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Abstract
A positive biodiversity–ecosystem functioning (BEF) relationship is frequently reported for biotic communities with low diversity levels. However, whether this is
also true for highly diverse soil microbial communities remains unclear. The study explored the BEF relationships between species richness and nitrogen (N)-
transforming capability of nirK- and nirS-nitrite reducers, nitrous oxide reducers, and nitrite oxidizer communities in soils from five different vegetation types.
The results consistently indicated negative BEF patterns in these N-transforming microbes. The relative abundance of keystone taxa from co-occurrence networks
increased substantially with species richness but was negatively correlated with functional performance. Network complexity decreased in communities with high
species richness. These findings suggest that negative selection and biotic competition may simultaneously generate negative BEF patterns. A conceptual model
was also proposed in which the BEF relationship followed a quadratic curve that varied with the level of diversity. Microbial diversity is crucial for maintaining the
balance of ecological systems because microorganisms play key roles in nutrient cycling and other essential biogeochemical processes. Recent studies have shown
that increased diversity may not always lead to improved ecosystem function. The current study indicated that function decreased with species richness in soil N-
transforming  bacterial  communities.  Keystone  taxa  were  positively  correlated  with  species  richness  but  negatively  correlated  with  function.  Community
complexity  decreased with increasing species  richness.  These  findings  suggest  that  both negative  selection effects  and biotic  competition may simultaneously
generate negative biodiversity–ecosystem functional relationships.
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 Introduction
Biodiversity  has  attracted  worldwide  attention  owing  to  the  frequent
reports of  a positive influence on ecosystem functioning[1−3].  Until  now,
advances  on  this  topic  have  been  obtained  mainly  from  studies  on
macroorganisms  with  low  biodiversity  (e.g.,  plants).  Due  to  functional
redundancy,  increased  competition  intensity,  or  differences  in  activity
levels,  whether  the  positive  biodiversity–ecosystem  functioning  (BEF)
relationship  still  holds  in  soil  microbial  communities  is  not  well
understood[2].  This  is  a  significant  knowledge  gap,  considering  that  soil
microbes represent the highest biodiversity in terrestrial ecosystems, with
an  estimated  102–106 bacterial  phylotypes  in  1  g  of  soil[4−7].  Therefore,
understanding  how  the  complex  soil  microbiome  regulates  ecological
functions is of prime importance for ecosystem management[8−12].

Positive  BEF  patterns  have  often  been  proposed  to  result  from the
complementarity  effect  of  facilitation  or  niche  differentiation  and  a
positive  selection  effect  from  the  dominance  of  certain  influential
species[13−15].  However,  exceptions have also been reported with non-
significant  or  even  negative  BEF  relationships,  for  example,  in  semi-
arid  wildflower  or  green  algal  communities[16,17].  The  mechanisms
underlying these patterns are usually explained by a negative selection
effect  driven  by  the  uneven  contribution  of  competitively  dominant
species[18] or  allelopathic  disturbances[19].  However,  the  underlying
mechanisms  are  primarily  based  on  macroorganisms.  How  this

regulates  the  diversity  and  functions  of  microbial  communities
requires further investigation.

In  the  microbial  world,  there  are  usually  some taxa  that  are  highly
connected to each other, defined as keystone taxa[20], which, individu-
ally  or  in  a  guild,  can  exert  considerable  influence  on  microbiome
structure  and  functions[21].  Keystone  taxa  may  arise  based  on  several
factors,  such  as  complementary  resource  acquisition  strategies,
resource  sharing,  and  niche  partitioning[15,21].  However,  how  the
complexity  of  the  microbiome  is  mediated  by  keystone  taxa  that
further affect BEF relationships remains unclear.

A  positive  BEF  relationship  seems  tenable  for  soil  microbial
communities, and higher diversity may be conducive to better perfor-
mance in controlled conditions[22]. For example, soil microbial species
richness can positively predict organic matter mineralization and plant
residue  decomposition[23].  Higher  species  diversity  promotes  efficient
microbial carbon use and enhances C storage[11,24]. Microbial diversity
loss  impairs  soil  N-cycling[25,26],  whereas  greater  microbial  diversity
produces  more  proteases,  proteolyzes  organic  N,  and  increases  N
availability[27].  However,  these  reported  positive  BEF  patterns  mainly
occur in microbial communities with low diversity (< 10 species) and
in  controlled  experiments[28,29].  However,  whether  the  BEF  relation-
ship will demonstrate a different pattern in more diverse communities
under natural soil conditions is still unclear[30].

In  natural  soils,  the  number  of  soil  microbial  species  is  much
greater,  the  community  is  more  complex  than  in  synthetic  microbial
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communities,  and  some  microbial  taxa  may  be  functionally
redundant[2,31].  Greater  complexity  can  support  more  functions  and
stronger  stability  of  microbial  communities[32,33];  however,  intense
resource competition may also occur simultaneously among microbial
taxa.  Therefore,  whether  a  positive  BEF  relationship  still  existed,
particularly  in  functionally  redundant  communities  with  intense
competition,  requires  further  confirmation.  Previous  studies  have
reported  positive  BEF  patterns  under  controlled  conditions  using
culturable  and  functionally  redundant  soil  microbial  communities  at
low  diversity  levels.  However,  the  species  richness  in  natural  soil
microbial  communities  may  be  several  orders  of  magnitude  greater
than  that  in  controlled  experiments.  Such  high  species  richness  may
cause  strong  resource  competition,  which  may  further  lead  to  high
dominance  or  reduce  the  influence  of  highly  effective  microbial  taxa,
such as keystone species[34]. If the dominant species do not contribute
much  to  ecosystem  functioning,  or  if  the  roles  of  mediators  for
keystone species disappear, a negative BEF might occur.

Besides  the traditional  positive-BEF view,  the BEF relationship can
level  off  or  even  become negative  when species  richness  is  very  high.
Because  natural  soil  microbial  communities  can  contain  orders  of
magnitude  more  species  than  experimental  assemblages  and  exhibit
intense functional redundancy and competition, the direction of their
BEF  relationships  remains  unresolved.  Therefore,  instead  of  presum-
ing  a  positive  BEF,  the  shape  of  the  BEF  relationship  for  nitrogen-
transforming  microbial  guilds  in  a  seasonally  flooded  marsh  was
systematically  examined.  Four  guilds  of  nitrogen  (N)-transforming
microbial  communities  were  selected  from  natural  soil  conditions.
These  N-cycling  microbes  included  nitrite  (NO2

−)  oxidizing  bacteria
(NOB), two types of nitrite reducing bacteria (nirK- and nirS-carrying
bacteria),  and  nitrite  oxide  (N2O)  reducers.  NOB  governs  nitrite
oxidation, the last step of nitrification, which converts nitrite to nitrate
(NO3

−)[35].  The nirK-type  or nirS-type  microbes  are  responsible  for
nitrite  reduction,  which  is  the  rate-limiting  step  in  denitrification[36].
N2O  is  not  only  reduced  by  denitrifying  bacteria,  but  can  also  be
reduced  by  non-denitrifying  microbes,  so  all  these  microbes  were
defined  as  N2O  reducers.  Soil  samples  were  collected  from  distinct
vegetation types along the beach of the Yangtze River to obtain a wide
range of microbial species richness. This study determined the species
richness  of  nitrite  oxidizers, nirK-type  and nirS-type  denitrifiers,  and
N2O  reducers,  as  well  as  their  respective  functional  potentials  (meta-
geonomic  marker  gene  abundance)  and  N-transformation  rates
(enzymatic activity). The findings will be helpful in giving a full under-
standing of the biodiversity-ecosystem functioning theory.

