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Excessive nitrogen and phosphorus in aquatic systems trigger eutrophication and envi-
ronmental contamination. Herein, Ca(OH),-modified Camellia oleifera shell biochar was
fabricated as an adsorbent for NH,* and PO,3>~ removal, with the effects of contact time,
temperature, initial concentration, and pH on adsorption performance investigated, and
the mechanisms clarified via kinetic/isothermal models combined with FT-IR and XPS
characterizations. Results showed that NH,* and PO,3~ adsorption both fit the pseudo-
second-order kinetic model, indicating chemisorption dominance. NH,* adsorption com-
plied with both Langmuir and Freundlich models (monolayer-multilayer coexistence), while
PO,3~ adsorption followed only the Freundlich model (predominant multilayer adsorption).
Acidic conditions and low temperatures favored PO,3~ uptake, whereas alkaline conditions
promoted NH,* adsorption, with adsorption capacity showing a decrease-then-increase
trend with temperature elevation. Notably, the modified biochar maintained favorable
performance in complex swine wastewater. Mechanistically, NH,* removal was dominated

3~ removal relied on the synergy of ion exchange and preci-

by ion exchange, while PO,
pitation, with precipitation as the primary pathway. This work provides a cost-effective

strategy for nutrient removal from wastewater via agricultural waste valorization.

Is, Modified biochar, NH,*, PO,3~, Adsorption mechanism

+ Functionalized biochar was prepared from agricultural waste Camellia oleifera shells via chemical modification and pyrolysis.

+ The adsorption mechanisms and interaction patterns of NH,* and PO,>~ on calcium hydroxide-modified biochar were further

elucidated.

« Utilizing Camellia oleifera shells to produce modified biochar for treating NH,* and PO,3~ in water bodies achieves secondary

utilization of agroforestry waste a

nd resolves the disposal challenge of Camellia oleifera shell residues.
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Graphical abstract

Introduction

As key plant-growth nutrients, nitrogen and phosphorus have fueled
the widespread use of nitrogen- and phosphorus-based fertilizers.
However, extensive human utilization and improper management
have resulted in significant emissions of nitrogen and phosphorus
ions (NH,* and PO,>") into the environment. Primary sources include
agricultural activities and the discharge of domestic and industrial
wastewater!"?, Excessive NH,* and PO,>~ in water bodies cause
eutrophication, leading to environmental pollution. This disrupts the
balance of nutrients in aquatic ecosystems, thereby damaging
themB~3L Currently, there are multiple methods for removing NH,*
and PO,* from water. Among such pollution control approaches,
adsorption distinguishes itself as a widely adopted method due to its
straightforward operation, quick process, and remarkable efficiency!>°.

Derived from the anaerobic pyrolysis of biomass feedstocks,
biochar is a solid carbonaceous material characterized by superior
adsorption performancel”. Its high porosity, ample specific surface
area (SSA), good modifiability, as well as chemical attributes like
oxygenated functional groups and unsaturated bonds, render it a
widely used candidate for environmental pollutant abatement®l. In
biochar modification research, numerous scholars have employed
diverse feedstocks and modification techniques to enhance its
adsorption capacity for NH,* and PO,3-. For example, Wang et al.
prepared magnesium-loaded modified synthetic sludge-based bio-
char from anaerobic digestion sludge to remove PO,3- from aqueous
solutions. Results demonstrated effective PO,3~ removal under acidic
conditions. Jiang et al. prepared Mg-modified biochar from six
different feedstocks for removing NH,* and PO/~ from water.
According to kinetics and thermodynamics research, cassava straw
and banana straw biochar both exhibited high adsorption poten-
tial'9). Li et al. prepared Fe-modified biochar using FeCl; as a modifier
and applied it to adsorb NH,* and PO,3. This study involved multiple
adsorption mechanismsl''l. In summary, existing studies indicate that
through modification and composite techniques, the adsorption
performance of biochar toward NH,* and PO,3- has been effectively
enhanced, with adsorption mechanisms gradually becoming clearer.
However, biochar prepared from different raw materials and modifi-
cation methods exhibits varying adsorption capacities for NH,* and
PO,3-. Compared to elements like Fe, Al, and Mg, calcium-based

modified biochar, represented by calcium hydroxide, exhibits a strong
affinity for NH,+ and PO,3-, significantly enhancing adsorption effi-
ciency for these species>'2-151. Moreover, calcium is inexpensive, non-
hazardous to ecosystems, and widely distributed in nature. Thus,
calcium-modified biochar exhibits excellent environmental adaptabi-
lity and safety, facilitating its long-term functionality in aquatic
environments and making it an ideal metal element for biochar
modification['¢17. Moreover, biochar adsorbing PO,3~ (primarily
composed of Cas(PO,);(OH)) is widely applied as a phosphorus ferti-
lizer in soill'7.8], Therefore, in this study, Ca(OH), was selected as the
modifier.

