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Abstract

Methanogens, strictly anaerobic archaea within the gut microbiota of monogastric animals, play
dualistic roles in host health through their unique molecular and metabolic characteristics.
Distinguished by conserved 16S rRNA sequences, ether-linked membrane lipids, and archaea-
specific cofactors (e.g., Coenzymes M and F,,,), these microorganisms drive methanogenesis
via hydrogenotrophic, aceticlastic, and methylotrophic pathways. Despite their low abundance
(~1%-10% of gut anaerobes), methanogens critically regulate the host's metabolic homeostasis by
scavenging hydrogen to enhance fibrolytic bacterial activity, improving dietary fiber degradation
and nutrient absorption. However, their overgrowth correlates with metabolic disorders such as
irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), obesity, and chronic
constipation, underscoring a functional duality. Host-specific distribution patterns reveal the
dominance of Methanobrevibacter smithii in humans and pigs, while Methanomassiliicoccales and
Methanosphaera occupy niche roles in rabbits and companion animals. Their abundance is shaped
by developmental stages (e.g., maternal transmission, post-weaning shifts), dietary fiber intake,
physiological states (e.g., IBD-linked reduction, IBS/obesity-associated proliferation), and
environmental stressors (e.g., ammonia tolerance). Current research limitations include bacterial-
centric biases, undefined pathogenic thresholds, and scarce cross-species comparisons. Future
directions emphasize multi-omics integration to elucidate methanogen-host interactions, develop
‘archaebiotics' for targeted population modulation, and engineer ecological strategies (e.g.,
enhancing hydrogen sinks) to mitigate methane-related disorders. Advancing this knowledge will
optimize therapeutic interventions for metabolic diseases, improve nutrient utilization, and reduce
environmental methane emissions.

Introduction

These organisms possess conserved 16S rRNA sequences that distinguish
them from eubacteria, lack peptidoglycan cell walls, and have membranes

The intestinal tract, a central organ for nutrient digestion and absorption
and a crucial immunological barrier in monogastric animals, harbors
diverse microbial communities including bacteria, archaea, eukaryotes,
viruses, and fungi. These microbes engage in intricate cross-kingdom
signaling with the host. Through these interactions, they form complex
networks that play essential roles in maintaining nutritional metabolic
homeostasis and host health['l. The development of the archaea domain's
phylogenetic classification system by Carl Woese revolutionized micro-
biological research”. Among archaea, anaerobic methanogens have
drawn significant attention because of their unique molecular features.

© The Author(s)

composed of isoprenoid-derived lipids linked to glycerol-1-phosphate via
ether bondsPl. In terms of energy metabolism, methanogens perform
methanogenesis, an anaerobic respiratory process that reduces carbon
dioxide, acetate, and methyl compounds to produce methane. This
process relies on archaea-specific cofactors, such as Coenzymes M and
F 0%l Although methanogens have a relatively low abundance in the gut
microbiota, constituting approximately 1% of the porcine intestinal
microbiome and approximately 10% of human gut anaerobes, they
significantly influence the host's metabolic homeostasis/®”! as hidden
architects of intestinal ecology. They achieve this through mechanisms
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such as modulating the partial pressure of microenvironmental hydrogen
and remodeling the microbial interaction network!®?],

Methanogens exhibit a dual nature in their ecological functions. On
one hand, their hydrogenotrophic metabolism is beneficial, as it
removes excess molecular hydrogen generated during fermentation.
This process helps maintain transmembrane proton gradients, thereby
promoting the growth of fibrolytic bacteria and enhancing the effi-
ciency of dietary fiber degradation'?l. As a result, methanogens can
improve nutrient absorption, particularly in malnourished hosts. On
the other hand, methanogens have been associated with various
metabolic disorders including irritable bowel syndrome (IBS), chronic
constipation, and obesityl!!l. Clinical studies show that individuals
with more abundant methanogens often have elevated hepatic trigly-
ceride levels. Moreover, obese individuals typically harbor more
methanogens than those with a normal body weight, and bariatric
surgery can reduce methanogen populations!®'2]. Given this meta-
bolic complexity, the concept of "archaebiotics” has emerged. This
strategy aims to dynamically regulate methanogen populations accord-
ing to the host's metabolic phenotype, ultimately restoring the
metabolic network's balance.

Despite significant progress in gut microbiome research, several
principal limitations persist. The overwhelming dominance of bac-
teria in terms of abundance within the animal intestine has skewed
research efforts predominantly towards functional analyses of the
bacterial domain. Consequently, the contributions of methanogens to
host physiological regulation have remained largely under the radar,
leaving a critical knowledge gap in understanding their multifaceted
roles. From a clinical perspective, the use of germ-free animal models
has yet to establish a clear pathogenic threshold of methanogens!®!3.
This lack of definition complicates the diagnosis and management
of potential methanogen-associated disorders. Moreover, the existing
body of research is heavily concentrated on human and porcine
intestinal ecosystems!”!4l. The scarcity of comparative metagenomic
studies across other monogastric species hinders the development of a
comprehensive understanding of methanogens' ecology and function
across diverse hosts. This review endeavors to bridge these gaps by
comprehensively examining methanogens' taxonomic characteristics,
factors influencing their abundance, metabolic pathway intricacies,
interactions with the host's metabolic and immune systems, and syner-
gistic relationships with bacterial communities.

Classification

The methodologies employed in the taxonomy of methanogens have
undergone substantial evolution, paralleling the rapid advancements in
microbiome research technologies. In the early stages of investigation,
16S rRNA gene-based sequencing served as the cornerstone for
delineating phylogenetic lineages among methanogens!'*l. However, the
subsequent advent of sophisticated techniques such as metagenomics,
flow cytometry, quantitative real-time polymerase chain reaction (QPCR),
and matrix-assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS) has revolutionized the field, markedly
enhancing both the detection efficiency and taxonomic resolution(!®!7],
For instance, flow cytometry capitalizes on the autofluorescence property
of Coenzyme F,,, a key cofactor in the methanogenesis pathway with a
maximal absorption peak at 420 nm'®l, This characteristic allows for
the rapid and accurate quantification of methanogens within complex
microbial communities!'®l. Similarly, qPCR offers highly sensitive detec-
tion capabilities by targeting specific functional genes associated with
methanogenesis, such as mcrA, which encodes methyl-Coenzyme M
reductase'”). The Genome Taxonomy Database (GTDB) acts as a com-
prehensive resource, currently containing 2,339 archaeal genomes

distributed across 19 phyla, over 70% of which represent uncultured
organisms?’, Notably, the establishment of a curated repository con-
taining 1,167 archaeal genomes of the human gut has provided invaluable
material for in-depth investigations into the structural organization and
functional dynamics of methanogen communities!®l.