 Materials and methods

 Study sites and sample collection
The study site was located to the west of the Yangtze River and Northeast
of  Dongting  Lake,  China,  and  possesses  a  typical  subtropical,  humid
climate,  with mean annual  precipitation of  1,417 mm and mean annual
temperature  of  16.4–17.0  °C.  A  type  of  tidal  soil  has  developed  from
alluvial parent material, with organic matter of 2.43 g·kg−1, total nitrogen
of  1.26  g·kg−1,  available  nitrogen  of  112  mg·kg−1,  and  a  pH  of  7.9.  To
create  a  large-scale  species  richness  gradient  for  soil  N-transforming
microbial  communities,  six  distinct  vegetation  types  were  selected:
natural  grasslands  dominated  by Cynodon  dactylon (L.)  Pers.  (scutch
grass),  Viola  verecunda A.  Gray,  Polygonum  flaccidum Meisn.  and
Clinopodium  gracile (Benth.)  Kuntze  (total  vegetation  cover  <  10%);
grassland dominated by Phragmites communis with total vegetation cover
nearly  100%;  poplar  plantation  of  1,  3  and  8  years  of  age;  and  poplar
reforestation  3  years  after  cutting  down  an  8-year-old  plantation.  Five
sites were chosen for each vegetation type, and a 10 m × 10 m plot was set
up at each site. Thirteen soil cores were collected along a diagonal line in

each plot, with one at the cross-point and three at each end of both lines
(Supplementary  Fig.  S1).  Soil  cores  from  one  plot  were  mixed  into  a
composite  sample;  therefore,  30 mixed soil  samples were collected from
the  six  different  vegetation  types.  The  fresh  soil  samples  were  placed  in
boxes  filled  with  ice,  transported  immediately  to  the  laboratory,  passed
through a 2 mm mesh, and then stored at −20 °C until further analysis.

 Assessing N-transforming microbial diversity
Soil  genomic  DNA  was  extracted  from  0.5  g  fresh  soil  samples  using  a
FastDNA SPIN Kit (MP Biomedicals, Santa Ana, CA, USA) following the
manufacturer's  protocol.  The  extracted  DNA  was  diluted  to  10  ng·μL−1

with  the  aid  of  a  NanoDrop  ND-1000  spectrophotometer  (NanoDrop
Technologies).  The  denitrifying  bacteria  were  amplified  with  different
sets  of  primers;  for  nitrite  reducers  carrying nirK genes,  the  primers
were  876  (5'-ATYGGCGGVCAYGGCGA-3')  and  1,040  (5'-
GCCTCGATCAGRTTRTGGTT-3')[37];  for  those  with nirS genes,  the
primers  were Cd3aF  (5'-GTSAACGTSAAGGARACSGG-3'),  and  R3cd
(5'-GASTTCGGRTGSGTCTTGA-3')[38].  The  N2O-reducing  bacteria
were amplified with the primers of nosZ2F (5'-CGCRACGGCAASAAGG
TSMSSGT-3') and nosZ2R (5'-CAKRTGCAK SGCRTGGCAG AA-3')[39].
The  nitrite-oxidizing  bacteria  were  amplified  with  the  primers  of
nxrB169f  (5'-TACATGTGGTGGAACA-3')  and nxrB638r  (5'-
CGGTTCTGGTCRATCA-3')[40].

The polymerase chain reaction (PCR) procedures for each group of
N-transforming  microbes  are  shown  in  the  supplementary  materials.
Triplicate  PCRs  were  conducted  for  each  sample,  and  the  three  PCR
products were pooled for high-throughput sequencing. After purifica-
tion and quantification, 0.01 μg of PCR product from each sample was
used  for  Illumina  paired-end  library  preparation,  cluster  generation,
and sequenced on the Miseq Illumina PE 300 platform. The sequenc-
ing  services  were  provided  by  Allwegene  Technologies  (Beijing,
China).  High-throughput  sequencing  data  were  processed  using
QIIME  1.6.0[41].  DNA  reads  were  assigned  to  samples  according  to
their  unique  barcodes.  The  corresponding  paired  reads  were  merged
if  the  overlap  was  100%  identical  using  FLASH  (v  1.2.7, http://ccb.
jhu.edu/software/FLASH).  Quality  filtering  was  done  using  QIIME
with the default settings for Illumina (r = 3; p = 0.75 total read length;
q =  3; n =  0),  as  recommended  by  Bokulich  et  al.  Operational  taxo-
nomic units (OTUs) were defined with 97% sequence similarity using
Uparse[42] after  the  removal  of  putative  chimeras  and singletons.  The
most  abundant sequence was selected as  representative  of  each OTU.
The  taxonomy  of  each  OTU  was  assigned  using  RDP  Classifier
(version  2.2)[43] and  trained  on  Greengene  reference  sequences[44].
High-throughput  sequencing  data  were  deposited  in  the  China
National GenBank (CNGB) with the accession number CNP0003112.

 Assessing N-transforming potential with metagenomics
DNA was fragmented to an average size of approximately 350 bp using a
Covaris M220 (Gene Co. Ltd, China) for paired-end library construction.
A paired-end library was prepared using a TruSeq DNA Sample Prep Kit
(Illumina,  San  Diego,  CA,  USA).  Adapters  containing  the  full  comple-
ment  of  the  sequencing  primer  hybridization  sites  were  ligated  to  the
blunt-end  fragments.  Paired-end  sequencing  was  performed  on  an
Illumina HiSeq 4000 platform (Illumina Inc., San Diego, CA, USA) using
the  HiSeq  3000/4000  PE  Cluster  Kit  and  the  HiSeq  3000/4000  SBS  Kit
according to the manufacturer's instructions.

Functional  annotation  of  the  metagenomic  sequencing  data
included  the  following  steps:  (1)  Gene  assembly  of  short  reads  was
performed using MEGAHIT 1.0.6. The quality of the generated contigs
was  then  assessed  using  QUAST  5.0.2.  (2)  Gene  prediction  was
performed  using  Prodigal  2.6.3,  and  redundant  sequences  were
removed  using  CD-HIT  4.6.  (3)  Non-redundant  sequences  were
mapped using Bowtie 1.1.2, and sam2counts 0.91 was used to convert
mapping results to reference sequence counts, generating a gene table
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that  could be used for  functional  annotation.  Subsequently,  all  contig
data were mapped against Kyoto Encyclopedia of Genes and Genomes
(KEGG)  pathways[45] to  identify  tentative  metabolic  pathways  for  a
specific  function.  Genes  related  to  nitrogen  cycling  were  selected  for
potential N-transforming functions, including nitrite reduction poten-
tial with an abundance of nirK and nirS, N2O reduction potential with
an  abundance  of nosZ,  and  nitrite  oxidation  potential  with  an  abun-
dance  of nrxB.  Metagenomic  data  were  deposited  in  the  China
National GenBank (CNGB) under the accession number CNP000310.

 Assessing N-transforming functions
Denitrifying  enzymatic  activity  (DEA)  was  measured  using  the  C2H2
inhibition method[46]. The methodological details were shown as follows:
10 g of fresh soil samples were placed into a 150 mL triangular flask and
incubated with KNO3 (50 mg NO3

− g−1 dry soil),  glucose (0.5 mg C g−1

dry  soil),  and  sodium  glutamate  (0.5  mg  C  g−1 dry  soil).  The  mixtures
were homogenized and incubated at 28 °C. The atmosphere at the head-
space of  each flask was vacuumed and replaced by He-C2H2 (90:10) gas
mixture to provide an anaerobic condition for inhibiting N2O reductase
activity.  The  rationale  for  this  method  is  that  C2H2 can  inhibit  N2O
reduction;  therefore,  the  rate  of  N2O  production  reflects  the  activity  of
denitrifying enzymes. DEA was expressed as μg N-N2O produced h−1 g−1

dry soil.
When measuring DEA, a pairwise experiment was conducted using

the same procedure, except for the gas filled into each flask. Here, the
atmosphere was replaced with helium gas (He; 100%) to create anaero-
bic  conditions  under  which  N2O  could  be  reduced  by  N2O  reducers.
Therefore,  the  N2O  reducing  activity  is  reflected  in  the  difference
between  the  N2O  production  rates  with  C2H2 and  without  C2H2
addition.  Nitrite-oxidizing  activity  was  measured  using  an  existing
method that used the depletion rate of nitrite to reflect nitrite-oxidiz-
ing activity[47].

