Biochar X

https://doi.org/10.48130/bchax-0026-0003

Unraveling the physical genome of biochar

Yating Ji'%, Donald W. Kirk?, Zaisheng Cai'* and Charles Q. Jia®*

:9 December 2025
: 27 December 2025
: 10 January 2026

:29 January 2026

Biochar, a porous carbonaceous material produced through the thermochemical conversion
of biomass, is garnering significant attention for its critical roles in carbon sequestration,
sustainable energy solutions, and advanced materials engineering. The strategic and precise
manipulation of its intrinsic physical properties—such as hierarchical porosity, mechanical
robustness, thermal conductivity, electrical transport behavior, and tunable optical
response—has now emerged as a fundamental enabler for designing next-generation
multifunctional carbon systems. This review provides a comprehensive, integrated, and
multiscale examination of these physical characteristics, with a particular focus on
elucidating the complex, often synergistic relationships among them. By establishing robust
correlations spanning from the atomic-level molecular structure and chemical functionality
to the microstructural morphology and ultimately the macroscopic performance, a coherent
structure-property-function framework is constructed. This framework is essential for guiding
the rational design of biochar-based materials. Furthermore, persistent knowledge gaps and
the challenges posed by these gaps are critically highlighted. Finally, future pathways toward
precision-engineered biochar for high-value applications in energy storage, photothermal
conversion, environmental remediation, and beyond are proposed.

Biochar, Physical genome, Structure—property—function relationship, Predictive materials design, Multifunctional

nanoporous carbon, Hierarchical architecture

« Integrates biochar's mechanical, thermal, electrical, and optical properties into a unified framework.
« Establishes structure—property—function principles for rational biochar design.
+ Outlines data-driven and precision-engineering pathways for next-generation biochar.
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Biochar X

Biochar technology, a key negative-emission route in the pursuit of
carbon neutrality, involves the thermochemical conversion of biomass
into a stable, carbon-rich material under oxygen-limited conditions!' 3.,
Historically rooted in the creation of Amazonian Dark Earths, biochar's
use has evolved from soil conditioning to functional materials design.
Modern research now emphasizes the engineered control of physical
properties to tailor biochar for specific applications, ranging from
environmental remediation to energy devices? 8.

The physical properties of biochar mainly include pore structure,
specific surface area, mechanical strength, electrical conductivity,
thermal conductivity, and light absorption conversion. These prop-
erties determine the applicability and efficiency of biochar in vari-
ous environments, as shown below: (1) Pore structure is one of the
most core physical properties of biochar, encompassing pore size
distribution, pore volume, and morphological characteristics. The
specific surface area directly reflects the pore structure. In pollutant
adsorption, micropores provide a huge specific surface area and are
the primary sites for the adsorption of heavy metal ions and small-
molecular organic pollutants; mesopores are conducive to the
adsorption and diffusion of larger molecular pollutants (such as dyes
and antibiotics). The pore size distribution directly determines the
adsorption selectivity and capacity of biochar. In agricultural appli-
cations, a hierarchical pore structure can improve soil water reten-
tion, nutrient retention capacity, and microbial habitat. In the field
of catalysis, mesopores and macropores serve as mass transfer chan-
nels to improve mass transfer efficiency, while micropores are
conducive to the dispersion and fixation of active components. (2)
Mechanical strength refers to the ability of biochar to resist break-
age and wear, often characterized by hardness. This property plays a
decisive role in the long-term retention and stability of biochar after
application. (3) Electrical conductivity measures biochar's ability to
conduct electrical current, which depends on the continuity and
order of the sp?-hybridized carbon within its carbon skeleton. High
electrical conductivity ensures rapid electron transport within the
electrode material, reduces internal resistance, and is an important
foundation for building high-performance supercapacitors, battery
electrodes, and electrochemical sensors. (4) Thermal conductivity
and light absorption conversion are two critical, interrelated factors
when using biochar in photothermal applications. Excellent light-to-
heat conversion ability enables biochar to efficiently transform light
energy into thermal energy, while thermal conductivity governs the
distribution and transfer rate of the generated heat. Together, they
determine the actual effectiveness of biochar in solar-driven water
evaporation, photothermal catalysis, and thermal management
systems.

Despite extensive progress in characterizing these physical attri-
butes, a fundamental challenge remains: biochar's structure is
highly heterogeneous and evolves through complex, multiscale
thermochemical pathways, making it difficult to establish predictive
structure—property relationships. To address this gap, the concept of
a 'physical genome' of biochar has been introduced. It interprets
features such as the degree of graphitization, pore connectivity, and
defect density as inheritable and combinable structural units similar
to genetic elements. This physical genome captures how feedstock
composition and thermochemical conditions regulate the expres-
sion of these structural units, and how their interactions collectively
determine macroscopic properties such as adsorption capacity,
mechanical robustness, electron/heat transport, and photothermal
conversion.

To operationalize the physical-genome perspective, it is essential
to understand how specific structural units manifest across biochar's
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hierarchical carbon architecture. By mapping these multiscale
configurations to functional outcomes, the physical genome frame-
work provides a coherent route toward a predictive and design-
oriented understanding. Building on this foundation, this review
systematically dissects these interconnected attributes, highlights
their coupling mechanisms, and consolidates recent experimental
and theoretical advances. It concludes with key research challenges
and a forward-looking roadmap for next-generation functional
biochar.

