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As China's largest crop and cotton production region, Xinjiang faces significant challenges in
managing and reusing agricultural residues such as crop straw, cotton straw, and mulch film
waste in the agricultural sector. To promote the efficient utilization of these residues and
guide sustainable agricultural waste management practices in Xinjiang, this study calculated
the collectible quantities of major crop straw (maize, wheat, and cotton) using grass-to-grain
ratios and straw collectible coefficients, and determined the quantity of recyclable mulch
film based on application and recovery rates. Furthermore, it assessed the biochar pro-
duction potential and carbon reduction benefits through life cycle assessment (LCA). The
pyrolysis of straw (maize, wheat, and cotton) and mulch film for biochar production yielded a
net CO,, reduction of 2.05 x 107 and 2.67 X 10° t, respectively. Considering that wheat straw
is primarily returned to fields and maize straw serves mainly as animal feed, the biochar
production potential of cotton straw alone was estimated at 3.48 x 10° t, corresponding to a
net CO,, reduction of 1.01 x 107 t. Although the pyrolysis of mulch film alone produces
minimal biochar, co-pyrolysis of all recyclable mulch film with cotton straw at a ratio of 1:4
significantly improves biochar yield, generating 2.24 x 10° t of biochar and achieving a
net CO,, emission reduction of 3.43 x 10° t. These results demonstrate that co-pyrolysis
significantly enhances both biochar production and carbon emission reduction compared
with the pyrolysis of mulch film alone. Overall, this study not only provides a scientific basis
for the efficient utilization of major crop residues in Xinjiang but also offers practical insights
for the integrated management of cotton straw and mulch film waste in cotton-producing
regions.
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+ Quantities of the collectible major crop (maize, wheat, and cotton) straw and all recyclable mulch film were calculated.

+ The potential of biochar production and carbon emission mitigation was analyzed from the pyrolysis of major crops' collectible
straw, recyclable mulch film, and cotton straw and mulch film mixture, respectively.

+ A recommendation for the integrated treatment of cotton straw and mulch film waste was proposed in Xinjiang's cotton-

production regions.
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Potential of biochar production and carbon emission mitigation through
co-pyrolysis of cotton straw and mulch film waste in Xinjiang, China
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Enhancing the recycling of agricultural waste and promoting the use of
organic residues from agricultural production are crucial for advancing
green development and fostering harmony between humanity and
nature. These efforts also represent key strategies for driving compre-
hensive rural revitalization. Agricultural biomass energy technologies
play an essential role in improving the efficient use of agricultural
waste. By converting agricultural residues into bioenergy, these tech-
nologies mitigate environmental pollution, promote the substitution
of fossil fuels to reduce carbon dioxide emissions, and strengthen soil
carbon sequestration, water retention, and nutrient conservation,
thereby contributing to the achievement of China's dual carbon
goals!'.

As a major agricultural production region in China, Xinjiang
recorded a total sown crop area of 6.8398 x 10 hm2, and a farming
output of 2.1192 x 107 t in 2023. The combined amount of maize,
wheat, and cotton straw reached approximately 3.39 x 107 t, with
an estimated collectible quantity of 2.64 x 107 tl2. Currently, wheat
straw in Xinjiang is mainly returned to the field, and maize straw
is predominantly used as livestock feed. The remaining residues,
largely cotton straw, are often discarded or directly burned, result-
ing in a low resource utilization rate. Returning straw to the field
provides only temporary carbon storage; once decomposed by
microorganisms, much of the carbon is re-emitted into the atmo-
sphere, contributing to new carbon sources. Improper ways of
returning straw to the field can also increase the risk of pest infes-
tations and diseases while depleting soil nitrogen, thereby adversely
affecting crop growthtl, Utilizing straw as animal feed offers an
alternative reuse pathway; however, due to the high cellulose and
lignin contents of most straw types, digestibility is limited, reducing
their nutritional value for livestock. Consequently, this approach is
primarily suitable for plant residues with low lignin content, such as
maize, wheat, and sorghum straw.

Mulch film is also extensively used across Xinjiang's agricultural
landscape, covering over 2.5 million hm?2, which accounts for more
than 60% of the region's total cropland area. Its use significantly
enhances crop vyields and conserves soil moisture and
temperaturel’l, However, the widespread use of mulch film has led
to growing 'white pollution' concerns. Although measures such as
promoting thicker, high-strength films, testing fully biodegradable
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alternatives, and developing new technologies and machinery for
film recovery and treatment have gained traction, residual mulch
film pollution remains a persistent issuel>. Consequently, there is an
urgent need to advance research on the integrated utilization of
crop straw and mulch film to address pollution control, carbon miti-
gation, and the broader goals of green and sustainable agricultural
development in Xinjiang!®l.