 Co-occurrence network analysis
Co-occurrence  network  analysis  was  performed  using  an  online
molecular ecological network analysis (MENA) pipeline[48]. Following the
method  of  Deng  et  al.,  each  OTU  table  was  first  categorized  into  two
groups  based  on  the  median  value  of  species  richness:  low  and  high
species  richness,  and  then  SIMPER  analysis  was  conducted  in  Past
version  3[49] to  identify  the  key  OTUs  that  contributed  to  the  90%
difference  between  the  species  richness  subgroups.  This  resulted  in  435
of  2,714  OTUs  for nirK-type  nitrite  reducers,  1,375  of  7,810  OTUs  for
nirS-type nitrite reducers, 530 of 4,163 OTUs for N2O reducers, and 529
of 1,990 OTUs for nitrite oxidizers. Networks were constructed based on
the  relative  abundance  of  the  identified  OTUs  in  each  N-transforming
microbial community. Covariation was measured across all samples, and
only  OTUs  detected  in  more  than  50%  of  the  samples  were  used  for
network construction. The optimal similarity threshold (St) was identified
using  random  matrix  theory  (RMT)  before  network  construction,  with
values of 0.81, 0.77, 0.71, and 0.69 for nirK-type nitrite reducers, nirS-type
nitrite reducers, N2O reducers, and nitrite oxidizers, respectively. Module
separation  and  modularity  calculations  were  performed  using  greedy
modularity  optimization,  and  the  within-module  connectivity  (Zi)  and
among-module  connectivity  (Pi)  were  calculated.  Keystone  OTUs  were
identified based on Zi and Pi values with a threshold of 2.50 and 0.62. The
nodes with Zi > 2.50 and Pi > 0.62 were defined as network hubs; nodes
with Zi > 2.50 and Pi ≤ 0.62 as module hubs;  nodes with Zi ≤ 2.50 and
Pi  >  0.62  as  connectors;  and  nodes  with  Zi  ≤  2.50  and  Pi  ≤  0.62  as
peripherals.  Here,  the  network  hub,  module  hub,  and  connector  were
defined as keystone OTUs.

 Statistical analyses
Linear  mixed  effects  models  were  used  to  decipher  the  relationships
between species richness and functional  potential,  relative abundance of
modules  and  functional  potential,  species  richness  and  relative

χ2

abundance  of  keystone  species,  and  relative  abundance  of  keystone
species  and  functional  potential  for  each  type  of  N-transforming
microbial  community  with  vegetation  type  as  a  random  variable.  The
optimal model was selected using the Akaike information criterion (AIC)
value.  These  analyses  were  performed  using  'lme4',  'lmerTest',  and
'MuMIn' packages in R (2022). Random forest analysis was performed to
explore the relative importance of the identified keystone species on the
functional  potential  of  each  N-transforming  microbial  community.
Random forest is  a nonparametric and nonlinear statistical  method that
can  produce  accurate  predictions  by  bootstrapping  all  decision  trees[50].
The importance of each predictor was obtained based on the out-of-bag
data and indicated by an increase in the mean squared error (LncMSE).
These analyses were conducted using the randomForest package (R 4.0.2).
Third,  structural  equation  modeling  (SEM)  was  used  to  decipher  the
causal relationships between species richness and functional potential  in
each N-transforming microbial community by incorporating the relative
abundance  of  modules  with  possible  functional  impacts  and  keystone
species identified by random forest analysis. Model fit was assessed using
the  maximum  likelihood  goodness-of-fit  test  and  root  mean  square
error  of  approximation  (RMSEA).  These  SEM analyses  were  conducted
using Amos 17.0 (SPSS Inc., USA).

To test  the  assumption that  negative  associations among taxa were
prevalent  in  more  diverse  communities,  the  dataset  was  first  rear-
ranged  from  low  to  high  species  richness,  and  then  each  dataset  was
categorized  into  two  subgroups:  low  species  richness  (LSR)  and  high
species  richness  (HSR),  with  the  cut-off  point  of  the  median value  of
species  richness.  Spearman's  correlation  was  then  performed,  and
species pairs with strong correlations were selected, while non-signifi-
cant  correlations  were  discarded.  Two  indices  were  defined  to  reflect
the biotic association based on the results of the Spearman correlation
analysis:  the  occurrence  of  interaction  and  overall  association  inten-
sity.  The  occurrence  of  interactions  was  calculated  as  the  proportion
(%) of negative or positive interspecific interactions, accounting for the
total frequency of strong correlations. A higher occurrence of negative
interactions  suggested  that  negative  interspecific  interactions  were
more  frequent.  The  overall  interaction  intensity  was  defined  as  the
average sum of the correlation coefficients. As only strong positive or
negative correlations were retained, a smaller overall interactive inten-
sity  would  suggest  a  stronger  negative  interspecific  interaction,  as
more negative coefficients counteracted the positive coefficients.

 Results

 N-transforming functions decrease with increasing
species richness
A  total  of  2,714,  7,810,  4,163,  and  1,990  operational  taxonomic  units
(OTUs; 97% sequence similarity) were defined for nirK- and nirS-nitrite
reducers,  N2O  reducers,  and  nitrite  oxidizers,  respectively.  Negative
relationships  were  consistently  found  between  species  richness  and  the
nitrite reduction potential for nirK- and nirS-nitrite reducers, denitrifying
enzymatic  activity  for nirK- (but  not nirS-)  nitrite  reducers,  N2O
reduction  potential  and  reducing  activity  for  N2O  reducers,  and  nitrite
oxidization potential and oxidizing activity for nrxB-type nitrite oxidizers
(Fig.  1).  The  negative  relationship  between  species  richness  and
functional potential was independent of vegetation type for each type of
N-transforming microbial community (Supplementary Table S1).

 Better growth but poorer functions for keystone taxa
with increasing biodiversity
One  assumption  was  that  the  selection  for  dominant  species  with  poor
functional  performance  could  generate  a  negative  BEF  relationship
(negative selection effect). To explore the underlying mechanisms of the
observed negative BEF patterns, the negative selection assumption at the
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module  and  keystone  species  levels  was  tested  using  co-occurrence
networks  (Fig.  2).  There  were  15,  35,  11  and  13  modules  for nirK
(modularity:  0.682), nirS nitrate  reduction  (modularity:  0.608),  N2O
reduction  (modularity:  0.508),  and  nitrite  oxidizer  communities
(modularity: 0.446), respectively (Fig. 2).

The relative abundance of the dominant module, defined as the sum
of  the  relative  abundances  of  all  OTUs in  the  dominant  module,  was
negatively correlated with the functional potential in all four N-trans-
forming  microbial  communities Supplementary  Fig.  S2).  In  addition,
three types of keystone OTUs were defined based on their topological

 

a b
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Fig. 1    Linear regressions showing the relationship between species richness and N-transforming capability.
(a)  Negative  relationship  between  nitrite  reduction  potential  and  species  richness  for nirK-type  denitrifiers.  (b)  No  relationship  was  shown  between
denitrifying  enzymatic  activity  and  species  richness  for nirK-type  denitrifiers.  (c),  (d)  Negative  relationships  were  shown  for  nitrite  reduction  potential  vs
species  richness,  and denitrifying  enzymatic  activity  vs  species  richness  for nirS-type  denitrifiers.  (e)  N2O-reducing  potential.  (f)  N2O-reducting  activity  for
N2O-reducing bacteria.  (g),  (h)  Negative  relationships  for  nitrite  oxidizing potential  vs  species  richness,  and nitrite  oxidizing activity  vs  species  richness  for
nitrite oxidizing bacteria.
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properties:  network  hub,  module  hub,  and  connector,  based  on  the
within-module connectivity (Zi) and among-module connectivity (Pi)
of the networks (Supplementary Fig. S3). Random forest analysis iden-
tified the most  important  keystone OTUs for  functional  performance
in each nitrogen-transforming microbial community (Table 1, Supple-
mentary Table S2).

Linear regression analyses showed that the relative abundance of the
most  important  keystone  OTUs  increased  with  species  richness,  but
their corresponding functional potential decreased in all N-transform-
ing microbial communities (Table 1). A positive relationship between
species  richness  and  relative  abundance  was  shown  for  module  0,  5,
and 10 in the nirK-type denitrifiers community, module 1, 2 and 13 in
nirS-type denitrifiers, module 0 and 2 in N2O reducers, and module 0
in nitrite oxidizers. However, high species richness also showed nega-
tive  impacts  on  the  relative  abundance  of  module  1,  2,  6  and  13  in
nirK-type  denitrifiers,  module  5,  8  and  26  in nirS-type  denitrifiers,
module 1 in N2O reducers, and module 3 in nitrite oxidizers (Fig. 2a).
OTU30  and  OTU67,  the  hubs  of  module  1,  showed  a  negative
correlation with  species  richness,  but  a  positive  correlation with  N2O
reduction potential (Supplementary Figs S2 and S4). OTU261 was the

hub of  module  3,  but  this  module  was  not  correlated  to  species  rich-
ness or N2O reduction potential (Fig. 2c).