Camellia oleifera is a plant species belonging to the genus Camel-
lia within the family Theaceae. The area used for Camellia oleifera
production in China reached approximately 4.67 million hectares
in 2023, projected to exceed 6 million hectares by 20259, The
processing of Camellia oleifera generates substantial shell waste that
is difficult to manage, leading to resource wastage and environmen-
tal hazards. The rational utilization of discarded Camellia oleifera
shells has become a critical issue for advancing the sustainable
development of the Camellia oleifera sector??l, However, Camellia
oleifera shells possess high lignin and carbon content, making them
an excellent raw material for producing carbon-based functional
materialsi2'l. Therefore, this study utilizes Camellia oleifera shells as
biomass feedstock to produce biochar, thereby unlocking new value
for agricultural and forestry waste through circular utilization and
writing a green chapter of 'turning waste into treasure'.

This study modified Camellia oleifera shell biochar using Ca(OH),
as a biochar modifier. It then adsorbed NH,* and PO,3~ in aqueous
solutions, investigating the effects of time, initial concentration,
solution pH, and reaction temperature on the adsorption of NH,*
and PO,3- by the modified biochar. Adsorption experiments were
also conducted on NH,* and PO,3- from actual swine wastewater.
Finally, XPS and FT-IR characterizations were employed to elucidate
the adsorption mechanisms of NH,* and PO,3- by the modified
biochar. This research elucidates the adsorption patterns, mecha-
nisms, and environmental influences on NH,* and PO,3~ by biochar,
aiming to offer experimental proof of the adsorption mechanisms of
natural compounds comprising phosphorus and nitrogen. It also
offers insights for managing organic pollutants in the environment,
protecting resources, and promoting resource utilization.
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Potassium antimony tartrate (98%), ascorbic acid (99.99%), and cal-
cium hydroxide (=95%) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. Potassium dihydrogen phosphate
(99.5%), Ammonium molybdate (99.0%), Ammonium chloride (99.5%),
and Dicyandiamide (AR) were purchased from Shanghai McLean
Biochemical Technology Co., Ltd. Camellia oleifera shells were obtained
from Tianzhu County, Guizhou Province, China.

The collected Camellia oleifera shells were repeatedly washed with
deionized water to eliminate surface dust and soluble impurities.
The cleaned material was then dried in an oven at 105 °C for 24 h to
produce a constant weight. The dried shells were ground and sieved
through a 40-mesh (aperture of approximately 0.45 mm) screen for
further use.

A 10 g portion of the sieved Camellia oleifera shell powder was
placed in a tube furnace. The sample was heated to 500 °C at a rate
of 5 °C:min~" under a nitrogen atmosphere and then pyrolyzed at
that temperature for 2 h. The solid product was sieved through a
100-mesh screen (aperture of approximately 0.15 mm). The result-
ing material was labeled as BC-500 and collected for subsequent
use.

Biochar derived from pyrolyzed Camellia oleifera shells was chemi-
cally modified using various reagents to produce a total of nine
modified samples. For specific reagents and their quantities, please
refer to the Supplementary Table S1. The general preparation proce-
dure is described below. BC-500 and Ca(OH), were mixed at a mass
ratio of 1:2, followed by deionized water at a solid to fluid ratio of
1:10 g'mL-".The mixture was stirred for 24 h at 25 °C and 500 rpm,
followed by vacuum filtration. The resulting solid was washed with
deionized water and dried at 80 °C for 12 h.

The dried material underwent secondary pyrolysis in a tube
furnace under conditions identical to those used for BC-500 pre-
paration. The final Ca(OH),-modified biochar was designated as
BC5-500.

The samples of biochar were described. Scanning electron microscopy
(SEM, Apreo 2) was used to observe surface morphology. The specific
surface area and pore structure were determined via N, adsorption-
desorption analysis (TriStar Il Plus 3030). Functional groups were
identified by Fourier-transform infrared spectroscopy (FT-IR, Nicolet
iS10) in the range of 4,000 to 400 cm™. The crystal structure was
analyzed by X-ray diffraction (XRD, SmartLab 9), and the surface
elemental composition was probed by X-ray photoelectron spectros-
copy (XPS, Escalab 250Xi). The concentrations of NH,™ and PO,>~ in
solution were measured using a UV-vis spectrophotometer (UV-
5500PC).

Preliminary experiments were carried out to screen the most effective
adsorbent for the removal of NH,* and PO,>~ from nine prepared
biochar samples (Fig. 1). NH,* and PO,3" stock solutions were prepared
using NH,Cl and KH,PO,, with initial concentrations of 100 and
600 mg-L™", respectively. The initial pH of each solution was adjusted
to 10 for NH,* and 6 for PO,3~ using 0.1 mol-L™" NaOH or HCl. For
the adsorption experiments, 0.05 g of modified biochar was added to
30 mL of the corresponding solution and shaken at 150 rpm and 25 °C.
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Fig. 1 Biochar screened for adsorption of NH,* and PO,3~.