From a phylogenetic perspective, methanogens are currently classi-
fied into nine distinct orders, namely Methanobacteriales, Methanococ-
cales, Methanomicrobiales, Methanosarcinales, Methanocellales, Metha-
nopyrales, Methanomassiliicoccales (formally recognized as the seventh
methanogen order by the International Committee on Systematics
of Prokaryotes in 2013[211)[22-24 and the more recently described
Methanonatronarchaeales?! and Methanoliparalesi?’]. Among these,
the Methanomassiliicoccales order exhibits unique evolutionary diver-
gence compared with the other methanogen groups. It is further
divided into two families, the free-living clade Methanomethylophi-
laceae, which includes Methanomassiliicoccus luminyensis and Candi-
datus Methanomassiliicoccus intestinalis!®l, and the host-associated
clade Methanomassiliicoccaceae, encompassing organisms such as
Candidatus Methanomethylophilus alvusl®8]. Within the Methano-
bacteriales order, Methanobrevibacter smithii is classified into two
species-level clades, 'smithii' and 'smithii_A', according to the GTDB
classification system[?], highlighting the intricate taxonomic diversity
within this group.

Morphologically, methanogens can be classified into six distinct
cellular architectures. These include rod-shaped forms, exemplified by
Methanobacterium and Methanothermobacter; coccoid shapes, such as
Methanococcus and Methanosphaera; spiral structures, as seen in
Methanospirillum; tetrad-forming cells, typified by Methanosarcina;
plate-shaped organisms like Methanoplanus; and filamentous types,
represented by Methanosaetal'$2¢). This morphological diversity pro-
vides a fundamental basis for initial taxonomic identification and
offers insights into the physical adaptations of methanogens to various
ecological niches.

In terms of metabolism, methanogens are commonly categorized
according to their substrate utilization patterns into three major
groups: hydrogenotrophic, aceticlastic, and methylotrophic. Among
these, hydrogenotrophic lineages are the most prevalent (Table 1)[%27],
Some methanogen taxa exhibit strict substrate specificity. For exam-
ple, Methanosphaera spp., with Methanosphaera stadtmanae as a
representativel(?8], exclusively reduce methanol, utilizing H, as an elec-
tron donor®]. In sharp contrast, members of the Methanosarcinales
order show remarkable metabolic versatility, being able to utilize
multiple substrates, including acetate and methyl compounds!?3]. This
ability to employ diverse substrates defies simple classification into a
single metabolic category. The functional diversity among methano-
gens not only underscores the evolutionary adaptation of these organ-
isms to specific ecological niches but also uncovers potential molecu-
lar targets for modulating their ecological roles. Understanding these
metabolic distinctions is crucial for predicting how methanogens
interact with other members of the microbiota and for devising strate-
gies to manipulate their activities in both natural and engineered
ecosystems.

Distribution and influencing factors of
methanogens' abundance in intestinal
tracts of monogastric animals

Methanogens are widely distributed throughout the gut of monogastric
animals, and their presence and abundance are influenced by a multitude

of factors, including the growth stage of the animal, its dietary com-
position, the surrounding environment, and its physiological state.
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Table 1. The substrates available to methanogens from different methanogenesis pathways

Order Family Genus Species Substrates Ref.
Methanobacteriales Methanobacteriaceae Methanobrevibacter M. smithii H,, methanol [19]
M. oralis H, [59]
M. arboriphilus H,, formate [60]
Methanosphaera M. stadtmanae H,, methanol [29]
Methanomicrobiales Methanomicrobiaceae Methanogenium H,, formate [61]
Methanosarcinales Methanosarcinaceae Methanosarcina M. barkeri Acetate [62]
Methanimicrococcus Methylamine [58]
Methanomassiliicoccales Methanomethylophilaceae Candidatus Methanomethylophilus M. alvus Methanol [63]
Methanomassiliicoccaceae Methanomassiliicoccus M. intestinalis Methylamines [36]
M. luminyensis Methylamines [64]

Distribution of methanogens in the intestines of
monogastric animals

Multi-species studies aimed at exploring the distribution of methanogens
within the intestinal ecosystems of animals have identified five key
archaeal lineages. These lineages, namely Methanobrevibacter and
Methanosphaera (both belonging to the Methanobacteriales order),
Methanomethylophilaceae (from the Methanomassiliicoccales order),
Methanocorpusculum (of the Methanomicrobiales order), and Methani-
micrococcus (from the Methanosarcinales order), are recognized as the
dominant archaeal components in the gut. Collectively, they account for
more than 90% of the archaeal communities’>"], Among these,
Methanobrevibacter®) stands out as the most prevalent genus across the
intestinal tracts of various animals, succeeded by the candidate taxon Ca.
Methanomethylophilaceael'”). Meanwhile, although Methanosphaera has
a wide distribution across different animal species, its abundance is
relatively lowerl>'.

In the context of the human gut microbiome, methanogens typi-
cally constitute approximately 10% of the anaerobic communities in
healthy individuals®2l. Metagenomic analyses have shown that the
Methanobacteriales (87.15%) and Methanomassiliicoccales (12.43%)
are the predominant orders, with Methanobrevibacter being the domi-
nat genus, accounting for 85% of the archaeal population(l. At the
species level, profiling has identified Methanobrevibacter smithii,
Methanobrevibacter oralis, Methanosphaera stadtmanae, Methanomas-
siliicoccus luminyensis, Candidatus Methanomassiliicoccus enteris, and
Candidatus Methanomethylophilus alvus as the core methanogens in
the human gut®3l. Methanobrevibacter smithii exhibits an almost uni-
versal colonization rate (97.5% prevalence) and constitutes 84% of the
adult archacomes, with 16% belonging to the clade Methanobrevibac-
ter smithii_A and 68% to the clade Methanobrevibacter smithii. On the
other hand, Methanosphaera stadtmanae has a mean abundance of
13% and a prevalence of 29%[6:834], Additionally, other taxa such
as multiple species from the Methanomassiliicoccales order*>), Ca.
Methanomassiliicoccus intestinalisP%, and Methanosphaera cuniculi
(originally isolated from rabbit intestines)!*”] often inhabit the human
gut. When considering the strains Mx02, Mx03, and Mx06, the cumu-
lative prevalence of these additional taxa reaches 80%I81.