 Community complexity is decreased as biodiversity
increases
Although it  is  difficult  to  demonstrate  a  direct  consequence  of  resource
competition  among  species  on  microbial  community  functions,  an
attempt was made to confirm the existence of intensifying competition in
more  diverse  soil  microbial  communities  by  defining  four  indices:
positive links per OTU, negative links per OTU, community complexity,
and  overall  association  intensity.  The  overall  association  intensity  was
defined  as  the  sum  of  Pearson's  correlation  coefficients;  a  smaller  value
suggested  stronger  negative  associations  that  counteracted  positive
associations. Each of the four datasets was re-categorized into low species
richness  (LSR)  in  the  lower  quarter  and  high  species  richness  (HSR)  in
the  upper  quarter.  For  all  N-transforming  microbial  communities,  the
LSR  subgroup  had  higher  positive  links  per  OTU,  larger  community
complexity,  and  stronger  association  intensity  than  the  HSR  subgroup;
however, the negative links per OTU were not affected by species richness
(Fig. 3).

 

a b
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Fig.  2     Co-occurrence  networks  based  on  Pearson  correlation  for  (a) nirK-type  denitrifying  bacteria,  (b) nirS-type  denitrifying  bacteria,  (c)  N2O
reducing bacteria, and (d) Oxidizing bacteria.
The  red  represents  a  strong  positive  correlation  between  the  relative  abundance  of  the  module  and  corresponding  N-transforming  potential,  blue  for  a
significantly negative correlation, and dark gray for no correlation. The green points represent the module hub, and orange for the connectors.
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 Links of species richness to N-transforming capability
The  SEM  results  showed  that  species  richness  strongly  and  indirectly
affected  the  N-transforming  capability  irrespective  of  the  identity  of
microbial  communities,  although  direct  but  weak  effects  were  observed
for nirK nitritre reducers and nitrite oxidizers (Fig. 4). Species richness in
nirK communities  positively  affected  OTU15  (the  hub  of  the  poorly
performing  module  5),  subsequently  acting  on  the  connector,  OTU238,
which transmitted the negative effect to module 1 and further influenced
the nitrite reduction potential (Fig. 4a).

Species  richness  in  the nirS-type  denitrifier  community  positively
affected  the  connectors  OTU23  and  module  6,  whose  poor  perfor-
mance was then transmitted to OTU108, which exerted a direct nega-
tive  effect  on  nitrite  reduction  potential  (Fig.  4b).  Species  richness  in
the N2O reducer community positively affected module 2 by acting on
OTU1  (module  2  hub)  and  then  negatively  affected  OTU30,  which
subsequently  exerted  a  direct,  positive  effect  on  the  N2O  reduction
potential (Fig. 4c). Species richness in the nitrite oxidizers community
negatively  affected  the  nitrite  oxidization  potential  by  first  acting  on
OTU557 (module 0 hub) and then on module 0 (poor performance),
which  subsequently  exerted  a  negative  effect  on  OTU497  (module  3
hub)  and  module  3  (good  performance)  (Fig.  4d).  Therefore,  high
species  richness  decrease  N  transforming  functions  mainly  through
promoting keystone taxas with poor functional performance.

 Discussion
The  positive  effects  of  biodiversity  on  ecosystem  functioning  have  been
frequently  reported  and  are  widely  discussed  as  a  general  rationale  for
biodiversity  conservation[7,51,52].  However,  the  results  reported  in  this
study  suggest  that  biodiversity  can  negatively  affect  ecosystem
functioning in soil  N-transforming microbial  communities.  The current

findings  can  be  explained  by  negative  interspecific  association  and  the
negative  selection  effect  in  the  focused  N-transforming  microbial
communities.

This study observed fewer positive links but more negative links in
the  microbial  networks  at  higher  species  richness  levels,  suggesting
that  the  negative  interspecific  association  may  be  increased,  possibly
induced  by  intensive  resource  competition.  In  this  research  system,
soil microbes are functionally redundant[53], for example, each guild of
microbes is in charge of one function of transforming N into different
forms.  In  highly  diverse  N-transforming  microbial  communities,  the
available N in different forms may become a limited resource.  As the
richness  of  N-transforming  microbial  species  increases,  intensive
competition may occur for N substrates. Competitive inhibition of the
most  productive  species  may  consequently  reduce  their  overall  N
transformation  capability[54].  In  addition,  allelopathic  competition
may also be a possibility in explaining observed negative BEF relation-
ships.  For  this  point,  this  study does  not  provide direct  evidence,  but
other  studies  can  support  that  bacteria  can  produce  bacteriocins  to
suppress  the  growth  of  others  in  communities  with  high  species
richness[55].  Soil  N  transformation  involves  a  series  of  extracellular
enzyme-driven  processes.  Secretion  of  extracellular  enzymes  is  an
energy-taxing  process.  If  intense  competition  occurs  in  N-transform-
ing communities with high species richness, more energy may be allo-
cated  to  antagonistic  interactions  than  to  the  growth  and  production
of extracellular enzymes[56,57].

The current results suggest that a negative selection effect may also
occur in more diverse nitrogen-transforming communities. For exam-
ple,  the  relative  abundance  (reflecting  biomass)  of  some  keystone
species  or  the  dominant  module  increased  with  species  richness;
however,  a  negative  relationship  was  observed  between  their  relative
abundance  and  functional  potential,  suggesting  that  they  may  have  a

 

Table 1.    Keystone taxa with significant changes identified based on network analysis.

Keystone
taxa Roles Regressions (SR vs RA) Regressions (RA vs function) Importance

(p value) Taxonomy

nirK-type
nitrite reducers

OTU15 Module hub y = 0.005x − 2.309, p < 0.01 y = −0.476x + 4.006, p < 0.01 19.15 (0.05) Pannonibacter phragmitetus
OTU173 Module hub y = −7.026 * 10−5x + 0.069, p < 0.05 y = 0.004x − 0.010, p = 0.20 11.17 (0.13) Devosia sp. GSM-205
OTU44 Connector y = 0.001x − 0.249, p < 0.05 y = −0.080x + 0.684, p < 0.01 17.30 (0.09) Bacterium clone_B-MYnirK1

OTU238 Connector y = 2.000 * 10−4x − 0.145, p < 0.01 y = −0.028x + 0.192, p < 0.01 33.73 (0.01) Chelativorans sp. BNC1

nirS-type nitrite
reducers

OTU2 Module hub y = 3.000 * 10−4x + 0.689, p = 0.53 y = −0.219x + 3.204, p < 0.01 28.70 (0.01) Rubrivivax gelatinosus
OTU8 Module hub y = 4.000 * 10−4x + 0.092, p = 0.43 y = −0.057x + 1.570, p = 0.42 22.95 (0.02) Rubrivivax gelatinosus

OTU12 Module hub y = 0.001x + 0.413, p = 0.39 y = −0.234x + 3.647, p < 0.01 26.43 (0.01) Uncultured bacterium
OTU47 Module hub y = 3.000 * 10−4x − 0.208, p = 0.05 y = −0.037x + 0.722, p < 0.05 18.81 (0.03) Azospira sp. NC3H-14

OTU385 Module hub y = 4.618 * 10−5x − 0.074, p = 0.11 y = −0.009x + 0.113, p < 0.05 11.34 (0.10) Rhodocyclales bacterium
OTU546 Module hub y = 2.000 * 10−4x − 0.146, p < 0.05 y = −0.035 + 0.650, p < 0.05 24.07 (0.03) Bacterium NirSIsoEc.72
OTU23 Connector y = 5.000 * 10−4x − 0.596, p < 0.05 y = −0.106x + 1.429, p < 0.01 25.86 (0.01) Uncultured bacterium

OTU108 Connector y = 3.306 * 10−5x − 0.031, p = 0.09 y = −0.011x + 0.141, p < 0.01 39.37 (0.01) Rubrivivax gelatinosus