Table 1 Comparison among modified biochars for NH,+ and PO,>~ adsorption

Adsorbate (mg-g~")

::::‘Ie‘ar NH,* PO Reaction kinetics pHrange Ref.

BS600 114.64 31.05 Pseudo-second-order 8.5-9.7 [22]
kinetics

MgB 15.22 - Pseudo-first-order 6.0-8.0 [23]
kinetics

SB >28.2 >120 Pseudo-second-order Unadjuste  [24]
kinetics d pH

MgB-A 37.72 73.29 Pseudo-second-order 4.0-8.0 [25]
kinetic

The adsorption time was set to 120 min for NH,* and 360 min for
PO,3~. After adsorption, the quantities of NH,* and PO,>~ were mea-
sured using UV-Vis spectrophotometry after the filtrate was separated
using a 022 pm membrane filter. BC5-500 showed the highest
adsorption capacity, reaching 26.66 mg-g~' for NH,* and 186.18 mg-g~'
for PO,3~. Its performance was further compared with that of modified
biochars reported in other studies for NH,* and PO,>~ adsorption
(Table 1). Given its considerable potential, BC5-500 was selected for
subsequent systematic investigation.

To assess the reusability of BC5-500, cyclic adsorption-desorption
experiments were performed. In each cycle, 0.10 g of BC5-500 was first
subjected to adsorption under optimal conditions. Subsequently, the
spent adsorbent was collected by filtration. The contaminant-laden
BC5-500 was then subjected to static desorption in 50 mL of a
1.5 mol-L™" NaOH solution at 25 °C for 2 h. After each desorption
process, the material was filtered, cleaned with deionized water, and
dried at 80 °C to prepare it for the subsequent cycle. Five successive
cycles of this full adsorption-desorption process were carried out.

All experiments were performed in triplicate. Following the adsorption
process, the solutions were filtered through a 0.45 um membrane. The
following equations were utilized to determine the adsorption capacity
and removal efficiency based on the residual concentrations of NH,*
and PO~

(Cy-C) X V
- m

Qt M
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Co—-C

R= x 100% 2)

0
In the equation, Qt denotes the adsorption capacity (mg-g~"); R
represents the removal efficiency (%); C, is the initial concentration
of the adsorbate (mg-L-"); C is the equilibrium or residual concentra-
tion after adsorption (mg-L~"); V refers to the volume of the solution
(L); and m is the mass of the adsorbent (g).

Results and discussion

Morphology and specific surface area
measurements

Scanning electron microscopy (SEM) was employed to analyze the
morphologies of BC-500 and BC5-500. The BC-500 surface appeared
relatively smooth, with irregular lumpy particles adhering to it. These
particles likely originated from mineral components that were incom-
pletely carbonized (Fig. 2a, b). After modification via Ca(OH), alkaline
etching, the BC5-500 surface became rough, exhibiting a multilayered

wrinkled structure (Fig. 2¢, d). These wrinkles are expected to provide
abundant reaction sites for subsequent adsorption processes.

The Brunauer-Emmett-Teller method was used to examine the
pore structure of the materials. The nitrogen adsorption-desorption
isotherms of both BC-500 and BC5-500 exhibit Type IV behavior and
display H1 hysteresis loops, indicating that both materials possess
mesoporous structures with relatively concentrated pore size
distributions (Fig. 3). As evident from the pore size distribution
diagram and Table 2 data, Ca(OH), etching modification signifi-
cantly increased the specific surface area of the biochar while intro-
ducing calcium active sites. This synergistic effect enhanced the
adsorption capacity of BC5-500 for both NH,* and PO,3-.

Evolution of functional groups upon biochar
adsorption

FT-IR analysis of the material's chemical structure yielded the results
shown in Fig. 4. The characteristic peaks at 3,427, 1,581, 1,387, and
1,265 cm™' in the unmodified material BC-500 are attributed to

A8

Fig. 2 SEM images of (a), (b) the biochar (BC-500), and (c), (d) the Ca(O!
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Fig. 3 Adsorption-desorption isotherms and pore size distribution of (a) BC-500, and (b) C5-500.
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Table 2 Physical properties of BC-500 and BC5-500

Biochar SgeT Total pore volume Average pore size
name (m%g™") (cm3.g7") (nm)
BC-500 3.71 0.0048 5.24
BC5-500 4.29 0.0079 20.01
3427 1581 1387
-OH Cc=C -NO,
BC5-500
;\: 3643
Y i 52
£ [BCs-s00-N 0
g, 3410
g -OH
= 874
= (CO2
e
BC5-500-P
¥ T e T ¢ T % T e T kS T i T
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm™)

Fig. 4 FT-IR spectra of BC-500, BC5-500, and their derivatives after
adsorption of NH,* (BC5-500-N) and PO,3~ (BC5-500-P).