Biochar's pore system originates from the biological structure of its
feedstock and evolves through multistage pyrolysis. Initial cellular
pores form the structural backbone; volatile release opens micro- and
mesopores; and carbon skeleton rearrangement at elevated tempera-
tures (> 500 °C) consolidates graphitic domains. Feedstock composi-
tion and inorganic mineral content further influence pore evolution
through catalytic and templating effects. Figure 1 shows the formation
mechanism and influencing factors of biochar pore structure.

The formation of porosity in biochar begins with the initial pore
structures derived directly from biomass anatomy. Lignocellulosic
materials such as wood and straw possess intrinsic biological
architectures, including vascular bundles, lumens, and intercellular
layers. These structures serve as natural micro- and nano-channels that
transport water and nutrients during plant growth. During the initial
phase of pyrolysis, under relatively mild thermal conditions, these
innate pore networks are largely preserved rather than destroyed. They
act as a structural blueprint, forming the initial porous framework upon
which further pore evolution is built. This direct structural inheritance
underscores the critical role of biomass selection and anatomical
features in determining the foundational porosity of the resulting
biochar.

Pore creation through volatile release represents the core mechanism
for the in situ creation of new pores. Biomass components—
cellulose, hemicellulose, and lignin—undergo thermal decompos-
ition at elevated temperatures, generating substantial volumes of
volatile compounds (e.g., CO, CO,, CH,, and tars). The effusion of these
volatiles from the solid matrix acts as a dynamic scouring force, forcibly
evacuating and opening up previously inaccessible spaces. This
process primarily generates a multitude of micropores (< 2 nm) and
mesopores (2-50 nm), effectively perforating the carbon scaffold with
countless nano-scale tunnels and channels. The rate and extent of this
volatile release are critical determinants of the specific surface area and
the final pore volume in the resulting biochar. A key insight emerging
from recent studies is that hierarchical porosity (micro-meso—-macro) is
critical to multifunctionality: micropores provide high surface area for
adsorption and charge storage; mesopores facilitate molecular
transport; and macropores act as mechanical supports. Comparative
analyses indicate that lignocellulosic feedstocks with high lignin
content produce biochar with well-preserved channel networks and
superior structural stability. Conversely, manure- or sludge-derived
biochars tend to be more amorphous, with lower surface areas.

Jietal. | Volume2 | 2026 | e003


https://doi.org/10.48130/bchax-0026-0003
https://doi.org/10.48130/bchax-0026-0003
https://doi.org/10.48130/bchax-0026-0003
https://doi.org/10.48130/bchax-0026-0003
https://doi.org/10.48130/bchax-0026-0003

https://doi.org/10.48130/bchax-0026-0003

Influencing Factors

Natural Structure

|

|

|

|

| |

|

Organic Matter Composition

Gasification

High-temperature
Pyrolysis

Inorganic Mineral Content

Final Temperature

Heating Rate

Biochar Preparation

Biomass Feedstock

Y

Carbonization Process
(oxygen-deficient conditions)

Biochar X

Pore Formation Mechanism

——» Preservation of the Initial Channel

Hydrothermal
Carbonization

Emission of Volatile Substances

Carbon Skeleton Reconstruction
and Aromatization

| Formation
Residence Time
| v
Additives Biochar Templates and Catalysis
Y
poleiStcture Pore Volume = Pore Size —— Specific Surface Area Pore Morphology

Parameters

Fig. 1 Schematic diagram of the formation mechanism and influencing factors of biochar pore structure.

It is worth noting that the carbon skeleton shrinks to some extent
as the aromatization process begins. Following a major volatile
release, as temperatures exceed 500 °C, the carbon structure itself
undergoes a fundamental transformation. The remaining carbon-
rich solid begins a process of aromatization and gradual alignment
into nascent graphite-like crystallites. During this condensation and
graphitization, the carbon skeleton becomes more ordered and
contracts, releasing non-carbon elements such as hydrogen®. This
structural tightening and reordering enhance the material's stability.
It also drives pore development by widening existing pores, creat-
ing fissures between growing crystallites, and refining pore walls to
produce a more robust porous network.

Biomass feedstock type is the primary factor affecting pore structure.
Khater et al. measured the pyrolysis characteristics of various
agricultural wastes (straw rice, sawdust, sugar cane, and tree leaves).
Their results indicated that rice straw exhibited the highest porosity
(63.7%) at a pyrolysis temperature of 400 °Cl'%, He et al. cut balsa, pine,
and bass wood into slices and carbonized them at 1,000 °C for 6 h
using Ar as a protective gas. The BET test results showed that pine had
the largest specific surface area, while basswood had the smallest
(687.96 > 592.36 > 31.88 m?%/g)!""l. Masek et al. found that the specific
surface area of softwood pellets exceeded that of oilseed rape straw at
identical pyrolysis temperatures (26.4 > 7.3 m%/g, 550 °C), with the
disparity becoming more pronounced as temperature increased (162.3
> 25.2 m?/g, 700 °C)l', Wang et al. investigated the pyrolysis behavior
of corn stalk (CS), corn cob (CC), and spruce wood (SW) at 600 °C!'3,
Unlike CC and CS biochar, SW biochar exhibited vertically aligned
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microchannels and highly elongated tracheid structures. Additionally,
SW demonstrated the largest specific surface area and pore volume,
while CC displayed the smallest. Yang et al. summarized the pore
structure characteristics of animal manure-derived biochar and found
that, in the absence of activating agents, the specific surface area
predominantly fell within the range of 5-40 m?%g!". Tomczyk et al.
also noted that biochar produced from animal manure and solid waste
feedstocks exhibited lower surface area compared to that derived from
crop residues and woody biomass!'®. This discrepancy was attributed
to substantial differences in lignin and cellulose content, as well as
biomass moisture levels.