N2O reducers OTU1 Module hub y = 0.011x − 3.112, p < 0.05 y = −0.313x + 6.878, p = 0.07 30.39 (0.03) Uncultured bacterium
OTU30 Module hub y = −0.005x + 3.926, p < 0.01 y = 0.245x − 1.766, p < 0.01 31.31 (0.01) Herbaspirillum sp. TSO26-2
OTU67 Module hub y = −0.001x + 1.058, p < 0.01 y = 0.078x − 0.531, p < 0.01 18.62 (0.07) Massilia sp. TSO8

OTU261 Module hub y = −0.001x + 0.407, p < 0.01 y = 0.029x − 0.204, p < 0.01 26.78 (0.02) Azoarcus sp. CIB
OTU109 Connector y = 3.000 * 10−4x − 0.148, p = 0.07 y = −0.012x + 0.166, p = 0.06 7.10 (0.26) Thauera humireducens
OTU125 Connector y = 0.001x − 0.739, p < 0.05 y = −0.052x + 0.711, p < 0.05 30.97 (0.01) Uncultured bacterium

Nitrite oxidizers OTU423 Module hub y = 0.012x − 9.331, p = 0.51 y = −0.389x + 9.769, p < 0.05 12.29 (0.13) Nitrospira calida
OTU434 Module hub y = 0.007x − 4.520, p = 0.15 y = −0.090 + 3.743, p = 0.45 23.13 (0.01) Nitrospira calida
OTU481 Module hub y = 0.005x − 4.109, p = 0.06 y = 0.003x + 1.382, p = 0.97 9.66 (0.19) Nitrospira moscoviensis
OTU497 Module hub y = −0.009x + 10.065, p < 0.01 y = 0.193x − 2.490, p < 0.01 24.62 (0.01) Nitrospira moscoviensis
OTU557 Module hub y = 0.002x − 1.758, p = 0.07 y = -0.091x + 2.022, p < 0.01 25.96 (0.01) Nitrospira moscoviensis
OTU505 Connector y = −0.005x + 5.474, p < 0.05 y = 0.041x − 0.288, p = 0.48 4.20 (0.37) Nitrospira bockiana

Values in bold indicate significant differences at alpha =0.05 level.
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poor  functional  contribution.  These  observations  are  consistent  with
the assumption that  a  negative  selection effect  occurs  when a  species'
competitive  ability  is  a  poor  predictor  of  their  function[18,30].  They
predicted  that  competition  from  other  poorly-performing  functional
species  would  reduce  the  relative  abundance  of  keystone  species,  and
consequently,  the  overall  community  functioning  as  species  diversity
increased.  However,  the  results  showed  the  opposite  pattern;  species
diversity  had  a  positive  effect  on  the  relative  abundance  of  keystone
species  or  dominant  modules,  indicating  that  complementary  effects
may also  occur  for  their  growth (biomass  production).  This  supports
the idea that the direction of the BEF relationship is dependent on the
identity  of  the  ecosystem  functions  selected;  a  positive  BEF  relation-
ship is more common for biomass production, but non-biomass func-
tions may occur more easily with negative BEF relationships.

The causal relationship analyses showed that most of these keystone
species  did  not  produce  direct  functional  impacts  but  operated  in
transmitting  roles  between  modules  in  the  microbial  networks[58].
The  positive  effect  of  species  diversity  on  keystone  species  was  first
transmitted  to  functionally  poor-performing  modules,  which  exerted
negative  effects  on  functionally  well-performing  modules  and,  hence,
overall  ecosystem  function.  This  type  of  biotic  interaction  among
keystone  taxa  has  been  proven  to  be  stable  and  exceeds  the  effect  of
environmental variables in determining the microbial community; for
example, bacterial taxa are more strongly related to other bacterial taxa
than  to  habitat  variables[59].  However,  biotic  interactions  among
keystone  taxa  are  context-dependent.  For  example,  environmental
disturbances  can,  to  some  extent,  decrease  the  explanatory  power  of

keystone taxa in stabilizing microbial communities[60]. The underlying
mechanism is that intercorrelated taxa could have similar or different
niches; therefore, the positive or negative correlation might vary owing
to simultaneous responses to environmental variation.

Considering  that  the  findings  (negative)  were  inconsistent  with
most BEF research (positive) as well as those of other researchers who
argued  that  positive  BEF  relationships  only  occurred  at  low  diversity
levels[54],  a  conceptual  model  was  proposed  (Fig.  5)  to  reconcile  the
different  directions  of  reported  BEF  relationships  with  positive,
neutral,  or negative effects.  In this opinion, the form of the BEF rela-
tionship depends on the scale of the diversity. Four key points, a, b, c
and d,  were  defined along the species  richness  gradient.  Five  types  of
BEF  relationships  covered  the  species  richness  range.  Type  I:  ecosys-
tem function increased exponentially or linearly with species richness
when ≤ a. There are several examples that support this assumption, for
example,  methanotrophic  species  richness  on  methane  oxidation,
cellulolytic  bacterial  species  richness  on cellulose  decomposition.  The
complementary  effect  may  be  dominant,  whereas  the  positive  selec-
tion  effect  may  be  minor  at  this  diversity  level  with  sufficient
resources.  Type  II:  ecosystem  function  increased  asymptotically  with
species richness when > a, but ≤ b, which can be supported by species
richness  of  arbuscular  mycorrhizal  fungi  on  plant  production[61,62].
Within this diversity range, the positive selection effect may gradually
intensify.  Type III:  when b < species richness ≤ c,  ecosystem function
showed  no  response  as  species  richness  increased.  At  this  diversity
level,  the  resource  consumption  may  reach  the  maximum  resource
support capacity. Positive selection effects may co-occur with negative
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Fig. 3    The biotic associations and complexity for different N-transforming communities at low species richness (LSR) and high species richness (HSR).
(a)–(d) The number of strong positive links per operational taxonomic unit (out). (e)–(h) The number of strongly negative links per OTU. (i)–(l) Community
complexity with the sum of the numbers for positive and negative links. (m)–(p) The overall association intensity, with the sum of coefficients for significant
correlation.  The  smaller  association  intensity  suggests  a  stronger  negative  association,  which  counteracts  the  intensity  of  the  positive  association.  Data  are
presented as means ± 95% CI. Different letters suggest significance at the p < 0.05 level, which was judged from the overlap of 95% CI between LSR and HSR.
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effects.  Type  IV:  ecosystem  function  decreased  asymptotically  with
species  richness  when c <  species  richness  ≤ d.  This  assumption  is

supported  by  the  decrease  in  the  organic  decomposition  rate  with
increasing  bacterial  species  richness.  At  this  level  of  diversity,  the
resources are increasingly limited. Therefore, a negative selection effect
may  dominate.  Resource  scarcity  becomes  more  severe  as  species
richness  increases.  Resource  competition  may  result  in  an  exponen-
tially  or  linearly  decreasing relationship between species  richness  and
ecosystem functions. This assumption is supported by the data on the
diversity and function of N-transforming microbes here. The competi-
tive  effect  may  become  dominant  at  this  high  diversity  level  (Fig.  5).
Therefore, a positive BEF relationship may occur when species richness is
< b (defined as a low diversity level), a neutral BEF relationship occurs
when species richness is between b and c (median diversity level), and
a  negative  BEF  relationship  may  appear  when  species  richness  is  > c
(high diversity level).

 Implications, limitations, and future directions
This  study  provides  valuable  insights  into  the  biodiversity–ecosystem
functioning  (BEF)  relationship  in  nitrogen-transforming  microbial
communities,  which  challenges  the  widely  held  assumption  that  higher
microbial  diversity  invariably  enhances  ecosystem  functioning.  By
demonstrating  consistently  negative  BEF  relationships  for  nitrogen-
transforming  guilds  in  a  natural  wetland,  it  is  highlighted  that  (i)
functional  redundancy  can  be  accompanied  by  intense  inter-specific
competition[53],  (ii)  the  numerical  dominance  of  keystone  taxa  may
coincide with poor functional performance, and (iii) the shape of the BEF
curve is likely context- and scale-dependent. These findings urge caution
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Fig. 4    Structural equation modeling to determine the direct and indirect effects using keystone species and dominant modules of species richness on N-
transforming potential.
(a) nirK-type denitrifiers; OTU15 is the hub of module 5, OTU238 is the connector between module 5, 1, and 2. (b) nirS-type denitrifiers. (c) N2O reducers. (d)
Nitrite oxidizers.