The archaeal communities in pigs closely resemble those in humans
in terms of composition. Methanobacteriales (57%-80%) and Metha-
nomassiliicoccales (15.07%) are the dominant orders, with Metha-
nobrevibacter (57%) and Methanosphaera (3%-14%) being the princi-
pal general”3%41. Methanobrevibacter smithii is detected in nearly all
samples from the porcine colon (99.7%) and feces (99.9%)74!l. How-
ever, the dominance patterns of Methanobrevibacter smithii can vary,
depending on the analytical methodology employed. qPCR often iden-
tifies it as the most prevalent archaeal species!*], whereas amplicon
sequencing reveals that Methanobrevibacter smithii has a relatively
minor prevalence, with Methanobrevibacter millerae, Methanosphaera
cuniculi, and Methanobrevibacter boviskoreanii collectively accounting
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for 80%-90% of the total archaeal abundancel®). Spatial analysis of the
porcine gut shows a progressive increase in the relative abundance of
Methanobrevibacter (comprising 44.2%-59% of archaeal communities)
from the ileum to the colon. In contrast, methylotrophic Methanome-
thylophilaceae archaea remain scarce, accounting for less than 0.1%
of the archaeal population throughout the porcine gastrointestinal
tractl.

In lagomorphs, archaeal communities are predominantly composed
of Methanobrevibacter species*>#3], In companion animals, such as
dogs (where archaeal communities constitute 25% of the gut micro-
biota), cats (16.66%), and horses (4.16%), Methanobrevibacter smithii
co-occurs with other archaeal species, including Methanocorpusculum
aggregans, Methanocorpusculum labreanum, Methanobrevibacter mille-
rae, Methanobrevibacter thaueri, and Methanobrevibacter olleyael®l.
These findings highlight the species-specific variations in the composi-
tion and abundance of methanogens across different monogastric
animals, which may be associated with their unique dietary habits,
digestive physiologies, and ecological niches.

Factors influencing the abundance of methanogens
The diversity and functionality of mammalian gut archaea are intricately
regulated by a combination of the host's phylogeny, dietary habits, fiber
content, and intestinal physiological characteristics!’®. These factors
interact in complex ways to shape the composition and dynamics of
methanogen communities within the gut ecosystem.

In addition to the previously mentioned differences in the pre-
valence of methanogens among different animal species, significant
variations in the gut methanogen community structure are also
observed among different breeds within the same species. For example,
in pigs, the diversity of methanogens in the gut of the fat-type
Erhualian breed is notably lower than that in the lean-type Landrace
pigs9l.

The developmental stage of the host significantly impacts the struc-
ture of archaeal communities. In mammals, neonatal colonization by
Methanobrevibacter smithii is likely facilitated by maternal trans-
mission, primarily through breast milk(“l. As the host matures into
adulthood, the abundance of Methanobrevibacter smithii increases
substantially, while geriatric populations tend to exhibit an enrich-
ment of Methanomassiliicoccales!®). Similar trends are observed in
pigs, where the dominant position of Methanobacteriales is gradually
weakened by Methanomassiliicoccales!*0). Adult pigs generally display
higher archaeal a-diversity compared with piglets. However, the wean-
ing and growth phases in piglets are associated with a notable increase
in archaeal richness. This change is largely attribute to dietary adjust-
ments, such as an increased intake of fiberl”]. Weaning presents a
pivotal transition point in the gut ecosystem, triggering a succession
of archaeal communities. Suckling and nursery-stage piglets are
predominantly colonized by Methanobrevibacter smithii, which is
gradually replaced by Methanobrevibacter boviskoreanii and members
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of the Methanomassiliicoccales after weaning[”-*7]. These developmen-
tal changes underscore the dynamic and adaptive nature of host-
microbe interactions, which aim to optimize nutritional metabolism
while navigating niche competition.

Dietary fiber content plays a central role in determining the distri-
bution and function of methanogens. The development of methano-
gen communities relies on the presence of anaerobic environments
and diverse carbohydrate sources!*>#]. In pigs, high-fiber diets indi-
rectly boost the abundance of certain methanogens, such as Metha-
nobrevibacter sp900769095, by promoting the growth of hydrogen-
producing bacteria. Methane production in this context is positively
correlated with the fiber-degrading activities of the gut microbiota but
negatively associated with starch metabolisml7). A decrease in the
fiber-to-starch ratio in the diet can lead to the accumulation of lactic
acid and a subsequent drop in gut pH. This shift favors the conversion
of lactate to propionate, a process that competes with methanogenesis
for nicotinamide adenine dinucleotide (NADH)-reducing equivalents,
ultimately suppressing methane production[*»5%l. Moreover, high-fiber
diets stimulate the production of bacterial methylamine, providing a
substrate for methylotrophic methanogens, such as those belonging to
the Methanomassiliicoccales®!l. Similarly, diets rich in protein have
been shown to increase the overall abundance of methanogens!®2,
highlighting the multifaceted impact of dietary components on
methanogens' ecology.

Disease states have a profound impact on the homeostasis of
methanogen communities within the gut. While conditions such as
colorectal cancer, polypectomy, and IBS have shown minimal effects
on the abundance of human methanogens, inflammatory bowel
diseases (IBD), including ulcerative colitis and Crohn's disease, are
associated with reduced methanogen colonization!®>4. This disrup-
tion suggests that chronic inflammation in the gut can alter the ecolog-
ical niche, making it less hospitable for methanogens. In swine infected
with influenza A, significant shifts occur in the archaeal community.
The abundance of Methanobrevibacter boviskoreanii and Methanos-
phaera cuniculi decreases, while Methanobrevibacter millerae and
Methanomethylophilaceae increase. Additionally, Methanosphaera
stadtmanae is detected specifically in diseased pigs!®l. Notably, Metha-
nobrevibacter species exhibit remarkable tolerance to antibiotics that
target bacterial RNA and protein synthesis, and cell wall formation.
This characteristic may influence the outcome of clinical
interventionsl®?], as the persistence of methanogens during antibiotic
treatment could potentially affect the recovery of the gut microbiota
and host health.