It is encouraging that in recent years, several scholars have begun
to address this issue. Regarding the estimation of straw and mulch
film resources, most existing studies calculate straw availability
primarily using the straw-to-grain ratio method[’l. However, many of
these studies employ a uniform coefficient for each crop variety at
the national scale, without accounting for regional variations in
crop yields and straw-to-grain ratios. As a result, the accuracy of
such estimates remains limited. In addition, numerous studies have
examined straw pyrolysis as a means of carbon reduction and
sequestrationl®l. Findings consistently demonstrate that, compared
to direct straw incorporation into soils, pyrolyzing straw to produce
biochar not only enhances crop yields but also substantially reduces
greenhouse gas emissions!®'0, For instance, Chang et al.l''l reported
from a seven-year trial that applying straw biochar to farmland
increased average crop yields by 2.28%-9.94%, reduced green-
house gas emission intensity by 1.6-8.6 times, and decreased the
global net warming potential (GWP) by 1.1-7.7 times. These results
confirm that biochar production offers significant advantages over
conventional straw return to the field. Similarly, Zhu et al.l'Z applied
a life cycle assessment (LCA) model to assess the carbon reduction
potential of biochar used for both energy and soil applications,
revealing that more than 2.07 x 10° t CO,, of carbon emissions
could be reduced in Weinan City, Shaanxi Province, China. Collec-
tively, these findings underscore that pyrolyzing straw to produce
biochar is an effective approach to enhance soil carbon sequestra-
tion, reduce greenhouse gas emissions, and promote the sustain-
able utilization of straw residues. However, integrated approaches
for the synergistic treatment of crop straw and residual mulch film
are still in their early stages and warrant further investigation.

Given the low biochar yield from mulch film pyrolysis alone,
researchers have proposed the co-pyrolysis of residual mulch
film with crop straw to enhance biochar production and achieve
greater carbon reduction. For instance, Zhang et al.['3] co-pyrolyzed
cotton straw and mulch film to produce biochar and bio-ail,
leading to significantly improved economic returns and achieving
negative carbon emissions, with a GWP of approximately
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1.298 kg CO,-eq-kg~". However, most existing research on carbon
reduction via straw-derived biochar has been conducted at the
national scale, while research at the regional level remains limited.
Moreover, comprehensive assessments of the combined carbon
reduction potential of the two major agricultural waste types, straw
and mulch film, are scarce, particularly for Xinjiang. Therefore, inves-
tigating the integrated utilization of these agricultural residues in
Xinjiang is particularly important.

To comprehensively assess the potential for biochar production
from crop straw and mulch film in Xinjiang, this study first esti-
mated the collectible quantities of crop straw using the straw-to-
grain ratio method and the collection coefficients. Subsequently,
relevant literature was reviewed to determine the usage intensity
and recyclable amount of mulch film in the region. Through this
literature analysis, appropriate calculation parameters for biochar
yields and carbon sequestration rates of different crop straw and
mulch film were established. Employing the LCA approach, the
study further evaluated the carbon reduction potential of biochar
production under the four scenarios in Xinjiang: (1) Pyrolysis of all
major crop straw (maize, wheat, and cotton); (2) Separate pyrolysis
of all cotton straw; (3) Separate pyrolysis of all recyclable mulch film;
and (4) Co-pyrolysis of all recyclable mulch film and cotton straw at a
mass ratio of 1:4. The aims were to provide a scientific reference for
understanding the current situation regarding crop straw and mulch
film resources in Xinjiang, assess the potential of biochar produc-
tion and carbon emission mitigation, and promote the sustainable
and rational utilization of agricultural residues in this region.

The Xinjiang Uygur Autonomous Region is located between 73°40' and
96°23' E longitude, and 34°25' and 49°10' N latitude (Fig. 1). As the

Agricultural Ecology
and Environment

largest provincial-level administrative region in China, it covers a total
area of 1.6649 million km?, accounting for approximately one-sixth of
the total land area of the country.

The data used in this study were sourced from the China Statistical
Yearbook 2024 (statistics cover the period up to the end of 2023) and
relevant published research papers.

Following the LCA methodology!¥, several key indicators were
selected for evaluation: (1) annual theoretical straw resource volume
(Qy); (2) annual collectible straw resource volume (Q,); (3) annual mulch
film resource recyclable volume (Q;); (4) annual biochar production
potential (Q,). These indicators were calculated using Eqs (1)-(4).