Secondly, pyrolysis temperature is another important influencing
factor. Regardless of the feedstock, high pyrolysis temperatures
increase the specific surface area and pore volume of biochar. This
effect is largely attributed to the intensified decomposition of
organic compounds!'6'7], For example, Song et al. investigated the
effect of pyrolysis temperature (300-700 °C) on biochar produced
from pineapple leaf (PAL), banana stem (BAS), sugarcane bagasse
(SCB), and horticultural substrate (HCS). Raising the pyrolysis
temperature from 300 to 500 °C markedly increased the surface
areas of all four biochars. For PALB, BASB, SCBB, and HCSB, the
values rose from 1.80, 3.26, 2.38, and 2.44 m?/g to 3.30, 56.92, 2.77,
and 24.96 m?/g, respectively. A further increase in temperature to
700 °C resulted in surface area increases of 65, six, 70, and five times,
respectively, compared to those obtained at 500 °Cl'8], Handiso et al.
found that increasing the pyrolysis temperature from 300°C to
500 °C greatly boosted the specific surface area (1.20 — 393 m?/qg)
and total pore volume (0.0151 — 0.1972 cm3/g) of pine-based
biochar. At the same time, the average pore diameter decreased
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from macropores (~50 nm) to mesopores (~2 nm)['9l, Zhang et al.
found that raising the activation temperature from 700 to 1,000 °C
nearly doubled the specific surface area and total pore volume of
bamboo-based biochar. At the same time, the average pore width
decreased from 3.044 to 2.282 nm[29, Quantitative synthesis across
studies reveals that pyrolysis temperature consistently enhances
surface area and pore volume up to an optimal range (500-700 °C),
beyond which pore coalescence or collapse occurs. However, some
exceptions were observed where the specific surface area and pore
volume initially increased and then decreased with rising pyrolysis
temperature. For instance, Liao et al. reported that during biochar
production from bamboo and rice husk between 300 and 600 °C,
the maximum specific surface area and pore volume occurred at
500 °C. They attributed this phenomenon to the collapse of porous
structures caused by secondary pyrolysis of the biomass(2'l.

The third major influencing factor is activation. Biomass contains
certain inorganic minerals (such as K, Ca, and Si, which become ash
upon combustion). These minerals occupy a certain space within
the carbon matrix. During subsequent acid washing or combustion,
their removal leaves behind pores of comparable size and morphol-
ogy. Furthermore, alkali and alkaline earth metals catalyze carbon
gasification reactions (C + H,0 — CO + H,; C + CO, — 2CO0), selec-
tively oxidizing carbon atoms. This process expands existing pores
or opens closed pores into through-pores, significantly increasing
the specific surface area. The supplemental addition of activators
(water vapor, CO,, NH,, KOH, H,SO, CuCl,, etc.) and templates
(MgO, triblock copolymer, etc.) can amplify these templating and
catalytic effects, enabling precise pore structure regulation(22],

The resulting structure—property control forms the foundation for
tuning mechanical, electrical, and thermal functions. Table 1
summarizes the pore volume, pore diameter, and specific surface
area values of various common biochars.

Mechanical robustness determines the long-term stability of biochar in
both environmental and engineered systems. It is not a singular
attribute but a complex outcome of feedstock selection, pyrolysis
conditions, and subsequent environmental interactions. Feedstock
chemistry (notably lignin content) and pyrolysis temperature govern
the formation of cross-linked aromatic networks, which impart rigidity.
At moderate pyrolysis temperatures (500-700 °C), biochar attains an
optimal balance between strength and toughness, whereas excessive
graphitization (> 900 °C) induces brittleness. Furthermore, the
mechanical stability of the resulting carbon framework is subject to the
multifaceted interplay of post-processing techniques and long-term
environmental exposure.

The inherent properties of the feedstock are the primary determinants
of biochar's mechanical performance. Their influence is profound and
persists throughout the entire conversion process. The chemical
composition of the feedstock, particularly the content and nature of
lignin and ash, plays a predominant role in this regard. Feedstocks rich
in lignin, including wood and nut shells, promote the formation of a
rigid, cross-linked aromatic carbon framework during pyrolysis. This
structure imparts high compressive strength and abrasion resistance to
the resulting biochar®’38, Conversely, feedstocks with high ash
content—such as livestock manure or sewage sludge—tend to
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produce biochar with weaker and more friable mechanical
properties. The substantial inorganic mineral content disrupts
the formation of a continuous carbon matrix, leading to a porous
and fragile structureB®#%. Furthermore, the physical structure of
the feedstock is equally crucial. Dense lignocellulosic feedstocks
with inherent fibrous structures, such as hardwoods or bamboo,
retain a partially preserved anisotropic supporting framework after
carbonization®'#2, This natural ‘fiber-reinforcement’ effect typically
grants the resulting biochar greater toughness and structural integrity.
Consequently, selecting feedstocks with high lignin content, low ash
content, and a dense physical structure is a primary prerequisite for
producing biochar with high mechanical strength. This provides a
fundamental basis for the targeted design and optimization of biochar
properties to meet the specific mechanical requirements of various
application scenarios.