Cross-regional studies of swine microbiota have revealed significant
variations in archaeal diversity and community composition. Chinese
swine populations exhibit lower archaeal diversity compared with their
Danish and French counterparts, with distinct dominant taxa in each
region. Methanobrevibacter is the predominant genus in Chinese
(44.94%) and French (15.41%) swine, while Candidatus Methano-
methylophilus alvus dominates in Danish herds (14.32%)4¢). Similarly,
the marked enrichment of Methanomassiliicoccales Mx06 in non-
Westernized human populations highlights the role of lifestyle factors,
including diet and environmental exposures, in shaping the biogeogra-
phy of methanogens!¢l. These findings underscore the complex inter-
play among environmental factors, host characteristics, and metha-
nogen communities, which has important implications for under-
standing the ecological dynamics of the gut microbiota and its impact
on host health.

Methanogenesis

Methanogenesis stands as one of the most ancient energy-conserving
metabolic  processes, exerting direct physiological effects on

gastrointestinal systems(*®, Similar to the final workers in an industrial
assembly line, methanogens occupy the terminal position in microbial
trophic chains. They utilize the end-products of dietary substrate
fermentation to produce methane*"*’! (Fig. 1). Acting as the ultimate
electron acceptors, methanogens metabolize byproducts from bacteria
and eukaryotes, such as H,, CO,, acetate, and methylamines, which are
generated during the breakdown of dietary polymers, including short-
chain fatty acids (SCFAs) and alcohols (Table 1). There are three primary
methanogenic pathways: hydrogenotrophic (dependent on H, and CO,),
acetoclastic (involving acetate cleavage), and methylotrophic (utilizing
methanol or methylamines)?®®. The metabolic flexibility of Methano-
brevibacter is a key factor contributing to its dominance within the
archaeal communities in the human gut!"”).

Central to all methanogenic pathways is the terminal reaction
catalyzed by methyl-Coenzyme M reductase (MCR). This reaction
involves the reduction of CH;-S-Methyl-Coenzyme M (CoM) using
7-mercaptoheptanoylthreonine phosphate (CoB-SH), resulting in
the formation of methane and the heterodisulfide CoM-S-S-CoB
(HDS)!]. Encoded by the mcrA genel®l, MCR exists as an (afy),
heterohexamerl®”], featuring two Ni-centered (Ni I/Ni II) F,3, active
sites. These active sites are derived from 5-aminolevulinatel!®! and are
formed at the subunit interfaces (a/a'/f/y and o'/ ot/ B'1y')167).

The MCR active sites bind SH-CoM and SH-CoB in a sequential
manner, triggering a conformational change that locks the enzyme
into an inactive state (MCRgjn,) With the formation of the CoM-CoB
heterodisulfide!”]. The enzymatic activity of MCR is critically depen-
dent on the redox state of Ni. The NiI-MCR form, with a midpoint
potential of -650 mV, catalyzes the methanogenesis reaction. In
contrast, the Nill-MCR form requires reductive activation, which is
facilitated by dithiothreitol, adenosine triphosphate (ATP)-binding
proteins (A2), and Fe-S complexes (A3a)[686%. This sensitivity of Ni to
redox changes is fundamental to the strict anaerobic nature of metha-
nogens and their vulnerability to inhibitors such as 3-nitrooxypro-
panol (3-NOP) and bromoethanesulfonate (BES). These inhibitors
function by oxidizing the Ni center, thereby disrupting the
methanogenic process(7%711,

The heterodisulfide reductase (HdrABC) and the methyl-viologen-
reducing hydrogenase complex (MvhAGD) universally mediate the
reduction of HDS, regenerating the coenzymes CoM-SH and CoB-
SH[7273]. HdrABC, a membrane-associated Fe-S protein complex,
collaborates with Fy0H, dehydrogenase (Fpo) under hydrogeno-
trophic conditions®8l. HdrA contains an electron-bifurcating flavin
adenine dinucleotide (FAD) moiety, while HdrB forms the catalytic
core responsible for the reduction of HDS[7475], Meanwhile, MvhA
and MvhG constitute the conserved [NiFe] hydrogenase module, with
MvhD facilitating the transfer of reducing equivalents to Hdr[7l.

Methanogens possess two evolutionarily conserved Hdr systems,
flavin-based electron bifurcation (FBeB), which is predominant in
hydrogenotrophic methanogens, and cytochrome-dependent electron
transfer (CDeT), which is characteristic of methylotrophic and
acetotrophic methanogens?”). FBeB enzyme complexes, such as
HdrABC-MvhAGDU¢l, utilize flavin cofactors (FAD/FMN) for elec-
tron bifurcation””]. These flavoproteins accept electron pairs from
NAD(P)H, F,y,H,, H,, or formate, generating low-potential electrons
that are transferred via ferredoxin (Fd). The reaction can be repre-
sented as 2H, + Fy., + CoM-S-S-CoB - reduced ferredoxin (Fd,.q,) +
CoM-SH + CoB-SH + 2H*. This electron-bifurcating mechanism
enables methane production with a minimal ATP requirement of < 1
ATP per molecule by coupling Fd,.4 to CO, reduction, effectively clos-
ing the metabolic loop of the Wolfe cyclel’8l. In CDeT systems, the
reduction of the lipophilic carrier methanophenazine (Mp) is coupled
with H* electrochemical potential (ApH*), driving both the generation
of Fd,q and ATP synthesis!?”..
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Fig. 1 Effects of methanogens on the host's metabolism and health and the mechanisms of methanogenesis.

