B, Wang D, et al. 2021. Synergistic effect of cyanobacteria and nano-sand-stabilizer on biocrust formation and sand fixation. Journal of Environmental Chemical Engineering 9:104887

doi: 10.1016/j.jece.2020.104887
[135]

Emamverdian A, Khalofah A, Pehlivan N, Ghorbani A. 2025. Utilizing nano-biochar and biochar for sustainable heavy metal remediation and enhanced crop tolerance: innovative approaches in nano-biosensing and environmental health. Industrial Crops and Products 234:121462

doi: 10.1016/j.indcrop.2025.121462
[136]

Wang L, Li T, Liu H, Zhang Z, Yang A, et al. 2024. Combined effect of freeze–thaw cycles and biochar addition on soil nitrogen leaching characteristics in seasonally frozen farmland in Northeast China. Agronomy 14:153

doi: 10.3390/agronomy14010153
[137]

Weber K, Quicker P. 2018. Properties of biochar. Fuel 217:240−261

doi: 10.1016/j.fuel.2017.12.054
[138]

Yu X, Lu S. 2020. Double effects of biochar in affecting the macropore system of paddy soils identified by high-resolution X-ray tomography. Science of the Total Environment 720:137690

doi: 10.1016/j.scitotenv.2020.137690
[139]

Sun Y, Wang X, Wu Q, Zong T, Xin X, et al. 2024. Use of rice straw nano-biochar to slow down water infiltration and reduce nitrogen leaching in a clayey soil. Science of the Total Environment 948:174956

doi: 10.1016/j.scitotenv.2024.174956
[140]

Chen X, Duan M, Zhou B, Cui L. 2022. Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic characteristics of a sandy loam soil. Soil Use and Management 38:836−849

doi: 10.1111/sum.12740
[141]

Hussain R, Ghosh KK, Ravi K. 2023. Influence of biochar particle size on the hydraulic conductivity of two different compacted engineered soils. Biomass Conversion and Biorefinery 13:801−811

doi: 10.1007/s13399-020-01226-7
[142]

Hartmann A, Schmid M, van Tuinen D, Berg G. 2009. Plant-driven selection of microbes. Plant and Soil 321:235−257

doi: 10.1007/s11104-008-9814-y
[143]

Muhammad N, Hussain M, Ullah W, Khan TA, Ali S, et al. 2018. Biochar for sustainable soil and environment: a comprehensive review. Arabian Journal of Geosciences 11:731

doi: 10.1007/s12517-018-4074-5
[144]

Sarma H, Shyam S, Zhang M, Guerriero G. 2024. Nano-biochar interactions with contaminants in the rhizosphere and their implications for plant-soil dynamics. Soil Environmental Health 2:100095

doi: 10.1016/j.seh.2024.100095
[145]

Osman AI, Farghali M, Rashwan AK. 2024. Life cycle assessment of biochar as a green sorbent for soil remediation. Current Opinion in Green and Sustainable Chemistry 46:100882

doi: 10.1016/j.cogsc.2024.100882