functional groups (-OH, C=C, -NO,, -C-N) in the pyrolysis residues of
lignin and cellulose!?°-3"!, Following Ca(OH), modification, the spec-
trum of BC5-500 exhibits significant changes. New absorption peaks
appeared at approximately 878, 1,452, and 3,643 cm™', corresponding
to Ca-0 vibrations, asymmetric CO;2~ stretching, and Ca-OH stretch-
ing, respectively. This indicates that calcium species were converted
to CaO and partially carbonated to CaCO; during pyrolysis, while
residual or hydrated hydroxyl groups remained on the surfacel®2°-32,
These results confirm the successful loading of Ca(OH), onto the
biochar surface. Following NH,* adsorption, the —OH vibration peak of
water in the BC5-500-N spectrum was significantly weakened or dis-
appeared, likely due to hydrogen bonding or ionic-dipolar interactions
between oxygen-containing functional groups and NH, %2632, After
PO,3~ adsorption, the residual Ca—OH peak in the BC5-500-P spectrum

(2)

Intansity (a.u.)

BC-500

20 40 60 80
20 (Degree)

Biochar X

disappeared, and new peaks appeared at 603, 565, and 1,038 cm™,

attributed to the bending vibration (P-O) and symmetric stretching
vibration (0-P-O) of PO, respectively. This indicates that PO,*~
undergoes surface coordination with calcium active sites or forms
calcium phosphate precipitatest!. This change further confirms that
PO~ adsorption by the modified biochar is dominated by
chemisorption.

The crystalline structure of the material was analyzed via XRD. BC-500
exhibited broadened diffraction peaks at 26 = 29.9°, corresponding
to the amorphous carbon matrix formed after pyrolysis and any
poorly crystalline mineral components potentially present within it
(Fig. 5a)t'®343%], Following modification, several new diffraction peaks
appeared in the BC5-500 spectrum. Upon comparison with standard
patterns, the diffraction peaks at 260 = 23.1°, 29.4°, 36.0°, 39.4°, 43.2°,
48.5°, and 57.4° match those of the CaCOj; standard pattern (PDF#98-
000-0141); while those at 260 = 18.2°, 34.4°, 47.5°, 51.2°, and 54.8°
matched the Ca(OH), standard card (PDF#97-009-1882). These results
confirm the successful incorporation of a composite calcium phase
comprising CaCO; and Ca(OH),, whose structure provides alkaline
sites and precipitation active centers for subsequent adsorption
processest®,

The XRD pattern of BC5-500-N simultaneously reveals both CaCO;
and Ca(OH), phases, with the diffraction peak intensity of Ca(OH),
significantly diminished. This may be attributed to the oxygen-
containing functional groups on the BC5-500 surface chemically
adsorbing NH,* from the water (Fig. 5b). The XRD pattern of BC5-
500-P exhibits a new phase, whose characteristic diffraction peaks at
20 = 25.9° and 32.3° align with the standard pattern for hydroxya-
patite (Cas(PO,);(OH)) (PDF#97-008-1442), indicating that PO,3-
and Ca?* combine on the material surface to form amorphous
calcium phosphate, which subsequently recrystallizes into the ther-
modynamically more stable hydroxyapatite at the alkaline interface
(Fig. 5b)[16:3437], This process further confirms that the biochar within
BC5-500 functions as a multifunctional carrier and reaction pro-
moter. In summary, BC5-500 exhibits pronounced adsorption capa-
city for both NH,* and PO,3-, with the adsorption process accompa-
nied by the formation of novel compounds.

(b) o CaCO; @ Cay(PO,),(OH)
[
. e ® o No . BC5-500
-
=
S [
2z
172}
g
=]
BC5-500-N
* -
-~ o ® o ° BC5-500-P
T T T
20 40 60 80
20 (Degree)

Fig. 5 XRD patterns of (a) BC-500, and (b) BC5-500 before and after adsorption (BC5-500, BC5-500-N, and BC5-500-P).
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XPS analysis before and after biochar adsorption
To investigate structural changes in materials during PO, adsorption,
XPS characterisation was performed on BC-500, BC5-500, BC5-500-N,
and BC5-500-P.

XPS full-spectrum analysis indicates that C, N, O, and Ca elements
were detected in all synthesised materials and their post-adsorption
samples. Notably, a new characteristic P peak was only observed in
the spectrum of BC5-500-P (Fig. 6a). This result directly confirms the
successful synthesis of the adsorbent BC5-500 and indicates its
adsorption capacity for NH,* and PO,3-. Analysis of the C 1s spec-
trum for BC5-500-N in Fig. 6b reveals that, owing to incomplete
pyrolysis, oxygen-containing functional groups and aromatic struc-
tures remain partially preserved within the biochar. Following NH,*
adsorption, the O-C=0 and C=C contents in BC5-500-N decreased
by 5.96% and 3.67%, respectively, while the C-O-C content increas-
ed by 9.6%. This shift likely arises from NH,* adsorption, altering the