Pyrolysis temperature primarily governs the mechanical properties of
the final material by altering the structural ordering of the carbon
skeleton, pore evolution, and ash behavior™#4, At relatively low
temperatures (< 400 °C), biomass undergoes initial devolatilization and
carbonization, but the organic structure of the precursor is not fully
reconfigured®, The resulting biochar retains substantial amorphous
carbon and incompletely pyrolyzed organic components, typically
exhibiting weak mechanical strength, soft texture, and high friability!.

When the temperature reaches the medium range (500-700 °C),
the mechanical performance changes markedly. Aromaticity intensi-
fies, carbon microcrystals grow and align, and graphitic domains
form a stronger, more stable three-dimensional cross-linked
network(®’l, This significantly enhances mechanical strength, hard-
ness, and compressive resistance. However, vigorous volatile release
and pore coalescence may also introduce structural defects, increas-
ing brittleness(*8,

At temperatures above 700 °C, the carbon skeleton evolves into a
highly graphitized structure. This graphite-like framework exhibits
markedly higher hardness and abrasion resistancel*l. Nevertheless,
excessive shrinkage and pore coarsening can promote macro-crack
propagation, thereby reducing overall toughness and exacerbating
brittleness.

Additionally, temperature can indirectly influence mechanical
properties by affecting ash fusion. In feedstocks rich in alkali and
alkaline earth metals, the molten ash formed at high temperatures
acts as a natural binder that enhances particle bonding. However,
ash volatilization at extreme temperatures may leave structural
weaknesses.

Therefore, the effect of pyrolysis temperature on the mechanical
properties of biochar presents a complex non-monotonic change.
There is an optimal temperature window that varies depending on
the raw material. Within this temperature window, biochar achieves
its best balance of strength, hardness, and toughness. This balance
is critical for applications such as soil conditioning, carbon seques-
tration, and composite reinforcement.

Nanoindentation technology has provided key insights into the
intrinsic mechanical properties of biochar solid skeletons at the
nanoscale. Nanoindentation studies reveal a wide hardness range
(0.3-4.5 GPa) depending on feedstock and temperature. Zickler et al.
studied the evolution of mechanical properties in spruce wood
pyrolyzed up to 2,400 °C using nanoindentation. Hardness increased
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Table 1 Pore structure characteristics of various biochars

Biochar X

Feedstock q g - Pore volume : Specific surface
type Synthesis strategy Specific conditions (cm3/g) Pore size area (m2/g) Ref.
Poplar wood Medium-temperature pyrolysis — High- N,, 500 °C, 1 h, 1,000 °C, 2 h. Air, / Channel: 663 [23]
temperature annealing — Air oxidation 450°C,1h 10-80 um
activation
Inert atmosphere high-temperature FeCls, CoCl, / Average pore 334 [24]
pyrolysis — Metal-induced activation Ar,800°C,1h size: 0.5 nm
Low-temperature pre-carbonization — 240°C, 6 h, Ar, 1,000 °C, 6 h. CO,, / 8-13 um, 810 [25]
High-temperature pyrolysis under inert 800 °C, 10 h. Salt impregnation, 30-50 um
atmosphere — CO, physical activation — 150°C, 2h
Salt-assisted structure regulation
Balsa wood Inert atmosphere high-temperature Ar, 1,000 °C, 6 h, Ultrasonic. / Average pore 809 [11]
pyrolysis — Alkali impregnation and Alkali impregnation, N, 700 °C, size: 40 um
chemical activation 2h
Hydrothermal precursor construction — Impregnation dopamine, 0.163 Average pore 110 [26]
Oxidative modification — High- Hydrothermal, size: 243 nm
temperature pyrolysis under inert Co(NOs3),, 60 °C, 2 h, H,0,, 2h. N,,
atmosphere 800°C,2h
Inert atmosphere pyrolysis — Metal- FeCl; impregnation, N, 600 °C, 0.118 Average pore 275 [27]
induced activation 2h size:3.88 nm
Pine wood Inert atmosphere high-temperature NH,Cl impregnation, Ar, 1,000 0.250 Average pore 582 [28]
pyrolysis — Doping/metal-induced °C, 3 h. CuCl, impregnation, Ar, size:2.55nm
activation 1,000 °C, 3h
Inert atmosphere high-temperature 800 °C, 0.5 h, N,. Ni(NO;),-6H,0, 0.804 Average pore 813 [29]
pyrolysis — Metal-induced structure 800°C, 1 h,N, size:3.96 nm
regulation
Pyrolysis and annealing in an inert 500°C,3 hand 450°C,4 h, N, 0.197 Average pore 393 [19]
atmosphere size:2.01 nm
Bamboo Hydrothermal carbonization — Chemical Hydrothermal, 200 °C, 6 h. H;PO, 1.09 Average pore 1,798 [30]
activation — Medium-temperature impregnation, 600 °C, 2 h size: 242 nm
pyrolysis activation
Low-temperature pre-carbonization in an N,,200°C, 1 h,700°C,3 h 1.51 Average pore 2,715 [20]
inert atmosphere — High-temperature size:2.28 nm
primary carbonization in an inert
atmosphere
Introduction of nitrogen source and Urea, urea nitrate, KOH, 0.66 1-5nm 1,195 [31]
gaseous foaming agent — Alkali microwave, 460 W, 30 min
impregnation and chemical activation —
Microwave rapid pyrolysis/activation
Rice husk Medium and high temperature 395-618°C, 4 h 0.255 / / [32]
Corn cob carbonization 0.243 / /
Bamboo Intermediate-temperature pyrolysis under 500°C, 1 h,N, 0.099 6.24 nm 71 [21]
Rice husk an inert atmosphere 0.039 3.42nm 29
Corn cob 0.023 239nm 10
Sewage sludge Medium temperature carbonization 400°C,1h / 10.6 nm 1 [33]
Pine needles / 2.16 nm 430
Pineapple leaves Medium and high temperature 300-700°C,2h 0.01-0.1 1-9nm 1-215 [18]
Banana stems carbonization 0.01-0.18 2-8nm 3-335
Sugarcane bagasse 0.01-0.1 2-6.5nm 2-195
Horticultural 0.01-0.09 3-16 nm 2-120
substrate
Chicken manure Calcination at 550-950 °C for 4 h / 15.4-15.7 nm 1 [34]
Swine manure Intermediate-temperature pyrolysis under Pyrolysis at 500-650 °Cfor2h  0.032-0.038 15.4-26.0 nm 6-8 [35]
an inert atmosphere inN,
Pyrolysis at 500 °C for 4 h in Ar 0.021 6.76 nm 13 [36]
Cow manure Intermediate-temperature pyrolysis under Impregnation with CuSO,, 0.031 4.85nm 26