Q=) pixri (M
=1
Q2=Zpi><ri><a’i 2)
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where, Q,; denotes the theoretically obtainable quantity of maize,
wheat, and cotton straw in Xinjiang; i represents the straw type
identifier (i = 1, 2, 3); p; denotes the annual yield of the i-th crop in the
region; and r; denotes the straw-to-grain ratio of the i-th crop, defined
as the ratio of the wind-dried straw weight to grain yield per unit area.
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Fig. 1 Map of Xinjiang Province.
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For Xinjiang's main crops, the values of r; are 1.033 for maize, 1.093 for
wheat, and 2.455 for cotton!'”. Q, denotes the collectible amount of
straw from the three major crops in Xinjiang; a; denotes the collectible
coefficient of the i-th straw, defined as the ratio of the collectible straw
quantity to the theoretical straw quantity of that crop. This coefficient
is influenced by factors such as plant height, cutting height
(mechanical or manual), mechanization rate, and collection and
transportation losses. The o; value for major crops in Xinjiang is 0.813
for maize, 0.785 for wheat, and 0.74 for cotton['®. Q; denotes the
annual recyclable volume of mulch film in Xinjiang; g represents the
annual mulch film usage volume; and f denotes the recovery rate of
mulch film. Q, denotes the total biochar yield from crop straw and
mulch film. S; denotes the collectible quantity of the i-th type of straw
or mulch film, and n; refers to the biochar yield for the corresponding
material.

The quantity of carbon sequestered via soil application of biochar
(Qs) was estimated using Eq. (5):

n
0s=) eixty (5)
i=1

where, Qs denotes the total amount of soil-sequestered carbon; ¢;
represents the biochar yield derived from the i-th feedstock; and t;
indicates the carbon content of the biochar produced from the i-th
feedstock.

According to the China Statistical Yearbook, the output of major agri-
cultural products in the Xinjiang Uygur Autonomous Region has
shown a steady upward trend over the past decade (2014-2023). In
2023, the production of maize, wheat, and cotton reached approxi-
mately 1.3214 x 107, 7.028 x 106, and 5.112 x 10° t?l, Based on the
straw-to-grain ratios and collectible coefficients for these main crops,
the total straw production from maize, wheat, and cotton in 2023 was
estimated at 1.36 x 107, 7.68 x 105, and 1.25 x 107 t, respectively. The
corresponding collectible straw quantities were calculated to be 1.11 x
107,6.03 x 10%,and 9.29 x 100 t, respectively, for Xinjiang.

Xinjiang ranks first nationwide in both mulch film usage and
coverage area. According to the China Rural Statistical Yearbook, the
region's annual mulch film usage reached 2.5 x 10° t, and the mulch
film coverage exceeded 4 x 106 hm2, which accounts for more than
a quarter of the total national mulch film usage. The mulching rate
for major crops such as cotton and maize exceeded 90%!'¢.. Data
from the China Agriculture Network indicate that Xinjiang has made
significant progress in the recovery of waste mulch film. By 2021,
the recovery rate had reached 81%, with an estimated recyclable
quantity of 2.03 x 10° t.

Crop straw, a major component of agricultural waste, is characterized
by high volume, diverse composition, and rich carbon content!”.
Meanwhile, recycled agricultural mulch film often contains excessive
impurities, which hinder efficient resource recovery. The mixture of
straw and mulch film poses particular challenges, as separation is
exceptionally difficult; consequently, such mixed residues have
become a major non-point source of agricultural pollution®., Pyrolysis
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technology provides an effective pathway for converting agricultural
waste, such as straw and mulch film, into high-value, eco-friendly
products, including biochar, combustible gases, and bio-oil'l. This
process offers advantages such as simplified treatment procedures and
controllable conversion costs!™. In the energy sector, biochar can be
further processed into biochar-based briquettes””. Moreover, owing
to its high carbon content, large specific surface area, stable chemical
properties, and the presence of elements such as hydrogen, oxygen,
nitrogen, sulfur, phosphorus, and minerals, biochar serves as an
excellent soil conditioner. Its long-term stability allows it to persist in
soil for centuries to millennia, improving soil structure and fertility
while providing substantial carbon sequestration benefits!'®. In this
study, the LCA approach was employed to evaluate the potential for
biochar production and carbon emission reduction from the pyrolysis
of crop straw and residual mulch film in Xinjiang. The objective of
the LCA was to quantitatively assess the net CO,, balance associated
with the production and application of biochar derived from these
resources. The assessment scope primarily encompassed: (1) the CO,,
balance across key stages, including raw material collection, biochar
production, and transportation of both feedstocks and biochar; and (2)
the beneficial impacts from renewable energy by-products and
biochar application on the overall CO,, balancel?".,

The key parameters for biochar production using the total collectible
quantities of wheat, maize, and cotton straw in Xinjiang for 2023 are
presented in Table 1.

In terms of the carbon reduction potential derived from thermal
energy generated during the biochar production process, particu-
larly through the substitution of fossil fuel combustion, both bio-oil
and biogas produced during pyrolysis possess notable calorific
values. However, due to current technological constraints, bio-oil
cannot be directly utilized for electricity generation3>. In 2023, the
total quantity of collectible straw from major crops in Xinjiang was
2.64 x 107 t. The biogas generated during biochar production can be
utilized for electricity generation (as shown in Table 1), yielding
approximately 5.39 x 10° kWh, which could replace coal combus-
tion and thereby reduce CO, emissions by 4.54 x 10 t.