local chemical environment of carbon. The O 1s spectra of BC5-500
and BC5-500-N (Fig. 6c) reveal reduced lattice oxygen content
alongside the emergence of a peak at 532.6 eV, attributed to
0O-H/0-CB839, The Ca 2p spectra for BC5-500 and BC5-500-N are
shown in Fig. 6d. BC5-500 exhibits Ca-O-assigned peaks at 346.9 and
350.6 eV, indicating successful etching of Ca(OH), onto the biochar
surface, consistent with literature reports(*°l, In BC5-500-N, the Ca 2p
peak shifts blue overall and decreases in intensity due to interac-
tions between oxygen-containing groups and NH,*. To better
understand the adsorption procedure, N 1s spectra of BC5-500
and BC5-500-N were analysed (Fig. 6e). Peaks at 397.6, 398.7, and
401.2 eV in BC5-500 corresponded to intrinsic biochar nitrogen,
N-(C=0)-N, and quaternary nitrogen structures, respectively38-42],
Following NH,* adsorption, BC5-500-N exhibits new peaks at
400.9, 402.5, 403.2, and 405.4 eV, which are attributed to graphitic
nitrogen, C-NH,*, NH,*, and oxidised nitrogen species,

" Cls oTs
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Fig. 6 XPS analysis of BC-500 and BC5-500 before and after adsorption: (a) survey spectra, (b)-(e) high-resolution C 1s, O 1s, Ca 2p, and N 1s spectra of
BC5-500 and BC5-500-N, (f)-(h) high-resolution C 1s, O 1s, and Ca 2p spectra of BC5-500 and BC5-500-P, and (i) high-resolution P 2p spectrum of BC5-

500-P.
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respectively384142], These results indicate that NH,* adsorption on
BC5-500 is mediated by Ca as the active centre, achieved through
modulation of the local electronic structure.

Figure 6f compares the C 1s spectra of BC5-500 and BC5-500-P. A
distinct redistribution of C-C, C-O-C, and O-C=0 bond abundances
occurred in BC5-500-P, driven by the formation of surface Ca3(PO,),.
Concurrently, Fig. 6g reveals diminished intensities for the O-C=0
and O-Ca peaks in the O 1s spectrum of BC5-500-P, potentially
attributable to ion exchange between CO;2~ and H,PO,/HPO,*/
PO,3-B31, The Ca 2p spectrum of BC5-500-P (Fig. 6h) exhibits new
Ca-0 peaks at 347.5 and 351.0 €V, indicating that PO,3~ is chemi-
cally bonded to the adsorbent surface. Figure 6i shows the P 2p
spectrum of BC5-500-P, exhibiting characteristic double peaks at
133.5 eV (P 2p3/,) and 133.9 eV (P 2p, ,), with relative contributions
of 73.36% and 26.64%, respectively. This further suggests that phos-
phate adsorption may involve a multi-step chemical reaction
process.

The pH of the solution is a key factor influencing the adsorption
performance of biochar*®\. As shown in Fig. 7, the adsorption capacity
first increases and then decreases with rising pH. It reaches its
maximum at pH 11.0 (adsorption capacity of 15.44 mg-g™' and removal
rate of 25.73%), after which it decreases as pH continues to increase.
Alkaline conditions favor the adsorption of NH,*. In an acidic envi-
ronment, numerous H* battle with NH,* for adsorption sites on the
BC5-500 surface, therefore inhibiting adsorptiont*. For PO,3~ adsorp-
tion, as pH increased, the adsorption capacity decreased. At pH 2.0,
PO,3> adsorption is most effective, with an adsorption capacity of
172.04 mg-g™" and a removal rate of 75.58%. This occurs because the
form of phosphate present changes with pH: at pH < 2.1, it exists as
H;PO,; at 2.1 < pH < 7.2, it primarily exists as H,PO,; at 7.2 < pH < 12.3,
it mainly exists as HPO,>; and at pH > 123, PO,* becomes
predominant®", In acidic conditions, Ca** on BC5-500 is more readily
precipitated by binding with H,PO,". This process can be represented
by the following equation:

Ca® + H,PO; +2H,0 — CaHPO4 x 2H,O(s) + H* 3)

However, in neutral and alkaline environments, the abundant
OH- in water competes with Ca2* to preferentially form Ca(OH), pre-
cipitates. Simultaneously, OH- also competes with HPO,2- for adsor-
ption sites, leading to a decrease in phosphorus adsorption capa-
city®4431, Within the experimental pH range, adsorption capacities

300
INH,"-N Adsorption capacity
[ mmPO,*-P Adsorption capacity [ 80%
o~ 250+ N " — NH,"-N Removal rate
o \.,\ bR oE PO-P Removal rate
& 200 F60%
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g \e :
2150 1 >
3 N L40% 2
g &
£ 1004 4
g A
i v T [F20%
504 gty N
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Fig. 7 Adsorption of NH,* and PO,> on BC5-500 as a function of
solution pH.
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consistently exceeded 150 mg-g-!, with removal rates surpassing
55%. At pH 2.0 and 11.0, the maximum adsorption capacities for
PO,3- and NH,* were achieved, respectively. However, considering
the pH conditions in real-world water environments and the need to
obtain relatively high adsorption capacities, subsequent experi-
ments for PO,3- and NH,* were conducted at pH 6.0 and 10.0,
respectively.