an inert atmosphere — Metal-induced
structure regulation

continuously, reaching 4.5 GPa at 700 °C. In contrast, the indentation
modulus varied non-linearly, with a minimum of 5 GPa at 400 °C and a
maximum of 40GPa at 1,000°CP%. Das et al. systematically
investigated the relationship between the hardness and elastic
modulus of seven types of waste-derived biochars (including pine
sawdust, sewage sludge, and softwood) and their preparation
conditions. The results indicated that pine sawdust-derived biochar
exhibited the highest hardness and elastic modulus (900 °C x 60 min),
reaching 4.29 and 25.01 GPa, respectively. Both hardness and elastic
modulus rose with increasing pyrolysis temperature and longer
processing duration. Among these factors, temperature exerted the
greater influencel. Furthermore, they compared the mechanical
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Pyrolysis at 500 °C for 4 h in Ar

properties of the biochar with those of waste pinewood and pure
polypropylene (PP). The results indicated that the biochar exhibited
the highest hardness (0.43 GPa), followed by pinewood (0.3 GPa) and
PP (0.1 GPa). Conversely, the modulus values for these materials were
49, 5.6, and 1.5 GPa, respectively®". The type of pyrolysis reactor also
has an important influence on the mechanical properties of biochar.
Das et al. found that biochar produced in the hydrothermal reactor had
the lowest nanoindentation properties. In contrast, tube-reactor
biochar generated at 300 °C showed the highest hardness (290 MPa)
and modulus (~4 GPa)Z, Table 2 lists the hardness and modulus of
different types of biochar determined by nanoindentation.
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Table 2 Hardness and modulus of different types of biochar measured by nanoindentation

Feedstock type Synthesis strategy Specific conditions  Hardness (GPa) Modulus (GPa) Ref.
Pinewood Medium and low temperature carbonization 450 °C, 10 min 0.43 49 [51]
Birch wood 300°C, 1h 0.27 3.9 [52]
Chicken litter 450 °C, 20 min ~0.75 ~5 [38]
Spruce wood Medium and high temperature carbonization 700-2,000 °C, 2h 4-5 30-40 [50]
Sewage sludge 680 °C, 10 min ~2.5 ~10 [38]
90% softwood and 10% hardwood - - 0.28 5.1 [53]
Fruit pit 0.22 34

Pine bark High temperature carbonization 800°C,1h ~0.47 ~4.5 [54]
Gluten 0.5 7.8

Pine sawdust 900°C,1h 4.29 25 [38]

The mechanical stability of biochar is not solely dependent on its initial
synthesis but is dynamically influenced by its external chemical
environment and post-processing history. These external factors are
dualistic, potentially disrupting the carbon framework or enhancing its
functionality under specific conditions.

The chemical environment can directly alter the micromechanical
properties of biochar through physical and chemical interactions.
For example, Xu et al. found that a highly alkaline cement-simulated
solution significantly decreased the Young's modulus and hardness
of lignocellulosic biochar. This degradation was likely caused by
chemical corrosion and subsequent pore-wall collapse. Conversely,
exposure to a simulated seawater environment resulted in approxi-
mately 40% improvement in these mechanical properties compared
to the original biochar. This enhancement is thought to be caused
by the deposition of dissolved inorganic salts within the nanopores
of the biochar, which effectively reinforces the pore walls and
increases the structural density!>51,

In addition to chemical exposure, physical post-processing is
another important external factor. Crushing, grinding, or granula-
tion can introduce microcracks. These microcracks act as stress
concentration points and reduce the structural integrity of individ-
ual particles. Furthermore, during environmental deployment,
biochar is subjected to cyclic stresses, including wet-dry cycles
and freeze-thaw cycles. Water adsorbed in nanopores produces
substantial capillary pressure during drying. When frozen, its expan-
sion promotes microcrack propagation, leading to gradual mechani-
cal fatigue.