Regarding biochar production and its carbon sequestration capa-
city, a review of relevant studiesi??! reveals that carbon content
varies slightly across different types of crop straw, leading to diffe-
ring biochar yields and biochar carbon content. Reported biochar
yields are 30.34%, 31.71%, and 37.5% for maize, wheat, and cotton
straw, respectivelyl2627] suggesting a total biochar production
potential from Xinjiang's major crop straw in 2023 of approximately
8.76 x 106 t. Research indicates that the carbon contents of biochar
from maize, wheat, and cotton straw are 59.76%!2%, 62.89%!2%], and
73.40%!28], respectively. According to Roberts et al., about 20% of
biochar carbon exists in unstable formsi2'. Thus, the estimated
amount of carbon fixed in soil through biochar application is 4.62 x
10°t, equivalent to 1.70 x 107 t of CO,.

In terms of the inhibition of N,O release by biochar, N,O is an
important greenhouse gas, with a global warming potential (GWP)
as high as 298 times that of carbon dioxide!2'l. N,O emissions origi-
nate from multiple pathways, and agricultural soil is one of their
primary sources. Biochar application to farmland has been proven to
be an effective technical measure for significantly suppressing N,O
emissions from agricultural soil. Since only a portion of the arable
land area is suitable for biochar application, this study focused on
maize, wheat, and cotton. Biochar was assumed to be applied at an
average rate of 50 thm=237, The total arable area suitable for
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Table 1 Relevant parameters and estimated potential for greenhouse gas mitigation through biochar production from major collectible crop straw resources in

Xinjiang, 2023
Parameter

Total amount of straw feedstock (t)

Biogas yield (%)

Calorific value of biogas (MJ-kg™")

Electricity conversion coefficient (%)

CO, emissions from power generation (kg-kWh™")
Electricity output during biochar production (kWh)

The heat energy
generated during
biochar production
can replace the
combustion of
fossil fuels

CO, emissions reduction from coal substitution (t)
Biochar yield (%)

Biochar carbon content (%)

The ratio of biochar's stable component (%)
C-CO, conversion coefficient

Total biochar produced (t)

Amount of carbon sequestered via soil application
of biochar (t)

Amount of CO, sequestered via soil application of
biochar (t)
The rate of N,O emission suppression by biochar (%)

N,O emissions (kg-hm~2)
Proportion of biochar applied to soil (tthm=2)
Area available for biochar application (hm?)

Calculation of
biochar yield and
carbon
sequestration rate

The inhibition of
N,O emissions by
biochar

N,O-CO, conversion coefficient
The reduction in N,O emissions (t)

The reduction in CO, emissions (t)

Fertilizer input rate (kg-hm’z)

Reduction amount of agricultural fertilizer input (%)
CO,. emission amount from fertilizer production
(kg)

CO,. emission avoidance from reduced fertilizer
application (t)

Greenhouse gas emission factor from the storage
and transportation of straw (kg-t™")

Emissions of CO,, per ton for biochar (kg)

Fertilizer reduction
from biochar
application
(calculated in CO,,)

Greenhouse gas
emissions from the
storage and
transportation of
biochar and
feedstock

CO,e emissions from straw feedstock (t)

Emissions of CO,, attributable to biochar (t)

Total emissions (CO,,) (t)

Net reduction in greenhouse gas emissions (CO,,) (t)

Parameter Calculation

1
VI code? process Ref.
2.64 x 107 Al Eq. (2) This study
35% A2 [22]
6 A3 [23]
35% A4 [24]
0.8426 A5 [25]
5.39 x 10° A6 A1 x A2 x A3 x —3
A4/3.6 x 1,000
4.54 x 10° A7 A6 x A5/1,000 —
30.34% (m), 31.71% (w), 37.5% (c) A8 [26,27]
59.76% (M), 62.89% (w), 73.4% (c) A9 [26, 28]
80% A10 [21]
3.67 A11 —
8.76 x 10° A12 Eq. (4) This study
4.62 % 10° A13 Eq. (5) This study
1.70 x 107 Al14 A13 x A11 —
87% A15 [29]
1.86 (m), 1.54 (w), 2.10 (c) A16 [12,30]
50 A17 [31]
6.74 x 10* (m), 3.82 x 103 (w), A18 A12/A17 —
6.97 x 10*(c)
298 A19 [21]
241.53 A20 SA15 X A16 X —
A18/1,000
7.2x10% A21 A20 x A19
167.41 (N); 98.66 (P); 35.44 (K) A22 [32]
10% (N); 5% (P); 10% (K) A23 [31]
3;,0.7;1 A24 [21]
8.06 x 103 A25 SA18 x A22 x A23 —
X A24
27.53 A26 [33]
45.32 A27 [34]
7.27 x 10° A28 A1 xA26 —
3.97 x 10° A29 A12 x A27 —
1.12 x 10° A30 A28 + A29
2.05 x 107 A32 A7+ A14 + A21 + —
A25-A30

"'m, w, and c represent maize, wheat, and cotton, respectively. 2 Parameter codes are assigned to illustrate calculation procedures. > — indicates that the relevant data is

derived via calculation.

application is 1.73 x 105 hm2. Selecting different emission standards
for N,O, and combined with the ratio of biochar inhibiting N,O
emissions, the reduction in N,O emissions is 241.53 t, equivalent to
7.2x 104t CO,.