 

Fig.  5     A  bell-shaped  conceptual  model  for  determining  the  relation-
ship between species richness and ecosystem functioning.
Ecosystem  functions  refer  to  the  functional  performance,  e.g.,  produc-
tivity,  enzymatic  activity,  etc,  which  is  responsible  for  certain  steps  of
material  cycling  and  energy  flow  mediated  by  biological  communities.
Here, a positive BEF relationship is hypothetical at low species richness (≤
b); a neutral BEF occurs at the median species richness level (> c, but ≤ d);
and a negative BEF is hypothesized at high species richness (> d).
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when  using  species  richness  as  a  proxy  for  service  provision  in  soil-
management  policies[22],  maximizing  OTU  counts  will  not  necessarily
maximize  nitrogen-cycling  rates.  Finally,  the  bell-shaped  BEF  model
proposed provides a testable framework for future studies that span low
to  hyper-diverse  microbial  systems  and  that  couple  metatranscriptomic
or stable-isotope probing with community data to verify which detected
taxa are genuinely active.

Several  limitations  should  be  acknowledged.  Firstly,  the  suggestion
that  poor-performing  dominant  taxa  represent  a  'negative  selection
effect' (NSE) would be more convincing if supported by trait-level data
(e.g.,  growth  rate,  enzyme  activity,  or  gene  expression).  Current
evidence  is  indirect  and  based  solely  on  relative  abundance  and  co-
occurrence.  Consequently,  the  inference  remains  indirect  and  should
be  regarded  as  a  hypothesis  to  be  tested  with  future  quantitative
proteomics  or  single-cell  activity  assays  (e.g.,  BONCAT,  NanoSIMS).
Secondly,  this  study  focused  on  gene  abundance  (e.g., nirK, nosZ)
derived  from  metagenomic  data,  which  reflects  potential  rather  than
realized functional activity.  Transcriptional or enzymatic activity data
would be needed to confirm whether detected taxa actively contribute
to  N-cycling  processes  under  field  conditions.  Lastly,  the  study  was
conducted  at  a  single  spatial  scale,  potentially  limiting  the  generaliz-
ability  of  the  observed  patterns  across  broader  environmental  gradi-
ents.  Addressing  these  limitations  in  future  studies—e.g.,  integrating
multi-omics  approaches,  expanding  spatial  replication,  and  coupling
genomic  data  with  activity  metrics—will  refine  the  understanding  of
how microbial  biodiversity  shapes  ecosystem functions across  diverse
environments.

 Conclusions
Functional  performance  decreased  with  increasing  species  richness  in
functionally  redundant  N-transforming  soil  microbial  communities.
These observations are inconsistent with the widely accepted positive BEF
relationships.  Further  analysis  indicates  that  a  negative  selection  effect
and  interspecific  competition  may  concurrently  generate  negative  BEF
patterns.  It  was  also  found  that  the  direction  of  BEF  relationships  may
depend on the identity  of  the selected ecosystem. Positive BEF relation-
ships  have  been  reported  mainly  for  biomass,  reflecting  productivity  in
plant communities with low diversity levels. However, the direction of the
BEF relationship may shift when considering other ecosystem functions,
such  as  nutrient  transformation  in  this  study,  or  in  more  diverse
microbial  communities.  Therefore,  it  is  proposed  that  the  shape  of  the
BEF relationship depends on the diversity gradient. Future studies should
test  these  hypotheses  by  including  different  functional  ecosystem
processes under different diversity levels.

 Author contributions
The  authors  confirm  their  contributions  to  the  paper  as  follows:
conceptualization and experimental design: Yang H, Zhang Q, Liu S; data
analysis  and  interpretation:  Yang  H,  Liu  E,  Xie  J,  Zhang  Q;  data
collection: Liu E, Xie J, Yang H, Zhang Q; manuscript drafting: Liu E, Xie
J, Yang H. All authors reviewed the results and approved the final version
of the manuscript.

 Data availability
Sequence data were deposited in the China National Genebank (CNGB)
database under accession numbers CNP0003105 for the metagenome and
CNP0003112 for microbial communities with the four primer sets.

Acknowledgments
This  work  was  supported  by  the  Central  Public-Interest  Scientific
Institution  Basal  Research  Fund  (Grant  No.  CAFYBB2019QB001),  the

National  Key  R&D  Fund  (Grant  No.  2023YFF130440302),  and  the
Natural Science Foundation of China (Grant No. 31870099).

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary  information accompanies  this  paper  at
(https://www.maxapress.com/article/doi/10.48130/abd-0025-0012)

Dates
Received  30  June  2025; Revised  6  November  2025; Accepted  10
November 2025; Published online 22 December 2025

References 

 Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, et al. 2018. Multi-
ple  facets  of  biodiversity  drive  the  diversity–stability  relationship. Nature
Ecology & Evolution 2:1579−87

1.

 Radujković  D,  Portillo-Estrada  M,  Hendrickx  B,  Campetella  G,  Emsens
WJ, et al. 2025. Soil biodiversity and ecosystem functions in grasslands: is
more always better? Soil Biology and Biochemistry 211:109988

2.

 Wu L,  Bai  Y,  Chen Y,  Wei  X,  Wen N,  et  al. 2026. Straw return enhances
soil  multifunctionality  by  promoting  protist-dominated  microbial  multi-
trophic interactions. Soil and Tillage Research 256:106903

3.

 Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J,  et al. 2017. A
communal catalogue reveals Earth's multiscale microbial diversity. Nature
551:457−63

4.

 Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA,
et  al. 2018. Structure  and  function  of  the  global  topsoil  microbiome.
Nature 560:233−37

5.

 Bar-On YM, Phillips  R,  Milo R. 2018. The biomass distribution on earth.
Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of
America 115:6506−11

6.

 Zhang J, Feng Y, Maestre FT, Berdugo M, Wang J, et al. 2023. Water avail-
ability  creates  global  thresholds  in multidimensional  soil  biodiversity  and
functions. Nature Ecology & Evolution 7:1002−11

7.

 Creamer  RE,  Hannula  SE,  Van  Leeuwen  JP,  Stone  D,  Rutgers  M,  et  al.
2016. Ecological network analysis reveals the inter-connection between soil
biodiversity and ecosystem function as affected by land use across Europe.
Applied Soil Ecology 97:112−24

8.

 Lehmann  A,  Zheng  W,  Rillig  MC. 2017. Soil  biota  contributions  to  soil
aggregation. Nature Ecology & Evolution 1:1828−35

9.

 Dai Z, Yu M, Chen H, Zhao H, Huang Y, et al. 2020. Elevated temperature
shifts soil N cycling from microbial immobilization to enhanced mineral-
ization,  nitrification  and  denitrification  across  global  terrestrial  ecosys-
tems. Global Change Biology 26:5267−76

10.

 Zhu  X,  Jackson  RD,  DeLucia  EH,  Tiedje  JM,  Liang  C. 2020. The  soil
microbial  carbon  pump:  from  conceptual  insights  to  empirical  assess-
ments. Global Change Biology 26:6032−39

11.

 Schnyder  E,  Bodelier  PLE,  Hartmann  M,  Henneberger  R,  Niklaus  PA.
2023. Do  temporal  and  spatial  heterogeneity  modulate  biodiversity-func-
tioning  relationships  in  com-munities  of  methanotrophic  bacteria? Soil
Biology and Biochemistry 185:109141

12.

 Loreau M, Hector A. 2001. Partitioning selection and complementarity in
biodiversity experiments. Nature 412:72−76

13.

 Zhou T, Delgado-Baquerizo M, Ren CJ, He NP, Zhou ZH, et al. 2025. Soil
microbial  life  history  strategies  covary  with  ecosystem  multifunctionality
across aridity gradients. Proceedings of the National Academy of Sciences of
the United States of America 122:e2511071122

14.

 Yu T, Jie X, Lei Y, Zhang B, Zang H, et al. 2025. Rhizobacteria shaped by
long-term fertilization and wheat  nutritional  requirements  improve grain
yield and soil multifunctionality. Field Crops Research 333:110117

15.