The kinetic adsorption of PO,> and NH,* by modified biochar was

modeled using pseudo-first-order and pseudo-second-order equa-
tions, respectively. Their expressions are shown in Egs (4) and (5).

=Qc(1-e™) )

t 1 t

I L

O kx0? Q.

In the above equations, Q. and Q; represent the adsorption
capacities at equilibrium (mg-g-'), respectively; k; (min-') and k,
(g'mg~"min-) denote the adsorption rate constants for pseudo-
first-order and pseudo-second-order kinetics, respectively; t (min) is
the adsorption time.

The kinetic adsorption profiles of NH,* and PO,3- onto BC5-500
are presented in Fig. 8. The adsorption capacities for both pollu-
tants increase rapidly in the initial stage, attaining equilibrium after
approximately 60 and 90 min, respectively. This fast initial uptake
rate can be attributed to the abundance of readily accessible active
sites on the biochar surface. As adsorption progressed, the availabi-
lity of these sites gradually decreased, resulting in a decreased
adsorption rate until equilibrium was established.

As shown in Table 3, the pseudo-second-order kinetic model
provides a substantially better fit than the pseudo-first-order model
for both pollutants (R2 > 0.986), and its calculated equilibrium
adsorption capacities agreed closely with the experimental values.
These results suggest that the adsorption process is likely governed
by the number of surface active sites, indicating that chemical
adsorption is a major factor#446l,

&)

The adsorption equilibrium data were analyzed using the Langmuir
and the Freundlich isotherm models. The Langmuir model describes
monolayer adsorption onto a homogeneous surface, while the
Freundlich isotherm is an empirical model typically applied to charac-
terize multilayer adsorption on heterogeneous surfaces. The corres-
ponding fitted curves are presented in Fig. 9, with the mathematical
expressions of the models given as follows:

_ QmKLCe
Q.= T+K,C. (6)
Q. = keC? %

Q. (mg-g7') and Q,, (mg-g~") represent the equilibrium adsorption
capacity and the theoretical saturation adsorption capacity of the
Langmuir model, respectively; C, denotes equilibrium concentra-
tion (mg-L™"); K, represents the Langmuir adsorption constant
(L'mg™"); 1/n is the Freundlich adsorption intensity coefficient;
K-((mg-g~1)-(mg-L~")-"/n) is the Freundlich adsorption constant.

The fitting parameters of the adsorption isotherm models are
summarized in Table 4. For NH,*, both Langmuir and Freundlich
models exhibit good agreement with the adsorption data (R?2 =
0.967 and 0.962, respectively), indicating that adsorption did not
occur solely on an idealized homogeneous surface. The inherent
heterogeneity of biochar, coupled with the contribution of multiple
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Fig. 8 (a) Adsorption kinetics of NH,* on BC5-500. (b) Adsorption kinetics of PO,3~ on BC5-500.

interactions such as ion exchange and surface complexation, likely
governed the adsorption behavior. The dimensionless separation
factor R, derived from the Langmuir model was 0.64 (0 < R; < 1),
confirming the spontaneity and favorable nature of NH,*
adsorption under the experimental conditions!*3.,

For PO,3-, the adsorption data were better described by the
Freundlich model (RZ = 0.990), suggesting an energetically hetero-
geneous adsorption surface with potential multilayer characteris-
tics. The Freundlich constant 1/n was 0.300 (< 0.5), indicating a
very strong surface affinity of BC5-500 toward PO,3-71, This is
primarily attributed to the Ca?* introduced by the Ca(OH), modi-
fication, which facilitates effective removal through the formation
of insoluble calcium phosphate precipitates (Refer to the XPS char-
acterization analysis). This chemical precipitation mechanism is

Table 3 Kinetic parameters for NH,* and PO,>~ adsorption onto BC5-500

Pseudo-first-order Pseudo-second-order

BiOCharAdsorbate kinetic model kinetic model
name
Q. K; R? Q. K, R?
BC5-500 NH,* 15.33 0.04148 0.9371 1627 0.00012 0.9863
PO,>~ 19494 0.06142 0.7500 209.65 0.00047 0.9962
25
Freundlich (a)
Langmuir
20
~ 15
0
=}
£
j]
104

0 T T T T T
80 100

Ce (mg-L")

T T T
120 140 160 180

Fig.9 Adsorption isotherms of (a) NH,*, and (b) PO,3~ on BC5-500.
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substantially more dominant than conventional physical adsorption.
Thermodynamically, the Freundlich parameter n exceeded 1 for
both pollutants, confirming the excellent adsorption capacity of
BC5-500 toward both NH,* and PO,3-148],

There are two phases to the effect of temperature on NH,* adsorption
performance, as illustrated in Fig. 10. During the initial phase, at
temperatures between 20-30 °C, the adsorption capacity and removal
efficiency of BC5-500 for NH," decrease with increasing temperature,
reducing by 4.6 mg-g~' and 7.67%, respectively. In the second phase, at
temperatures between 30 and 45 °C, the adsorption capacity for NH,*
increases with rising temperature. Overall, adsorption performance
for NH,* shows a pattern of declining and then rising. Regarding
adsorption performance for PO,>, both adsorption capacity and
removal efficiency decreased with increasing temperature. Adsorption
capacity dropped from 220.22 to 166.39 mg-g~', while removal
efficiency decreased from 61.17% to 46.22%. This result suggests that
elevated temperature significantly inhibits the adsorption process.