With regard to CO,, reduction through reduced chemical ferti-
lizer use, biochar's rich trace element content enhances soil micro-
bial diversity, fertility, and nutrient use efficiency%. When applied
at appropriate rates, biochar reduces the need for conventional fer-
tilizers while increasing nitrogen recovery!3’). Generally, vegetable
and fruit crops require significantly higher fertilizer inputs than grain
crops. In this study, the fertilizer application rates for grain crops
were set at 167.41 kg-hm=2 (N), 98.66 kg-hm=2 (P), and 35.44 kg-hm—2
(K)B2l, Compared with conventional fertilization, biochar application
reduces nitrogen and potassium supplementation by 10 % and
phosphorus supplementation by 5%0B'. The resulting reduction in
fertilizer use was estimated to avoid 8.06 x 103 t CO,, emissions.

To estimate greenhouse gas emissions during the storage and
transportation of raw materials and biochar, the CO, emission factor
for the storage and transportation of straw is 27.53 kg-t~'336l, Based
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on this, emissions from the straw feedstock were estimated at 7.27 x
10° t. Additionally, biochar releases greenhouse gases during sto-
rage and transportation. Based on the estimates by West & Gregg34,
the CO,, emission per ton of biochar is 45.32 kg. Consequently, the
CO,. emissions from the storage and transportation of biochar are
3.97 x 10° t. Thus, the combined emissions from straw feedstock
and biochar storage and transportation total 1.12 x 100 t CO,,.

Integrating these factors, the net CO,, reduction from producing
biochar from maize, wheat, and cotton straw in Xinjiang was esti-
mated at 2.05 x 107 t.

The Xinjiang Uygur Autonomous Region is China's primary cotton-
producing area and also a globally significant base for high-quality
cotton, with its cotton planting area accounting for 85% of the total
cotton planting area in China (Fig. 2), and 34.6% of the total cultivated
area in Xinjiang, 2023 (Fig. 3).

Currently, wheat straw is predominantly returned to the soil,
while maize straw is mainly used as livestock feed. Therefore, this
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Fig. 2 Changes in cotton planting area from 2000 to 2023. Fig. 3 Cultivated area of major crops in Xinjiang Province.

Table 2 Relevant parameters and estimated potential for greenhouse gas mitigation through biochar production from all collectible cotton straw resources in
Xinjiang in 2023

Parameter

Parameter Value code’ Calculation Ref.
The heat energy Total amount of cotton stalk (t) 9.29 x 108 B1 Eq. (2) This study
generated during Biogas yield (%) 35.82% B2 [38]
l;)églc:caer&rgducuon €N (calorific value of biogas (MJ-kg™") 10.9 B3 [39]
combustion of fossil  Electricity conversion coefficient (%) 35% B4 [24]
fuels CO, emissions from power generation (kg-kWh™") 0.8426 B5 [25]
Electricity output during biochar production (kWh) 3.53x 10° B6 B1xB2xB3xB4/ —2
3.6 x 1,000
CO, emissions reduction from coal substitution (t) 2.97 x 10° B7 B6 x B5/1,000 —
C.alculation of biochar  Biochar yield (%) 37.5% B8 [27]
yield and c.arbon Biochar carbon content (%) 73.4% B9 [28]
sequestration rate The ratio of biochar's stable component (%) 80% B10 [21]
C-CO, conversion coefficient 3.67 B11 —
Total biochar produced (t) 3.48 x 100 B12 Eq. (4) This study
Amount of carbon sequestered via soil application 2.04 x 10° B13 Eq. (5) This study
of biochar (t)
Amount of CO, sequestered via soil application of 7.5x10° B14 B13xB11 —
biochar (t)
The inhibition of N;O  The rate of N,O emission suppression by biochar (%) 87% B15 [29]
emissions by biochar N,O emissions (kg-hm=2) 2.10 B16 [30]
Proportion of biochar applied to soil (tthm™2) 50 B17 [31]
Area available for biochar application (hm?) 6.97 x 10* B18 B12/B17 —
N,O-CO, conversion coefficient 298 B19 [21]
The reduction in N,O emissions (t) 127.34 B20 >B15xB16 x —
B18/1,000
The reduction in CO, emissions (t) 3.79 x 10% B21 B20 x B19
Fertilizer reduction Fertilizer input rate (kg-hm™2) 167.41 (N); 98.66 (P); 35.44 (K) B22 [32]
from biochar Reduction in fertilizer input (%) 10% (N); 5% (P); 10% (K) B23 [31]
application (calculated ¢, emissions amount from fertilizer production 3;0.7; 1 B24 [21]
n COze) (kg)
CO,. emission avoided through reduced fertilizer 3.99x 103 B25 B18 x B22 x B23 x —
application (t) B24/1,000
Greenhouse gas Greenhouse gas emission factor from the storage 27.53 B26 [33]
emissions from the and transportation of straw (kg-t™")
storage and ¢ Emissions of CO,, per ton for biochar (kg) 45.32 B27 [34]
Lr%r;ipac:ratﬁgofgecast(xk CO,, emissions from cotton stalk (t) 2.56 x 10° B28 B1 x B26 —
Emissions of CO,, attributable to biochar (t) 1.58 x 10° B29 B12 x B27 —
Total emissions (CO,,) (t) 4.14x10° B30 B28 + B29
Net reduction in greenhouse gas emissions (CO,,) (t) 1.01 x 107 B31 B7 + B14 + B21 + —
B25-B30