Importantly, mechanical resilience correlates strongly with the
degree of graphitization and microstructural continuity—
properties that also influence conductivity. This shared dependence
underscores the mechanical-electronic synergy within carbonized
frameworks, suggesting design pathways for mechanically stable
conductive composites.

The thermal properties of biochar are among its core attributes as a
functional material. These properties determine its effectiveness in
thermal energy storage and management and also strongly influence
the efficiency of associated thermochemical conversion processes.

Biochar's thermal behavior is governed by phonon transport through
disordered carbon lattices®®*”). The size, degree of order, and
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orientation of graphitic microcrystals are key to phonon transport
efficiency. Larger, more ordered, and better-aligned crystals allow
longer phonon mean free paths and thus higher thermal conductivity.
However, the intrinsic structural characteristics of biochar are precisely
the 'natural enemies' of phonons. Disordered pores, grain boundaries,
heteroatoms, and other defects are widespread in biochar. Together,
they create dense phonon-scattering centers that hinder the develop-
ment of effective heat-conduction pathways. This is the fundamental
reason why the intrinsic thermal conductivity of most pristine biochar
is relatively low (typically below 1 W/m-K). At high temperatures, gas
convection within pores and thermal radiation may also contribute to
heat transfer. However, their effects are generally minor compared
with conduction through the solid carbon matrix. It is noteworthy that
this structure endows biochar with a dual nature in terms of thermal
properties. The highly developed porous structure, while inhibiting
conductive heat transfer, renders it an excellent thermal insulation
material.

The thermal properties of biochar are not inherent but are shaped by
precursor chemistry and processing conditions, making them highly
tunable. Among the various influencing factors, pyrolysis temperature
plays the most critical role. Generally, as the pyrolysis temperature
increases from low ranges (e.g., 300-400 °C) to high ranges (> 700 °C),
the thermal conductivity of biochar exhibits an improvement by orders
of magnitude. This enhancement results from the graphitization of
amorphous carbon at elevated temperatures. Aromatic domains
condense and grow, defects are healed, and larger, more ordered
graphitic microcrystals emerge, creating more efficient phonon-
transport pathways. Zhang et al. reported that the thermal con-
ductivity of pine wood biochar increased significantly with increasing
pyrolysis temperature from 600 to 1,000 °CP8l, With increasing pyroly-
sis temperature, the enhanced graphitic order raised the thermal
conductivity of wood-derived biochar from 0.1 to 0.4 W/m-K. Lv et al.
also synthesized biochar from Phoenix leaves under varying pyrolysis
temperatures, reporting that higher pyrolysis temperatures resulted in
enhanced thermal conductivity of the material®. Liu et al. found that
the thermal conductivity of a polyethylene glycol/corn stalk biochar
composite phase change material was directly proportional to the
pyrolysis temperature of the biochar component!®®,

Beyond pyrolysis temperature, the chemical composition of the
precursor feedstock is equally crucial. Lignin-rich feedstocks, such as
pine, contain more aromatic structural units and thus form ordered
carbon skeletons more easily during pyrolysis. As a result, they
generally yield biochar with higher thermal conductivity than cellu-
lose-dominated feedstocks like rice straw. Furthermore, the innate
microstructure of the raw material (such as the anisotropic channels
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in wood) is also preserved in the derived biochar, leading to
anisotropic heat conduction. For example, the longitudinal and
transverse thermal conductivities of bamboo-derived biochar were
0.345 and 0.676 W/mK, respectively®'l. A significant difference was
observed in the maximum heat transfer temperatures of hemp-
stem-derived biochar, with the radial direction reaching 41 °C, in
contrast to 32 °C for the transverse direction!®2l. In addition to chem-
ical and structural parameters, macroscopic physical properties like
bulk density show a significant correlation with thermal conductiv-
ity. The study conducted by Usowicz et al. demonstrated an inverse
relationship between the thermal conductivity and bulk density of
individual biochar types(©3l,

Furthermore, post-treatment processes offer additional avenues
for tuning. For instance, although chemical activation (e.g., using
KOH or H;PO,) can significantly increase specific surface area, the
etching of the carbon skeleton during this process may introduce
new defects, thereby compromising thermal conductivity. Con-
versely, catalytic graphitization or the addition of highly conductive
nanomaterials can create hybrid thermal conduction networks.
These strategies offer effective routes to significantly improving the
thermal performance of biochar. Zhang et al. studied the effects of
copper-based preservatives on the thermal conductivity of pine-
based biochar. Biochar treated with copper-based preservatives
showed a 70%-80% increase in thermal conductivity compared to
untreated biocharl8l, Huang et al. analyzed the correlations of ther-
mal conductivity, as illustrated in Fig. 2. The results identified that
test temperature, density, and pore size were identified as the most
influential factors, with their correlation strength decreasing in the
order of: temperature > density > pore sizel®4l,

In summary, the interplay between porosity and crystallinity
offers tunability: while high porosity promotes insulation, graphiti-
zation enhances conductivity. Post-treatments, such as catalytic

Biochar X

graphitization or metal nanoparticle doping, further optimize heat
conduction. Representative thermal conductivity values for differ-
ent biochar are summarized in Table 3.