Relevant thermodynamic parameters for the adsorption process
were calculated using the following equations(*°!:

350 -
Freundlich (b)
Langmuir -
L
300 A §
250
A
e
o (]
g
~ 200
j*3
o
150
u
[
100
T T T T T T T T
0 100 200 300 400 500 600 700
Ce (mg-L™)
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Table 4 Parameters of the adsorption isotherms for NH,* and PO,>~ onto BC5-
500

. Langmuir Freundlich
Biochar Adsorbate
name Qm KL RZ n KF Rz 1/n
BC5-500 NH,* 41.87 0.00574 0.967 1.145 0.632 0.962 0.873
PO,>~ 243.33 0.0380 0.868 3.335 43.077 0.990 0.300
AG° = —RT Ink, ®)
AG° = AH° -TAS° )
AS° AH°
Inky = - (10)
R RT

In the formula: AG° (kJ mol-") is the standard Gibbs free energy;
AHe (kJ mol-") is the standard enthalpy change; AS° (J-mol-" K1) is
the standard entropy change; R is the gas constant; k; is the adsorp-
tion equilibrium constant.

The thermodynamic parameters (AG°, AH®, and AS°) for the
adsorption process were determined at various temperatures and
are presented in Table 5.

For NH,* adsorption, as the temperature increased to 30-45 °C,
AH° > 0 and AS° > 0, indicating a shift to an endothermic process
with increasing entropy. Accordingly, the adsorption capacity
rose with temperature, demonstrating a high-temperature-driven
characteristic.

OE0 1 NH," Adsorption capacity — NH," Removal rate
_ i L Qno,
mm PO, Adsorption capacity — PO,* Removal rate 80%
i BN —

;g_‘l) 200 +

< -60%
z \' —I— EN ’ %
g 150+ — =
& [~ >
S s g
£ 100- F40% 2
=

2

3

< s0{ T

™~ T |f20%
o |l el O ] il
20 25 30 35 40 45
Temperature (°C)

Fig. 10 Influence of reaction temperature on the adsorption capacity of
BC5-500 for NH,* and PO~

Table 5 Thermodynamic parameters for the adsorption of NH,* and PO,>~ onto
BC5-500

E::;Ieiar Adsorbate Tem?oecr)ature K, AGP AHO AS?
BC5-500 NH,* 293 0219 3.700 45645 167.890
298 0.195 4.067
303 0.118 5.390
308 0.121  5.417
313 0.144  5.036
318 0.180  4.535
PO, 293 0945 0.1367 -20.896 -71.714
298 0912 0.228
303 0.675 0.99
308 0575 1416
313 0.551 1.551
318 0.517 1.751
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For PO,3- adsorption, across the entire experimental temperature
range (20-45 °C), AH° < 0 and AS° < 0, corresponding to an exother-
mic process associated with a reduction in entropy. The capacity for
adsorption dropped as the temperature rose, indicating a prefe-
rence for lower temperatures8-59, The calculated AG® values were
also positive in this case.

In general, the sign of AH® governs the temperature dependence
of adsorption capacity: exothermic processes (AH® < 0) are favored
at lower temperatures, whereas endothermic processes (AH® > 0)
are enhanced at higher temperatures. Although all computed AG®
values were positive—reflecting thermodynamic non-spontaneity
under the defined standard conditions—the adsorption in actual
non-standard systems is effectively driven by prevailing gradients
such as concentration differences.

To evaluate the reusability of BC5-500, it underwent five cycles of
experimental testing, with results shown in Fig. 11. The adsorption of
NH,* exhibited a rapid decline in removal efficiency during the first
three cycles. However, upon continuing the adsorption cycles, the
removal efficiency remained largely stable. In summary, after five
adsorption-desorption cycles, the NH,* adsorption capacity of BC5-500
dropped by 4.2 mg-g™', with a corresponding 14% decrease in removal
efficiency. For PO, adsorption, the initial adsorption capacity and
removal efficiency were 145.29 mg-g~' and 80.72%, respectively. After
five cycles, the adsorption capacity and removal efficiency decreased
to 93.84 mg-g~' and 52.13%, respectively. Despite this reduction, the
material still maintained a high adsorption capacity and a removal
efficiency exceeding 50%, demonstrating that BC5-500 possesses good
reusability and practicality.