' Parameter codes are assigned to illustrate the calculation procedures. > — indicates that the relevant data is derived via calculation.
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study separately evaluates the potential of biochar production and
carbon emission reduction from cotton straw in Xinjiang, aiming to
provide a scientific reference for the sustainable management of
cotton waste (Table 2).

The quantity of collectible cotton straw in Xinjiang in 2023 was
9.29 x 10° t. The biogas produced during the pyrolysis process can
generate 3.53 x 102 kWh of electricity, resulting in a CO, emission
reduction of 2.97 x 106 t. The estimated amount of biochar yield
from cotton straw in 2023 is 3.48 x 106 t, with the amount of carbon
fixed in soil through biochar application approximated at 2.04 x
109 t, equivalent to 7.5 x 106 t of CO,. The estimated area for biochar
application is 6.97 x 10* hm2, The reduction in N,O emissions is
127.3 t (equivalent to 3.79 x 10% t CO,). Additionally, the reduction in
chemical fertilizer use due to biochar application is projected to
further decrease CO,. emissions by 3.99 x 103 t. Estimated green-
house gas emissions from the cotton straw feedstock amount to
2.56 x 10° t, while those generated during biochar storage and
transportation total 1.58 x 10° t, yielding combined emissions of
414 x105t.

Overall, based on these estimates, the net CO,, reduction result-
ing from the production of biochar from cotton straw is 1.01 x 107 t.
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The quantity of recyclable mulch film in Xinjiang in 2023 was
approximately 2.03 x 10° t. The key parameters and corresponding
calculation procedures are presented in Table 3.

The biogas produced during the pyrolysis process can generate
3.2 x 108 kWh of electricity, resulting in a CO, emission reduction of
2.74 x 105 t. According to Xie et al.l2Z], the biochar yield from plastic
film pyrolysis is only 1.65%, with a carbon content of 8.91%. Based
on these parameters, the biochar production potential of mulch film
in Xinjiang was estimated at 3.35 x 103 t, and the amount of carbon
fixation due to soil application of biochar is 2.39 x 102 t, equivalent
to 8.76 x 102 t of CO,. The area available for biochar application is
67 hm2. Furthermore, the application of biochar reduces the use of
chemical fertilizers, leading to an additional CO,, emission reduc-
tion of 3.83 t. To estimate greenhouse gas emissions from storing
and transporting raw materials and biochar, the CO, emission factor
from the storage and transportation of mulch film is 21 kg-t~133,
Based on this value, the greenhouse gas emissions from mulch film
feedstock were estimated at 4.26 x 103 t, while biochar storage and
transportation of biochar generate approximately 1.52 x 102 t,
giving the total emissions of 4.41 x 103 t. Overall, the net CO,,

Table 3 Relevant parameters and estimated potential for greenhouse gas mitigation through biochar production from all recyclable mulch film in Xinjiang, 2023

Parameter

Total amount of mulch film feedstock (t)

Biogas yield (%)

Calorific value of biogas (MJ-kg™")

Electricity conversion coefficient (%)

CO, emissions from power generation (kg-kWh=")
Electricity output during biochar production (kWh)

The heat energy
generated during
biochar production can
replace the combustion
of fossil fuels

CO, emission reduction from coal substitution (t)
Biochar yield (%)

Biochar carbon content (%)

The ratio of biochar's stable component (%)
C-CO, conversion coefficient

Total biochar produced (t)

Amount of carbon sequestered via soil application of
biochar (t)

Amount of CO, sequestered via soil application of
biochar (t)

The rate of N,O emission suppression by biochar (%)
N,O emissions (kg-hm=2)

Proportion of biochar applied to soil (tthm™2)

Area available for biochar application (hm?)
N,O-CO, conversion coefficient

The reduction in N,O emissions (t)

Calculation of biochar
yield and carbon
sequestration rate

The inhibition of N,O
emissions by biochar

The reduction in CO, emissions (t)

Fertilizer input rate (kg-hm~2)

Reduction in fertilizer input (%)

CO,, emissions from fertilizer production (kg)
CO,, emissions avoided through reduced fertilizer
application (t)