In addition to these core modules, substrate-specific adaptations
diversify the auxiliary pathways of methanogenesis. The methanogenic
metabolic network integrates crucial methyl carriers, including metha-
nofuran (MFR), tetrahydromethanopterin (HyMPT) (derived via the
Wood-Ljungdahl pathway), N°-methyltetrahydromethanopterin, and
enzyme complexes such as Coenzyme M methyltransferase (MTR),
MCR, formate dehydrogenase (FMD), and methanophenazine-
dependent enzymes (tetrahydromethanopterin formyltransferase
[FTR], methenyltetrahydromethanopterin cyclohydrolase, methylene-
tetrahydromethanopterin  dehydrogenase/methenyltetrahydrometha-
nopterin hydrogenase)2>2779], highlighting the evolutionary plasticity
and functional versatility of these metabolic components within the
archaeal domain.
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Hydrogenotrophic methanogenesis
In methanogenic archaea, the vast majority of hydrogenotrophic line-
ages, including Methanococcales, Methanopyrales, Methanobacteriales,
Methanomicrobiales, Methanocellales, and Methanosarcinales (excluding
Methanomassiliicoccales), use the Wood-Ljungdahl pathway for CO,
fixation®). These organisms utilize H, as an electron donor to
sequentially reduce CO, to CH,(!l. For example, the metabolic activity
of dominant methanogens in the porcine gut, such as Methanobrevi-
bacter sp900769095), is intricately linked to hydrogenotrophic
methanogenesis”].

Notably, certain methanogens can utilize formate as an alternative
electron carrier!%2l. Formate dehydrogenase (FDH) oxidizes four
formate molecules to CO,[*8], and subsequent hydrogenlyase (such as
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Hdr)-mediated reactions generate H,[”l. Many members of the Metha-
nomicrobiales lack genes encoding hydrogenase, rendering formate
metabolism essential for providing reducing equivalents. In Metha-
nothermobacter speices, for instance, Hdr and FDH exhibit activity
only when formate serves as the electron donor, and the activity of
formate hydrogenlyase is crucial for supporting Hdr reactions[®?).
Additionally, some methanogens can utilize secondary alcohols, such
as 2-propanol, 2-butanol, and cyclopentanol, or ethanol as electron
donors71.

Hydrogenotrophic methanogenesis commences with the reduction
of CO, to formylmethanofuran (CHO-MFR), a reaction catalyzed
by formylmethanofuran dehydrogenase (FMD)[$3]. This initial step
occurs under conditions where low-potential Fd .4 is available, gener-
ated through either the FBeB or CDeT systems!®®l. The endergonic
nature of this reaction is energetically coupled with the generation of
an ion gradient via the membrane-bound energy-conserving hydroge-
nase (Ech)[8]l. Subsequently, formylmethanofuran: FTR transfers the
formyl group from CHO-MFR to HMPT, forming CHO-H,MPT.
This cofactor-dependent reaction necessitates the formation of a ter-
nary complex involving formyl-MFR, H,MPT, and the apoenzyme[54].
The resulting CHO-H,MPT undergoes a series of sequential transfor-
mations. First, methenyltetrahydromethanopterin cyclohydrolase
catalyzes a dehydration reaction, yielding N°N!0-methenyl-H,MPT
(CH=H,MPT). This is followed by F,,,H,-dependent reduction steps
mediated by methylenetetrahydromethanopterin dehydrogenasel®’!
and methenyltetrahydromethanopterin hydrogenasel®], which convert
CH,=H,MPT into N>-methyl-H,MPT (CH;-H;MPT) and then N*-
methyl-HMPT (CH;-HMPT). Throughout these dehydration and
reduction processes, Fy,0H, provides the necessary electrons.

The methyl group from CH;-H,MPT is transferred to CoM-SH by
MTR, resulting in the formation of CH;-S-CoM[®7l. MCR then cata-
lyzes the terminal reductive demethylation of CH;-S-CoM to produce
CH,, using CoB-SH as the electron donor. This reaction simultane-
ously generates the heterodisulfide CoM-S-S-CoBI¢7l. The metabolic
cycle is completed through reduction of CoM-S-S-CoB back to SH-
CoM and SH-CoB, a process mediated by Hdr complexes!’>73l. Elec-
trons for this final reduction step are sourced from Fy,,H, or H,7],
ensuring the continuous operation of the hydrogenotrophic methano-
genesis pathway.

Aceticlastic methanogenesis

Acetotrophic methanogens employ a core mechanism to cleave acetate
into methane and CO,, a process involving intramolecular electron
transfer from the methyl group to the carboxyl carbon!”\. Presently, only
two genera, Methanosarcina (within the Methanosarcinales order)®! and
Methanothrix (previously known as Methanosaeta)!®), are recognized for
their ability to perform this metabolic function. Methanothrix represents
a strictly acetoclastic lineage that reduces acetate to CH, through direct
interspecies electron transfer (DIET) with syntrophic bacteria, such as
Geobacter metallireducens. This unique pathway is the only known means
by which Methanothrix can carry out autotrophic respiration, as it allows
for the direct uptake of extracellular electrons from organic donors®>*"l.
In contrast, Methanosarcina acetivorans displays metabolic versatility. It
can oxidize carbon monoxide to CO, while simultaneously reducing CO,
to CH, via the Wood-Ljungdahl pathway®®!l. The metabolism of CO in
M. acetivorans generates auxiliary substrates, such as acetate and formate,
which are integrated into the methanogenic metabolic network to con-
serve energy. Despite the occasional colonization of animal intestines by
low-abundance Methanosarcina strains, the physiological roles of these
organisms in acetoclastic methanogenesis within the gut remain largely
uncharacterized!'”.

In the process of acetoclastic methanogenesis, acetate is first acti-
vated through an ATP-dependent reaction to form acetyl-CoAl2.
Subsequently, acetyl-CoA is enzymatically cleaved into enzyme-bound
methyl and carbonyl moieties®’. The methyl group is transferred to
H,MPT, entering the final two steps of the pathway that are shared
with hydrogenotrophic methanogens. Meanwhile, the carbonyl moiety
is oxidized to CO,, with ferredoxin (Fd,,) serving as an the electron
acceptor and generating reduced ferredoxin (Fd,.q)!?l. The Fd,4 then
participates in the reduction of the heterodisulfide (CoM-S-S-CoB)
during the catalytic cycle of MCRI4. The change in free energy asso-
ciated with acetoclastic methanogenesis is -36 kJ/mol of CH,3),
which is markedly lower than that of hydrogenotrophic pathways
(=131 kJ/mol of CH4?). This lower energy yield results in reduced
energy capture efficiency, necessitating compensatory adaptations in
acetotrophic methanogens. Such adaptation may include high sub-
strate affinity or syntrophic metabolic coupling, enabling these orga-
nisms to persist within their ecological niches.