The swine wastewater was collected from a small-scale pig farm
in Huangping County. After filtration, the wastewater had a pH of
7.48, with the following concentrations: NH,* 84.00 mg-L™!, PO,*
14.54 mg-L™", Cu(ll) 0.58 mg-L™", Cd(ll) 0.15 mg-L™', tetracycline (TCH)
7.01 mg-L™", and oxytetracycline (OTC) 8.25 mg-L™". Then, 30 mL of
wastewater were combined with a 0.05 g sample of BC5-500 and
shaken for 120 min for NH,* adsorption and for 360 min for PO,
adsorption. Shaking was followed by filtering the liquid and measuring
the remaining concentration.

180

—JNH," Adsorption capacity
160+ mm PO, Adsorption capacity [ 80%
2 1404 - NH," Removal rate
o — PO,* Removal rate
£ 120- H60%
=y =
5 100+ - n =
g —+ s
S 80 L40% 2
g Q
Aé‘ 60 i l'\ m
@]
g 40 \"\\ L20%
|
20+
0 0%
1 2 3 4 5

Number of cycles

Fig. 11 Reusability of BC5-500 for the adsorption of NH,* and PO,3"
over five consecutive cycles.
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As shown in Fig. 12, the adsorption capacities of BC5-500 for NH,*+
and PO,3- were 6.93 and 8.52 mg-g~!, respectively, with correspond-
ing removal rates of 13.76% and 97.73%. The relatively low adsorp-
tion capacity for NH,* in actual wastewater could be attributed to
two main factors: first, the relatively low initial NH,* concentration;
second, the coexisting heavy metal ions and antibiotics likely com-
pete with NH,* for adsorption sites, thereby inhibiting its removal.
The experimental results demonstrate that although BC5-500 shows
limited NH,* removal efficiency in complex aqueous matrices, its
highly effective PO43- removal capacity can still significantly miti-
gate the environmental risks associated with phosphorus-rich
wastewater5'l, Thus, BC5-500 represents a promising material for
practical wastewater treatment applications.

The N, adsorption-desorption isotherm reveals that the modified
material exhibits a Type IV isotherm and H1 hysteresis loop, indicating
a mesoporous structure with relatively concentrated pore size dis-
tribution. The modified material exhibits increased SSA, pore volume,
and average pore diameter. SEM analysis reveals a rougher surface
with increased wrinkling and finer particles for BC5-500. This optimized
porous structure enhances the adsorption of NH,* and PO,*". The
adsorption mechanism of BC5-500 for NH,* and PO, is illustrated in
Fig. 13. XPS analysis indicates that the O-Ca structure content in BC5-
500-N is lower than that in BC5-500, which is attributed to ion
exchange between Ca?* on BC5-500 and NH,*. FT-IR and XRD analyses

10 - : 100%
1 NH," Adsorption capacity . ’
_ [ PO,* Adsorption capacity
% 81 —— Removal rate L 0%
0 |
g Q
2 6 J F60% &
[} —_—
< <
g 4 F40% &
S ~
B
2 2 / - 20%
0 0%

BC5-500

Fig. 12 Removal of NH,* and PO,3>" from actual swine wastewater by
BC5-500.

Ion exchange
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Surface
precipitation

[ ] HPO42'
H,PO4-
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{:} Cas(PO4)3(OH)

Fig. 13 Schematic diagram of the adsorption mechanism of NH,* and
PO,3~ on BC5-500.
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indicate that the —OH groups on the BC5-500 surface react with
phosphates in water to form Cas(PO,);(OH) precipitates, thereby
adsorbing PO, XPS analysis of BC5-500 reveals a 19.82% decrease in
O-C=0 content, indicating that O-C=0 groups participated in the
adsorption reaction with PO,>~ and underwent ion exchange with
H,PO,~, HPO,2", and PO,>".

This study successfully synthesized a porous biochar (designated BC5-
500) through Ca(OH), modification of Camellia oleifera shells. For the
simultaneous adsorption of NH,* and PO,>", the material displays
excellent performance, reaching maximum capacities of 15.44 and
172.04 mg-g~". Alkaline conditions were favorable for NH,* removal,
whereas acidic conditions promoted PO,3~ adsorption. The adsorption
kinetics for both pollutants followed the pseudo-second-order model.
Isotherm analysis indicated that NH,* adsorption involved both
monolayer and multilayer processes, while PO,* adsorption was
dominated by a multilayer mechanism. Mechanistic studies reveal that
NH,* removal occurs primarily via ion exchange, whereas PO,3"
removal was mainly governed by Ca-P precipitation, with additional
contributions from surface functional group interactions. BC5-500
retained stable adsorption performance over five consecutive reuse
cycles. In actual swine wastewater, the PO,>~ removal efficiency
reached 97.73%, demonstrating its strong potential for practical
application in the simultaneous recovery of nitrogen and phosphorus
from wastewater.

It accompanies this paper at: https://doi.org/10.48130/bchax-0026-
0002.
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