Thermal stability is essential for carbon sequestration. It increases with
higher aromaticity and lower oxygen content, which result from
elevated pyrolysis temperatures and lignin-rich feedstocks!®l. High
pyrolysis temperatures (typically above 400 °C) decompose unstable
biomass components such as hemicellulose and cellulose and
promote aromatic condensation and the development of graphite-like
microcrystalline domains, which markedly improve biochar stability®®.
Lignin-rich feedstocks, such as pine, possess inherently three-
dimensional aromatic polymer structures. As a result, they more easily
develop highly cross-linked and stable carbon skeletons during
pyrolysis. Compared to biochar made from cellulose-based feedstocks
(such as straw), lignin-derived biochar generally exhibits superior
thermal stability”®. Furthermore, modification techniques such as
physical or chemical activation and oxidation with hydrogen peroxide
have also been found to affect biochar stability by altering its pore
structure and surface functional groups”'72.

Alba and colleagues produced biochar from pine wood chips
(PW) and corn digestate (CD) at pyrolysis temperatures of 400 and
600 °C (Fig. 3a). The results demonstrated that the PW-derived
biochar exhibited significantly superior thermal stability compared
to the CD-derived biochar. Furthermore, increasing the pyrolysis
temperature from 400 to 600 °C enhanced both the carbon content
and thermal stability of the resulting biochar!’3l. Yang et al. system-
atically evaluated the thermal stability of eight types of biochar
produced at 350 and 500 °C. The study revealed that an increase

1
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Fig. 2 Correlation analysis of thermal conductivity!®*.
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Table 3 Thermal conductivity of different types of biochar

https://doi.org/10.48130/bchax-0026-0003

Feedstock type Synthesis strategy Specific conditions Thermal conductivity (W/m-K)  Ref.
Lemon peel Medium and low temperature carbonization 180°C,1h 0.84 [65]
Wood offcuts 350-400 °C 0.079-0.132 [63]
Phoenix leaf 450-600°C,2 h 0.056-0.06 [59]
Garlic stem 700°C,2h 0.141 [66]
Pine wood High temperature carbonization 1,000°C, 1h 0.222 [58]
Copper-based preservatives, 1,000 °C, 1 h 0.395
Bamboo 1,000°C,6 h 0.3-0.7 [61]
Peanut shell 900 °C, 2 h combined with stearic acid (SA) 0.53 [67]
Poplar wood 0.38
Corn straw 0.32
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Fig. 3 (a) Effect of process conditions on biochar properties’?.. (b), (c) Volatile solids contents and fixed carbon contents after pyrolysis of biomass and
biochar’, (d) Relationship between volatile matter content and pyrolysis temperaturel”>),

in pyrolysis temperature from 350 to 500 °C resulted in a notable
rise in the release of volatile solids (Fig. 3b). This enhanced volatiliza-
tion directly led to a significant enrichment of fixed carbon content
in the biochar (Fig. 3c)74. Ronsse et al. also reached a similar
conclusion. The results showed that the volatile matter in different
types of biochar decreased with increasing temperature, as shown
in Fig. 3d[71,

In recent years, the research frontier of biochar has significantly
expanded beyond its conventional role in environmental adsorption to
encompass its functional electrical properties. As a porous carbon
material derived from the resource utilization of biomass waste, its
unique electrical conductivity and dielectric behavior are garnering
extensive attention within the fields of energy, electronics, and
environmental science. This section reviews recent progress on the
conductive mechanisms and dielectric properties of biochar. It also
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examines its transition from an environmental remediation material to
a high-performance electronic medium and electrode. The aim is to
provide a theoretical foundation and strategic guidance for developing
the next generation of green, low-cost biochar-based electronic
devices.

The electrical conduction mechanism in biochar primarily stems from
the conjugated conductive network formed by aromatic carbon sheets
during pyrolysis. With increasing pyrolysis temperature, hydrogen, and
oxygen are removed as volatile compounds. This raises the proportion
of sp?-hybridized carbon and drives the formation of graphite-like
microcrystals”%’7, These microcrystals establish efficient electron
transport pathways through z-z stacking interactions, whose degree
of perfection and structural ordering directly determine the intrinsic
electrical conductivity!®!,

The formation and performance of this conductive network are
cooperatively regulated by several key factors. Primarily, pyrolysis
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conditions serve as the decisive element. Specifically, treatments
above 700 °C significantly promote graphitization, while the heat-
ing rate and residence time influence the degree of structural
ordering in the carbon frameworkl’7791. Secondly, the chemical
composition of the feedstock is crucial. Lignin-rich biomass, such as
wood, more readily forms highly conjugated conductive structures
due to its inherent aromaticity!®%. Furthermore, the introduction of
heteroatoms, such as nitrogen or sulfur, can modulate the semicon-
ductor properties by altering the local electron density. However,
excessive doping may disrupt the continuity of the carbon network.
In addition, the pore structure requires a balanced design. A moder-
ate specific surface area with interconnected hierarchical pores
ensures efficient electron conduction while also facilitating elec-
trolyte ion transport. Finally, surface chemistry also plays a role.
Residual oxygen-containing functional groups like carboxyl groups
can act as scattering sites that impede charge carrier mobility. In
contrast, specific groups like carbonyls may contribute additional
pseudocapacitance through reversible redox reactions®l. There-
fore, precise regulation of these parameters enables the tailored
design and optimization of biochar's electrical properties for specific
application requirements.