Methylotrophic methanogenesis

Methylotrophic methanogens catalyze the reductive demethylation of
various methyl compounds, including methanol, monomethylamine,
dimethylamine, trimethylamine, dimethyl sulfide, and methanethiol,
through the methylotrophic methanogenesis pathway!®!l. This metabolic
process comprises two consecutive methyl transfer reactions. First,
substrate-specific methyltransferase complexes, such as MtsA/MtsB for
dimethyl sulfide, MtaABC for methanol, and MtmBC/MtbA for
monomethylamine, transfer the methyl group from CH;-R donors to the
corresponding corrinoid proteins, forming CH;-corrinoid intermediates.
Second, the subsequent transfer of the methyl group to Coenzyme M
(CoM-SH) results in the formation of methyl-Coenzyme M (CH;-S-
CoM)PY. When H, is abundant, MCR reduces CH;-S-CoM to CH,.
However, under conditions of electron donor limitation, the reverse
Wood-Ljungdahl pathway oxidizes CH;-S-CoM to CO,, releasing
electrons that support the subsequent reduction of methyl groups. This
establishes an autocatalytic electron cycling mechanism, ensuring the
metabolic pathway's continuous operation!*=%1,

Methanogens that utilize methyl compounds in the presence of H,
represent a substantial proportion of archaeal populations within
animal microbiomes!®®4l. For example, members of the Methanomas-
siliicoccales order employ methylated amines, such as trimethylamine,
as methanogenic substrates®19]. The model species Methanomassi-
liicoccus luminyensis couples H, oxidation with heterodisulfide reduc-
tion via the membrane-bound Fpo-HdrD electron transport chain.
This coupling generates a proton motive force (AuH") that is essential
for ATP synthesis, while simultaneously eliminating the organism's
dependence on sodium ions, thereby enabling efficient energy
conservation(64],

Methanosphaera stadtmanae, which lacks carbon monoxide dehy-
drogenase/acetyl-CoA synthase, relies exclusively on methanol and H,
for methanogenesis. This process is mediated by the methanol: coen-
zyme M methyltransferase encoded by the mtaABC genes[2$101. In
porcine gut, M. smithii may engage in methanogenesis through methyl
metabolic bypass pathwaysl’l. These methanogenic strains employ
specialized enzymatic systems tailored to specific substrates, energy-
coupling strategies, and reverse reaction electron cycling mechanisms.
These adaptations allow them to maintain metabolic activity under
variable conditions of methyl compound availability and energy
constraints, highlighting their resilience and versatility within the gut
ecosystem.
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Influence of methanogens on nutrient
metabolism and intestinal health in
monogastric hosts

Methanognes and host metabolism

In porcine models, developmental stages and dietary regimes exert
profound regulatory effects on methanogenic activity. Suckling piglets
display low gene abundance related to the acetoclastic pathway, which
rapidly increases to parental levels during the nursery phase. In contrast,
genes associated with the methylotrophic pathway decline with agel’l.
Metatranscriptomic analyses have revealed that Methanobrevibacter
dominates in hydrogenotrophic metabolism, whereas Methanosphaera
relies on methyl reduction pathways®. Notably, the transcriptional
activity of these taxa significantly surpasses their genomic abundance.
For instance, the transcript levels of Methanosphaera cuniculi and
Methanosphaera stadtmanae exceed their genomic abundance by 27- and
30-fold, respectively!”"'?l, underscoring their central role in H,/methyl
metabolism.

The metabolic networks of methanogens intricately interact with the
host's nutritional metabolism. A high-fiber diet can enhance the activi-
ties of fibrolytic enzymes (GH3) and the metabolic pathway of formate
in the porcine gutl’l. Furthermore, in vitro studies shows that
Methanobrevibacter can maintain a high abundance under fecal micro-
biota co-culture conditions with high concentrations of oligofructose
and pectinl'®]. Conversely, hydrogenotrophic methanogenesis is nega-
tively correlated with starchase (GH13) and lactate metabolism!7].
Methanogenic activity is positively associated with the intestinal
concentrations of formate and acetatel’”]. In the microbiomes of
piglets, the activation of the sulfate/fumarate reduction pathway
reduces the acetate/propionate ratios and suppresses methanogenesis,
indicating ecological competition for hydrogen sinks(”l. Additionally,
ammonia inhibition disrupts acetoclastic methanogenesis and syn-
trophic chains by binding to coenzymes (such as Coenzyme M) or
blocking the active sites of MCRI!04],

Specific methanogen strains have been shown to correlate with host
phenotypes. The abundances of Methanobrevibacter smithii and
Methanobrevibacter sp900769095 are positively associated with por-
cine body weight!19]. The symbiotic strain Candidatus Methanomethy-
lophilus alvus Mx1201 potentially modulates the host's protein synthe-
sis and lipid metabolism through the regulation of the shikimate path-
way and bile resistance genes!!®?). The metabolic repertoires of
methanogens include L-valine/L-isoleucine biosynthesis, isobutanol
production, and carbohydrate-active enzyme (CAZyme) families
(AA3, GH43, GT2, AA6, CE9), indicating their potential in amino acid
and carbohydrate metabolism[!%]. The dominance of acetotrophic
Methanosarcina in FOG (Fats, Oil, and Grease) co-digestion systems
highlights its role in lipid metabolism['%7). In rat models, the depletion
of methanogens induced by bromochloromethane increases daily
weight gain and adiposity, suggesting that methanogen-targeted inter-
ventions could be useful for weight management. The diversity of
methanogens is positively correlated with the intensity of fiber fermen-
tation in the porcine hindgut(!%8, and their redox-balancing meta-
bolism affects the host's energy allocation and adipogenesis/*]. These
findings elucidate the profound metabolic plasticity of methanogens in
the host's energy partitioning and lay the molecular foundations for
the targeted modulation of intestinal methane emissions and nutrient
utilization efficiency.