Greenhouse gas emission factor from the storage
and transportation of mulch film (kg-t™")
Emissions of CO,, per ton for biochar (kg)

CO,, emissions from mulch film feedstock (t)
Emissions of CO,, attributable to biochar (t)

Total emissions (CO,,) (t)

Net reduction in greenhouse gas emissions (CO,,) (t)

Fertilizer reduction from
biochar application
(calculated in CO,,)

Greenhouse gas
emissions from the
storage and
transportation of biochar
and feedstock

Parameter

Value code! Calculation Ref.
2.03x10° Q1 Eq.(3) This study
42% 2 [22]
38.6 c [23]
35% c4 [24]
0.8426 c5 [25]
3.2x 108 C6 ClxC2xC3xC4/ —2
3.6 X 1,000
27%x10° c7 C6 x C5/1,000 —_
1.65% c8 [22]
8.91% 9 [22]
80% C10 [21]
3.67 cn —
3.35x 103 C12 Eq. (4) This study
239 x 102 13 Eq. (5) This study
8.76 x 102 Cc14 C13xCM1 —
87% Ci15 [29]
2.10 c16 [30]
50 c17 [31]
67 c18 c12/C17 —
298 c19 [21]
0.122 C20 C15xC16 x —
C18/1,000
36.48 21 C20xC19 —
167.41 (N); 98.66 (P); 35.44 (K); 22 132]
10% (N); 5% (P); 10% (K) C23 [31]
3;,0.7;1 C24 [21]
3.83 C25 >C18x C22x C23 x —
C24/1,000
21 C26 [33]
45.32 Cc27 [34]
426 x 103 C28 C1xC26 —
1.52 x 102 C29 C12xC27 —
441x10° 30 C28 +C29
2.67 x 10° C31 C7+C14+QC21 + —
C25-C30

' Parameter codes are assigned to illustrate calculation procedures. 2 — indicates that the relevant data is derived via calculation.
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reduction from producing biochar from mulch film in Xinjiang is
2.67 x10°t.

Previous studies have shown that the co-pyrolysis of mulch film and
straw can increase the yield and quality of pyrolysis products“?,
Additionally, during the co-pyrolysis of cotton straw and mulch film,
the yield of biochar derived from pyrolysis increases with the elevated
proportion of cotton straw in the mixtureP. Additionally, mulch film
exhibits a lower density compared to cotton straw. Therefore, the
present study employs a 1:4 mass ratio of mulch film to cotton straw
for co-pyrolysis, aiming to achieve complete pyrolysis of all recyclable
mulch film while maximizing biochar production. This study estimated
the potential for biochar production and carbon reduction from the
co-pyrolysis of all recyclable mulch film and cotton straw in Xinjiang at
aratio of 1:4 (Table 4).

In Xinjiang, the biogas produced from the co-pyrolysis of all recy-
clable mulch film and cotton stalk at a 1:4 mass ratio can produce
6.66 x 108 kWh of electricity, leading to a CO, emission reduction of

https://doi.org/10.48130/aee-0025-0016

5.62 x 105 t. According to Jiang et al.;’8], the biochar yield from this
process is 22%, giving an estimated biochar production potential of
2.24 x 10° t. The quantity of carbon sequestered through soil appli-
cation of biochar is 1.25 x 10° t, equivalent to 4.6 x 10° t of CO,. The
estimated area for biochar application is 4.48 x 103 hm2, which
could enable a reduction in N,O emissions of 8.18 x 103 t, equiva-
lent to 2.44 x 106 t of CO,. In addition, the use of biochar can reduce
the demand for chemical fertilizers, leading to a further CO,, reduc-
tion of 256.35 t. The greenhouse gas emissions from mulch film and
cotton straw feedstock amount to 2.66 x 10* t, while those gene-
rated during biochar storage and transportation were estimated
at 1.02 x 10* t. Together, these contribute to the total emissions of
3.68 x 10* t CO,,. Overall, the net CO,, reduction achieved through
the co-pyrolysis of mulch film and cotton straw at a 1:4 ratio was
estimated at 3.43 x 106t.

After the co-pyrolysis of all mulch film and cotton straw at this
ratio, the remaining cotton straw mass is 8.59 x 106 t. Following the
estimation approach outlined in Table 2, the biochar produced from
this remaining cotton straw could contribute to an additional net
CO,, reduction of 9.34 x 10°t.