 Steudel  B,  Hallmann  C,  Lorenz  M,  Abrahamczyk  S,  Prinz  K,  et  al. 2016.
Contrasting biodiversity−ecosystem functioning relationships  in  phyloge-
netic and functional diversity. New Phytologist 212:409−20

16.

 Sandau  N,  Naisbit  RE,  Fabian  Y,  Bruggisser  OT,  Kehrli  P,  et  al. 2019.
Understanding  negative  biodiversity–ecosystem  functioning  relationship
in semi-natural wildflower strips. Oecologia 189:85−197

17.

Negative BEF relationships  

Liu et al. Agrobiodiversity 2025, 2(4): 89−98   Page 97 of 98

https://www.maxapress.com/article/doi/10.48130/abd-0025-0012
https://www.maxapress.com/article/doi/10.48130/abd-0025-0012
https://www.maxapress.com/article/doi/10.48130/abd-0025-0012
https://www.maxapress.com/article/doi/10.48130/abd-0025-0012
https://www.maxapress.com/article/doi/10.48130/abd-0025-0012
https://doi.org/10.1038/s41559-018-0647-7
https://doi.org/10.1038/s41559-018-0647-7
https://doi.org/10.1016/j.soilbio.2025.109988
https://doi.org/10.1016/j.still.2025.106903
https://doi.org/10.1038/nature24621
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1038/s41559-023-02071-3
https://doi.org/10.1016/j.apsoil.2015.08.006
https://doi.org/10.1038/s41559-017-0344-y
https://doi.org/10.1111/gcb.15211
https://doi.org/10.1111/gcb.15319
https://doi.org/10.1016/j.soilbio.2023.109141
https://doi.org/10.1016/j.soilbio.2023.109141
https://doi.org/10.1038/35083573
https://doi.org/10.1073/pnas.2511071122
https://doi.org/10.1073/pnas.2511071122
https://doi.org/10.1016/j.fcr.2025.110117
https://doi.org/10.1111/nph.14054
https://doi.org/10.1007/s00442-018-4305-1


 Jiang  L,  Pu  Z,  Nemergut  DR. 2008. On  the  importance  of  the  negative
selection  effect  for  the  relationship  between  biodiversity  and  ecosystem
functioning. Oikos 117:488−93

18.

 Becker  J,  Eisenhauer  N,  Scheu S,  Jousset  A. 2012. Increasing  antagonistic
interactions cause bacterial communities to collapse at high diversity. Ecol-
ogy Letters 15:468−74

19.

 Wang  H,  Zhang  K,  Zhang  X,  Yan  Z,  Yan  L,  et  al. 2025. Changes  in
keystone  species  attenuate  the  complexity  and  stability  of  soil  microbial
networks  during  alpine  meadow  degradation. Ecological  Indicators
179:114292

20.

 Banerjee  S,  Schlaeppi  K,  van  der  Heijden  MGA. 2018. Keystone  taxa  as
drivers of microbiome structure and functioning. Nature Reviews Microbi-
ology 16:567−76

21.

 Wang  J,  Peñuelas  J,  Shi  X,  Liu  Y,  Delgado  Baquerizo  M,  et  al. 2024. Soil
microbial  biodiversity  supports  the  delivery  of  multiple  ecosystem  func-
tions  under  elevated  CO2 and  warming. Communications  Earth  &  Envi-
ronment 5:615

22.

 Tardy  V,  Spor  A,  Mathieu  O,  Lévèque  J,  Terrat  S,  et  al. 2015. Shifts  in
microbial diversity through land use intensity as drivers of carbon miner-
alization in soil. Soil Biology and Biochemistry 90:204−13

23.

 Domeignoz-Horta  LA,  Pold  G,  Liu  XA,  Frey  SD,  Melillo  JM,  et  al. 2020.
Microbial  diversity  drives  carbon  use  efficiency  in  a  model  soil. Nature
Communications 11:3684

24.

 Calderón K, Spor A, Breuil MC, Bru D, Bizouard F, et al. 2016. Effective-
ness of ecological rescue for altered soil microbial communities and func-
tions. The ISME Journal 11:272−83

25.

 Shao YH, Lu HP, Wu JH. 2025. Microbial diversity supports nitrification:
insights  from  a  full-scale  anoxic/oxic  wastewater  treatment  process.
Applied and Environmental Microbiology 91:e0180325

26.

 Weidner  S,  Koller  R,  Latz  E,  Kowalchuk  G,  Bonkowski  M,  et  al. 2015.
Bacterial  diversity  amplifies  nutrient-based  plant−soil  feedbacks. Func-
tional Ecology 29:1341−49

27.

 Wohl  DL,  Arora  S,  Gladstone  JR. 2004. Functional  redundancy  supports
biodiversity and ecosystem function in a closed and constant environment.
Ecology 85:1534−40

28.

 Schnyder  E,  Bodelier,  PLE,  Hartmann,  M,  Henneberger  R,  Niklaus  PA.
2018. Positive diversity-functioning relationships in model communities of
methanotrophic bacteria. Ecology 99:714−23

29.

 Jiang  L. 2007. Negative  selection  effects  suppress  relationships  between
bacterial diversity and ecosystem functioning. Ecology 88:1075−85

30.

 Nan Q, Chi WC, Yang XL, Li SJ, Qin Y, et al. 2025. Long-term impacts of
straw and biochar applications on microbial diversity and soil functions in
paddy soils. Environmental Pollution 384:126934

31.

 de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, et al. 2018. Soil
bacterial  networks  are  less  stable  under  drought  than  fungal  networks.
Nature Communications 9:3033

32.

 Wagg  C,  Schlaeppi  K,  Banerjee  S,  Kuramae  EE,  van  der  Heijden  MGA.
2019. Fungal-bacterial  diversity  and  microbiome  complexity  predict
ecosystem functioning. Nature Communications 10:4841

33.

 Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, et al. 2001. An exami-
nation  of  the  biodiversity−ecosystem  function  relationship  in  arable  soil
microbial communities. Soil Biology and Biochemistry 33:1713−22

34.

 Zhang Q, Li Y, He Y, Liu H, Dumont MG, et al. 2019. Nitrosospira cluster
3-like  bacterial  ammonia  oxidizers  and Nitrospira-like  nitrite  oxidizers
dominate  nitrification  activity  in  acidic  terrace  paddy  soils. Soil  Biology
and Biochemistry 131:229−37

35.

 Qiu YP,  Jiang Y,  Guo LJ,  Burkey KO, Zobel  RW, et  al. 2018. Contrasting
warming  and  ozone  effects  on  denitrifiers  dominate  soil  N2O  emissions.
Environmental Science & Technology 52:10956−66

36.

 Hallin  S,  Jones  CM,  Schloter  M,  Philippot  L. 2009. Relationship  between
N-cycling communities and ecosystem functioning in a 50-year-old fertil-
ization experiment. The ISME Journal 3:597−605

37.

 Bender  SF,  Plantenga  F,  Neftel  A,  Jocher  M,  Oberholzer  HR,  et  al. 2013.
Symbiotic  relationships  between  soil  fungi  and  plants  reduce  N2O  emis-
sions from soil. Isme Journal 8:1336−45

38.

 Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection
of the nosZ gene, encoding nitrous oxide reductase, and comparison of the
abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and
Environmental Microbiology 72:5181−89

39.

 Pester M, Maixner F, Berry D, Rattei T, Koch H, et al. 2014. NxrB encod-
ing  the  beta  subunit  of  nitrite  oxidoreductase  as  functional  and  phyloge-
netic  marker  for  nitrite-oxidizing Nitrospira. Environmental  Microbiology
16:3055−71

40.

 Caporaso  JG,  Kuczynski  J,  Stombaugh J,  Bittinger  K,  Bushman FD,  et  al.
2010. QIIME  allows  analysis  of  high-throughput  community  sequencing
data. Nature Methods 7:335−36

41.

 Edgar  RC,  Haas  BJ,  Clemente  JC,  Quince  C,  Knight  R. 2011. UCHIME
improves  sensitivity  and  speed  of  chimera  detection. Bioinformatics
27:2194−200

42.

 Sul  WJ,  Cole  JR,  da  C  Jesus  E,  Wang  Q,  Farris  RJ,  et  al. 2011. Bacterial
community comparisons by taxonomy-supervised analysis independent of
sequence alignment and clustering. Proceedings of the National Academy of
Sciences of the United States of America 108:14637−42

43.