Methanogens and gut health
Methanogens have been found to be disproportionately abundant in
patients suffering from IBD, periodontal disease, obesity, cancer and
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diverticulosis!'*>''%1, The ecological functions of gut methanogens and
their associations with various diseases have become crucial areas of focus
in clinical microbiological research.

Recent scientific progress has established intestinal methanogen
overgrowth (IMO) as a distinct pathological condition that is indepen-
dent of small intestinal bacterial overgrowth (SIBO). IMO is characte-
rized by the excessive proliferation of methanogens and elevated levels
of methane in the breath (> 10 parts per million [ppm])I''!l. This
condition has a strong correlation with constipation and an extended
colonic transit timel'9!12]. This phenomenon highlights the dual
metabolic impacts of methanogenesis. On one hand, the scavenging of
hydrogen by methanogens alleviates metabolic inhibition. On the
other hand, the associated energy expenditure might exacerbate the
metabolic burden on the host. Studies in horses have demonstrated a
positive association between long-term colonization by Methanobre-
vibacter and mortalityl!’3], while syntrophic interactions between
Christensenella and methanogens have been linked to weight loss in
humans(!4,

In the context of specific disease, patients with constipation-
predominant irritable bowel syndrome (IBS-C) show increased fecal
microbial a-diversity and a higher abundance of Methanobrevibacter,
especially Methanobrevibacter smithiil!!>116]. Breath testing has
revealed that in individuals who are high methane emitters (with CH,
levels ranging from 5 to 75 ppm), there is a 1,000-fold enrichment of
Methanobrevibacter smithiil>’]. Mechanistically, mevalonate pathway
inhibitors, such as lovastatin, can alleviate constipation by suppressing
the methanogenic activityl'!”]. Paradoxically, in patients with IBD,
there is a dysbiosis in the methanogen community. The total abun-
dance of methanogens in IBD patients exceeds that in healthy
controls!!!], yet the core species Methanobrevibacter smithii is
depleted®, while Methanosphaera  stadtmanae  experiences
proliferation[!18]. This pathogen activates the TLR8-dependent NLRP3
inflammasome pathways in monocyte-derived dendritic cells
(moDCs), which, in turn, triggers the release of pro-inflammatory
cytokines and leads to hyperactivation of the innate immune
system[!19120], In colorectal cancer (CRC) patients, the abundance of
Methanobacterium and Methanosarcina is reduced, and Methanocal-
dococcus and Methanotorris are depleted in the advanced stages of
CRC. This suggests that the exhaustion of methanogens may accele-
rate the process of tumorigenesis('?!l. These findings emphasize the
functional heterogeneity among methanogens within inflammatory
microenvironments.

The influence of methanogens on the host's metabolic health
exhibits bidirectional regulation (Fig. 1). Zhou et al. reported that an
increase in fumarate reductase activity leads to the accumulation of
succinate in the intestines of piglets, which can contribute to post-
weaning diarrheal'22]. In contrast, Chen et al. observed a sharp decline
in fumarate reductase expression in healthy piglets after weaningl’l.
These findings suggest that methanogens may reshape their intestinal
H, consumption patterns through hydrogenotrophic methanogenesis,
thereby competing with fumarate reductase. Consequently, targeting
this interaction may represent a potential therapeutic strategy for
alleviating post-weaning diarrhea in piglets. The enrichment of
Methanobrevibacter associated with anorexia may adapt to hypocaloric
states through H, oxidation-induced thermogenesis, contributing to
the maintenance of metabolic homeostasis(!!#123l. Members of the
Methanomassiliicoccales order, such as Methanomassiliicoccus lumin-
yensis, metabolize trimethylamine (TMA) through pyrrolysine-depen-
dent methyltransferase systems[3$124 by methylotrophic methanogen-
esis. In this way, they inhibit the conversion of TMA into the pro-
atherogenic trimethylamine-N-oxide (TMAO)!!2%], thereby presenting
potential therapeutic applications for cardiovascular and renal
diseases[19%126] In patients with multiple sclerosis (MS), there is a
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negative correlation between the abundances of Methanobrevibacter
smithii and Methanobrevibacter sp900766745 and disease severity.
Additionally, treatment with dimethyl fumarate increases the colo-
nization levels of these methanogens, accompanied by weight
reduction(!?”]. Conversely, long-term colonization by methanogens has
been inversely correlated with host longevity, potentially accelerating
the aging process via the depletion of redox potentiall'!3].

From an immunological perspective, ether lipid vesicles (archaeo-
somes) derived from Methanobrevibacter smithii can induce influenza
hemagglutinin-specific CD8*+ T cell responses and facilitate the verti-
cal transfer of maternal antibodies!'2%12°]. In MS patients, Methanobre-
vibacter smithii activates the TLR8-NLRP3 inflammasome pathway,
leading to the upregulation of genes such as CASPI, TRAF5, and
STAT5B, which are associated with interferon (IFN) signaling, IL-2
pathways, and PPAR/RXR regulation['3%]. It also significantly alters the
expression of antimicrobial peptide genes in moDCs[!20l. Similarly,
Methanobrevibacter stadtmanae can induce the robust release of
pro-inflammatory cytokines in moDCs!!2. Antimicrobial peptides
(AMPs) are a crucial component of intestinal immunity. They exert
immune functions not only against bacteria and fungi but also against
methanogens. Bang et al.l'*L132] compared the sensitivity of three
methanogenic archaea—Methanobrevibacter smithii, Methanomassi-
liicoccus luminyensis, and Methanosphaera stadtmanae—with human
cathelicidin-derived peptides LL32 and LL20, as well as the antimicro-
bial peptide NK-lysin. The tested methanogens exhibited different
levels of sensitivity, with M. smithii being the most susceptible. These
findings clearly demonstrate that the antimicrobial peptides released
by human innate immune cells target not only bacteria and fungi but
also archaea.