Table 4 Relevant parameters and estimated potential for greenhouse gas mitigation through biochar production from all recyclable mulch film and cotton straw at a

ratio of 1:4 in Xinjiang, 2023

Parameter
The heat energy Total amount of cotton straw and mulch film
generated during feedstock (t)
biochar production Biogas yield (%)

can replace the
combustion of fossil
fuels

Calorific value of biogas (MJ-kg™")

Electricity conversion coefficient (%)

CO, emissions from power generation (kg-kWh=")
Electricity output during biochar production (kWh)

CO, emissions reduction from coal substitution (t)
Biochar yield (%)

Biochar carbon content (%)

The ratio of biochar's stable component (%)
C-CO, conversion coefficient

Calculation of biochar
yield and carbon
sequestration rate

Total biochar produced (t)

Amount of carbon sequestered via soil application of
biochar (t)

Amount of CO, sequestered via soil application of
biochar (t)
The rate of N,O emission suppression by biochar (%)

N,O emissions (kg-hm=2)
Proportion of biochar applied to soil (tthm2)

Area available for biochar application (hm?)
N,0O-CO, conversion coefficient

The reduction in N,O emissions (t)

The inhibition of N,O
emissions by biochar

The reduction in CO, emissions (t)

Fertilizer input rate (kg~hm’2)

Reduction in fertilizer input (%)

CO,. emissions from fertilizer production (kg)

CO,, emissions avoided through reduced fertilizer
application (t)

Greenhouse gas emission factors from the storage
and transportation of straw and mulch film (kg-t™")
Emissions of CO,. per ton for biochar (kg)

CO,, emissions from cotton straw and mulch film
feedstock (t)

Emissions of CO,, attributable to biochar (t)

Total emissions (CO,,) (t)

Net reduction in greenhouse gas emissions (CO,,) (t)

Fertilizer reduction
from biochar
application
(calculated in CO,,)

Greenhouse gas
emissions from the
storage and
transportation of
biochar and feedstock

Value Parameter code’ Calculation Ref.
1.02 x 106 D1 Eqgs(2)and (3) This study
32% D2 [38]
21 D3 [38]
35% D4 [24]
0.8426 D5 [25]
6.66 x 10° D6 D1x D2 x D3 x —2
D4/3.6 x 1,000
5.62 x 10° D7 D6 x D5/1,000 —
22% D8 [38]
69.91% D9 [22]
80% D10 [21]
3.67 D11 —
2.24x10° D12 Eq. (4) This study
1.25x 10° D13 Eq. (5) This study
46x10° D14 D13 x D11 —
87% D15 [29]
2.10 D16 [30]
50 D17 [31]
448x 103 D18 D12/D17 —
298 D19 [21]
8.18x 103 D20 >D15x D16 x —
D18/1,000
2.44 % 100 D21 D20 x D19
167.41 (N); 98.66 (P); 35.44 (K) D22 [32]
10% (N); 5% (P): 10% (K) D23 [31]
3;07;1 D24 [21]
256.35 D25 >D18 x D22 x —
D23 x D24
27.53, 21 D26 [33]
45.32 D27 [34]
2.66 x 10* D28 D1 x D26 —
1.02 x 10* D29 D12 x D27 —
3.68 x 10* D30 D28 + D29
343 x 10° D31 D7 + D14 + D21 —
+ D25-D30

' Parameter codes are assigned to illustrate calculation procedures. 2 — indicates that the relevant data is derived via calculation.
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Xinjiang possesses abundant straw and mulch film resources, with
maize straw, wheat straw, and cotton straw accounting for 93.5% of
the total crop straw. The total quantity of collectible straw for maize,
wheat, and cotton in 2023 was estimated at 2.64 x 107 t. The amount of
mulch film used in Xinjiang has remained stable at 2.5 x 10° t, of which
2.03 x 10° tis recyclable.

Based on the total amount of collectible maize, wheat, and cotton
straw, the biochar production potential was estimated at 8.76 x 106
t, corresponding to a net CO,, reduction of 2.05 x 107 t. Currently,
wheat straw is primarily returned to fields, while maize straw is used
as animal feed. Thus, the biochar production potential from cotton
straw was estimated at 3.48 x 10° t, achieving a net CO,, reduction
of 1.01 x 107 t. The pyrolysis of mulch film alone mainly produces
gaseous and liquid products, resulting in a low biochar yield. The
estimated biochar production from mulch film is 3.35 x 103 t, with a
corresponding net CO,, reduction of 2.67 x 10° t. In contrast, the co-
pyrolysis of all recyclable mulch film and cotton straw at a 1:4 mass
ratio can yield 2.24 x 10° t of biochar, achieving a net CO,, reduc-
tion of 3.43 x 10° t. The subsequent pyrolysis of the remaining
cotton straw can further contribute to a net CO,, reduction of 9.34 x
106t.

This study provides a scientific evaluation of the biochar produc-
tion potential and carbon reduction capacity associated with
Xinjiang's major collectible crop straw and recyclable mulch film.
The findings confirm that co-pyrolysis of mulch film and straw is an
effective approach to enhance the resource utilization efficiency of
agricultural waste. To support China's dual carbon goals, it is recom-
mended that government departments provide policy and financial
incentives to promote the co-pyrolysis of agricultural straw and
mulch film for biochar production. Such efforts would ensure the
efficient use of biochar derived from agricultural waste, which
would contribute to reduced carbon emissions, improved soil qua-
lity, and enhanced agricultural productivity.
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