 DeSantis  TZ,  Hugenholtz  P,  Larsen  N,  Rojas  M,  Brodie  EL,  et  al. 2006.
Greengenes, a Chimera-checked 16S rRNA gene database and workbench
compatible  with  ARB. Applied  and  Environmental  Microbiology
72:5069−72

44.

 Meyer  F,  Paarmann  D,  D'Souza  M,  Olson  R,  Glass  EM,  et  al. 2008. The
metagenomics RAST server − a public resource for the automatic phyloge-
netic and functional analysis of metagenomes. BMC Bioinformatics 9:386

45.

 Jusselme MD, Saccone P, Zinger L, Faure M, Le Roux X, et al. 2016. Varia-
tions in snow depth modify N-related soil microbial abundances and func-
tioning  during  winter  in  subalpine  grassland. Soil  Biology  and  Biochem-
istry 92:27−37

46.

 Han S, Zeng L, Luo X, Xiong X, Wen S, et al. 2018. Shifts in Nitrobacter-
and Nitrospira-like  nitrite-oxidizing  bacterial  communities  under  long-
term fertilization practices. Soil Biology and Biochemistry 124:118−25

47.

 Deng Y, Jiang YH, Yang Y, He Z, Luo F, et al. 2012. Molecular ecological
network analyses. BMC Bioinformatics 13:113

48.

 Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics
software package for education and data analysis.  HAMMER, HARPER &
RYAN. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

49.

 Breiman L. 2001. Random forests. Machine Learning 45:5−3250.
 Ratcliffe  S,  Wirth C,  Jucker  T,  van der  Plas  F,  Scherer-Lorenzen M,  et  al.
2017. Biodiversity and ecosystem functioning relations in European forests
depend on environmental context. Ecology Letters 20:1414−26

51.

 Gonzalez  A,  Germain  RM,  Srivastava  DS,  Filotas  E,  Dee  LE,  et  al. 2020.
Scaling-up  biodiversity-ecosystem  functioning  research. Ecology  Letters
23:757−76

52.

 Ramond P, Galand PE, Logares R. 2025. Microbial functional diversity and
redundancy: moving forward. FEMS Microbiology Reviews 49:fuae031

53.

 Nielsen  UN,  Ayres  E,  Wall  DH,  Bardgett  RD. 2011. Soil  biodiversity  and
carbon cycling: a review and synthesis of studies examining diversity-func-
tion relationships. European Journal of Soil Science 62:105−16

54.

 Abell  M,  Braselton  J,  Braselton  L. 2006. A  model  of  allelopathy  in  the
context of bacteriocin production. Applied Mathematics and Computation
183:916−31

55.

 Fukami T, Dickie IA, Wilkie JP, Paulus BC, Park D, et al. 2010. Assembly
history  dictates  ecosystem  functioning:  evidence  from  wood  decomposer
communities. Ecology Letters 13:675−84

56.

 Purahong  W,  Wubet  T,  Lentendu G,  Schloter  M,  Pecyna  MJ,  et  al. 2016.
Life in leaf litter: novel insights into community dynamics of bacteria and
fungi during litter decomposition. Molecular Ecology 25:4059−74

57.

 Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, et al. 2016. Microbial hub
taxa link host and abiotic factors to plant microbiome variation. PLoS Biol-
ogy 14:e1002352

58.

 Cram  JA,  Xia  LC,  Needham  DM,  Sachdeva  R,  Sun  F,  et  al. 2015. Cross-
depth analysis  of  marine bacterial  networks  suggests  downward propaga-
tion of temporal changes. The ISME Journal 9:2573−86

59.

 Herren  CM,  McMahon  KD. 2018. Keystone  taxa  predict  compositional
change  in  microbial  communities. Environmental  Microbiology
20:2207−17

60.

 van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-
Engel  R,  et  al. 1998. Mycorrhizal  fungal  diversity  determines  plant  biodi-
versity, ecosystem variability and productivity. Nature 396:69−72

61.

 Vogelsang KM, Reynolds HL, Bever JD. 2006. Mycorrhizal fungal identity
and richness determine the diversity and productivity of a tallgrass prairie
system. New Phytologist 172:554−62

62.

Copyright:  ©  2025  by  the  author(s).  Published  by
Maximum  Academic  Press  on  behalf  of  Yunnan

Agricultural  University.  This  article  is  an  open access  article  distributed
under  Creative  Commons  Attribution  License  (CC  BY  4.0),  visit
https://creativecommons.org/licenses/by/4.0/.

  Negative BEF relationships

Page 98 of 98   Liu et al. Agrobiodiversity 2025, 2(4): 89−98

https://doi.org/10.1111/j.0030-1299.2008.16401.x
https://doi.org/10.1111/j.1461-0248.2012.01759.x
https://doi.org/10.1111/j.1461-0248.2012.01759.x
https://doi.org/10.1016/j.ecolind.2025.114292
https://doi.org/10.1038/s41579-018-0024-1
https://doi.org/10.1038/s41579-018-0024-1
https://doi.org/10.1038/s41579-018-0024-1
https://doi.org/10.1038/s43247-024-01767-z
https://doi.org/10.1038/s43247-024-01767-z
https://doi.org/10.1038/s43247-024-01767-z
https://doi.org/10.1016/j.soilbio.2015.08.010
https://doi.org/10.1038/s41467-020-17502-z
https://doi.org/10.1038/s41467-020-17502-z
https://doi.org/10.1038/ismej.2016.86
https://doi.org/10.1128/aem.01803-25
https://doi.org/10.1111/1365-2435.12445
https://doi.org/10.1111/1365-2435.12445
https://doi.org/10.1890/03-3050
https://doi.org/10.1002/ecy.2138
https://doi.org/10.1890/06-1556
https://doi.org/10.1016/j.envpol.2025.126943
https://doi.org/10.1038/s41467-018-05516-7
https://doi.org/10.1038/s41467-019-12798-y
https://doi.org/10.1016/S0038-0717(01)00094-3
https://doi.org/10.1016/j.soilbio.2019.01.006
https://doi.org/10.1016/j.soilbio.2019.01.006
https://doi.org/10.1021/acs.est.8b01093
https://doi.org/10.1038/ismej.2008.128
https://doi.org/10.1038/ismej.2013.224
https://doi.org/10.1128/AEM.00231-06
https://doi.org/10.1128/AEM.00231-06
https://doi.org/10.1111/1462-2920.12300
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1073/pnas.1111435108
https://doi.org/10.1073/pnas.1111435108
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1186/1471-2105-9-386
https://doi.org/10.1016/j.soilbio.2015.09.013
https://doi.org/10.1016/j.soilbio.2015.09.013
https://doi.org/10.1016/j.soilbio.2015.09.013
https://doi.org/10.1016/j.soilbio.2018.05.033
https://doi.org/10.1186/1471-2105-13-113
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
https://doi.org/10.1023/A: 1010933404324
https://doi.org/10.1111/ele.12849
https://doi.org/10.1111/ele.13456
https://doi.org/10.1093/femsre/fuae031
https://doi.org/10.1111/j.1365-2389.2010.01314.x
https://doi.org/10.1016/j.amc.2006.06.038
https://doi.org/10.1111/j.1461-0248.2010.01465.x
https://doi.org/10.1111/mec.13739
https://doi.org/10.1371/journal.pbio.1002352
https://doi.org/10.1371/journal.pbio.1002352
https://doi.org/10.1371/journal.pbio.1002352
https://doi.org/10.1038/ismej.2015.76
https://doi.org/10.1111/1462-2920.14257
https://doi.org/10.1038/23932
https://doi.org/10.1111/j.1469-8137.2006.01854.x
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and methods
	Study sites and sample collection
	Assessing N-transforming microbial diversity
	Assessing N-transforming potential with metagenomics
	Assessing N-transforming functions
	Co-occurrence network analysis
	Statistical analyses

	Results
	N-transforming functions decrease with increasing species richness
	Better growth but poorer functions for keystone taxa with increasing biodiversity
	Community complexity is decreased as biodiversity increases
	Links of species richness to N-transforming capability

	Discussion
	Implications, limitations, and future directions

	Conclusions
	Author contributions
	Data availability
	References