Developmental studies have shown that intestinal methanogenesis
in piglets, as indicated by the abundance of the mcrA gene, is lower
than that in adult pigs. Elevated activities of sulfate reductase (encoded
by asrA and aprA) and fumarate reductase (encoded by frdA) suggest
that H, is preferentially diverted towards sulfate and fumarate reduc-
tion processes!”l. Notably, the accumulation of succinate mediated by
fumarate reductase can trigger weaning-associated diarrhea in piglets,
indicating the potential of modulating H, sinks as a therapeutic
strategy!”-122]. These findings systematically elucidate the involvement
of methanogens in the host's pathophysiology through mechanisms
such as metabolic network remodeling, immunophenotypic regula-
tion, and energy homeostasis modulation. As a result, they provide the
molecular basis for targeted microbiome engineering and the develop-
ment of novel therapeutic approaches.

Interaction between methanogens and
bacteria in the gut of monogastric animals

Metabolic interactions between methanogens and bacteria significantly
influence methanogenic efficiency through intricate hydrogen metabo-
lism and electron transfer mechanisms. Methanogens play a pivotal role
in sustaining syntrophic bacterial activity by maintaining extremely low
hydrogen partial pressures (H, < 0.1 Pa), thereby establishing cross-
domain metabolic coupling'*}l. The hydrogen generated by carbohy-
drate-fermenting bacteria, including Mogibacterium, Pyramidobacter,
Christensenella, Anaerostipes, Ruminococcus, and Aminipila, serves as a
substrate for methanogens (such as Methanobrevibacter species) to
reduce CO, to CH,"113134 Conversely, Bacteroides species can alter
hydrogen's availability by recycling mucin glycans, thus fueling nitrate/
sulfate-reducing bacteria and subsequently suppressing

methanogenesis!'*.. Sulfate-reducing bacteria (e.g., Desulfovibrio) and
Fibrobacter  succinogenes  (through  phosphotransacetylase-driven
8

succinate/propionate synthesis) further limit the accessibility of H,
through substrate competition*>!'>1%], Methylotrophic methanogens,
like Methanosphaera stadtmanae, can inhibit hydrogenotrophic metha-
nogens by reducing the H, concentration below 0.1 Pa, inducing inter-
specific metabolic suppression!'*l. Additionally, the ammonium produ-
ced from bacterial protein degradation is assimilated by methanogens
(e.g., Methanobrevibacter smithii) via ammonium transporters (AmtB,
encoded by MSM0234)1'°,

Associations between health or disease states and the gut micro-
biota reveal diverse correlations between methanogen abundance and
specific bacterial taxa. In healthy individuals, Akkermansia, Phasco-
larctobacterium, and Eubacterium exhibit positive associations with
methanogens, whereas Bacteroidetes and Veillonellaceae show nega-
tive correlations!!?7]. In patients with IBS, the positive associations
between methanogens' abundance and bacterial diversity/richness are
more pronounced. Co-occurring taxa, such as Christensenella and
members of the Ruminococcaceae family, synergistically contribute to
metabolic dysregulation[57138]. Notably, the abundance of Methanoma-
ssiliicoccales is correlated with TMA-producing bacterial!®’l, and
Bacteroides fragilis may modulate methanogens' distribution by regu-
lating the colonic tumor microenvironment('2!]. Mathematical model-
ing has demonstrated that sulfate-reducing bacteria compete more
strongly with methanogens for H, than reductive acetogens in the
human intestinel!*l. Methylotrophic archaea (e.g., Methanosphaera
stadtmanae) engage in metabolic coupling with pectinolytic bacteria
(e.g., Bacteroides) by utilizing the methanol released by the latter2s].
Overgrowth of Lachnospiraceae, Lactobacillaceae, and Streptococcus
can suppress methanogens' activity by reducing the pH, thereby
decreasing CH, production!'*l. These complex interaction networks
shed light on the dynamic equilibria of carbon, hydrogen, and elec-
tron fluxes within gut microbiomes, offering valuable ecological
insights for the targeted modulation of methanogenic modulation.

Conclusions

Methanogens, as integral archaeal constituents of the gut microbiota in
monogastric animals, display distinct host-specific distribution patterns.
Methanobrevibacter smithii is predominant in the intestines of both
humans and pigs, whereas Methanomassiliicoccales and Methanosphaera
assume specialized ecological roles in rabbits and companion animals.
The abundance of methanogens is intricately influenced by multiple
factors. The host's developmental stages play a crucial role, as evidenced
by maternal transmission in neonates and significant shifts post-weaning.
Dietary components, such as high-fiber diets that promote the growth of
hydrogenotrophic methanogens, also profoundly impact their population
dynamics. Disease states have differential effects. For instance, IBD leads
to reduced methanogen colonization, while IBS and obesity are associated
with methanogen overgrowth.

The three primary methanogenic pathways (hydrogenotrophic,
acetoclastic, and methylotrophic) exemplify the metabolic duality
of methanogens in modulating host health. The hydrogenotrophic
pathway, which enhances fiber degradation, has been linked to consti-
pation in certain contexts. The acetoclastic pathway is mainly involved
in syntrophic lipid digestion and is restricted to specific methanogen
lineages. The methylotrophic pathway can reduce the toxicity of
trimethylamine but may also trigger inflammatory responses. Metha-
nogens engage in syntrophic interactions with fibrolytic bacteria, such
as Christensenella, by efficiently scavenging H,. However, they also
compete with sulfate-reducing bacteria and acetogens for substrates,
influencing the overall metabolic balance within the gut microbiota.

Notwithstanding the significant progress in the field, several
research gaps remain. Current studies often exhibit a bacterial-centric
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bias, overlooking the unique contributions and functions of metha-
nogens. The pathogenic thresholds of methanogens in various host
conditions are yet to be precisely defined, and cross-species compa-
risons are relatively limited. To fully elucidate the roles of metha-
nogens in the microbiota-host axis, future research endeavors should
focus on integrating multi-omics approaches to comprehensively
map methanogens' metabolic networks. Developing 'archaebiotics' for
targeted modulation of methanogen communities and engineering
ecological strategies, such as enhancing hydrogen sinks, hold promise
for mitigating methane-related disorders. Unraveling these dynamics
will not only advance the development of novel therapies for metabolic
diseases but also optimize their utilization in animal production and
contribute to reducing environmental methane emissions, thereby
addressing both health and environmental challenges.
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