The initial measurement of biochar electrical conductivity was
performed using the two-probe method, as illustrated in Fig. 4al8l,
In this configuration, the sample is positioned between two probes,
and a known current is applied while the resulting voltage drop
across the sample is measured by a potentiometer. The electrical
conductivity is then calculated based on the resistivity of the
biochar. A major limitation of the two-probe method lies in the diffi-
culty of accurately estimating the contact resistance between the
probes and the material. To address this constraint, the four-probe
method was developed (Fig. 4b)i82. However, this technique
requires a thickness correction factor, which introduces systematic
errors when the sample dimensions deviate from the thin-film ideal.
To overcome the limitations inherent in both conventional meth-
ods, researchers have developed a modified two-probe approach,
as schematically represented in Fig. 4c. The modified method

Biochar X

measures bulk conductivity using a sandwich approach using two
flexible conductive electrodes under constant pressure contact. Bulk
conductivity is calculated from the applied current divided by the
total geometric contact area with tin foil, combined with the
measured potential drop along the sample lengthl76l, The special-
ized setup shown in Fig. 4d enables controlled compression of
biochar samples and is designed to systematically investigate how
electrical conductivity depends on compression conditions!78l,

Dielectric behavior complements conductivity, enabling energy
storage and electromagnetic applications. The dielectric properties
of biochar can be characterized by its complex relative permittivity
(Eq.[1]):

g=&-ig’ €))
where, ¢' represents the relative dielectric constant, indicating the
material's ability to store electrical energy, and ¢" signifies the relative
dielectric loss factor, characterizing the dissipation of electrical energy
into heat. These dielectric parameters exhibit a strong frequency
dependence. In the low-frequency regime (e.g., below 1 GHz),
interfacial polarization (often referred to as the Maxwell-Wagner-Sillars
effect) is typically dominant. This mechanism arises from charge
accumulation at interfaces between regions of different electrical
conductivity within the biochar, such as aromatic carbon clusters,
heteroatoms, and residual ash, leading to significant polarization’®l. As
the frequency rises, slow polarization processes fail to keep up with the
rapid field reversal. This leads to clear dispersion, reflected by a
decrease in &' with increasing frequency. Notably, dielectric relaxation
phenomena are frequently observed in the dielectric spectra of
biochar. This relaxation is likely associated with the hopping
conduction of polarized charge carriers within the amorphous carbon
matrix of biochar or the reorientation processes of confined charges in
its hierarchical pore channels®,
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Fig. 4 Conductivity test device diagram: (a) Two-probe techniquel®". (b) Four-probe technique®?. (c) Modified two-probe techniquel’®. (d) Setup for

compression test to measure conductivity!’®,
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Biochar exhibits an exceptionally broad conductivity range
(1075-10° S/m). This variation is mainly controlled by the feedstock
composition across different pyrolysis conditions. For instance, Gabhi
et al. reported that raising the carbon content from 86.8 to 93.7 wt%
increased biochar conductivity by more than six orders of magnitude.
Sugar-maple biochar with 96.2 wt% carbon achieved a peak skeletal
conductivity of 343.2S/mU8. Further establishing a fundamental
property, the same group defined intrinsic conductivity based on the
bulk conductivity-density relationship (Fig. 5a). They found that it rises
steadily with temperature, independent of wood species. At 1,500 °C,
wood biochar reached a conductivity of 14,600 S/m. Bamboo biochar
performed even better, attaining 21,000 S/m, owing to its high
cellulose content and larger graphitic nanocrystals’®. Comparative
studies on maple and pine biochars produced between 600 and
1,000 °C revealed bulk conductivities of 1-1,000 and 1-350 S/m,
respectively. At 1,000 °C, their skeletal conductivities reached ~3,300
and ~2,300 S/ml’., Significant variability persists even within specific
precursor types, as lignin-derived biochars showed a wide conductivity
range (0.009-62.96 S/cm) at 900 °C (Fig. 5b). Moreover, applied
pressure exhibits a positive correlation with biochar conductivity
(Fig. 5¢), highlighting another critical operational parametert’°.,
Biochar's frequency-dependent permittivity (2-5 in the GHz
range) and tunable loss factor position it as a candidate for
microwave absorbers and capacitor materials. Particle size reduc-
tion and doping modulate these properties, offering pathways to
multifunctional electrothermal composites. Richard et al. pyrolyzed
rice husks to produce biochar, which was then ground into five
distinct nanoparticle sizes (45-510 nm) using a ball mill. Their inves-
tigation revealed a significant enhancement in the dielectric proper-
ties as the particle size decreased®3]. Salema et al. reported that the
dielectric  properties of palm shell biochar are highly
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frequency-dependent. They observed that the dielectric permittiv-
ity decreases with increasing frequency, while the loss factor
exhibits an opposite trend. At 2.45 GHz, the dielectric permittivity of
the biochar was recorded between 2 and 386, According to Ellison
et al, dielectric properties of pulverized biomass and biochar
mixtures were presented from 0.5 to 20 GHz at room temperature.
The dielectric constant was between 2 and 5 (Fig. 6)1841,

Salema et al. further investigated the dielectric properties of five
distinct biomass types (oil palm shell, empty fruit bunch, rice husk,
coconut shell, and wood). They reported that the dielectric proper-
ties (permittivity and loss factor) decreased slightly in the drying
zone (24-200 °C) due to moisture removal and declined further in
the pyrolysis zone (200-450 °C) as volatiles were decomposed or
released (Fig. 7a). However, a sharp increase was observed when the
temperature exceeded 450 °CI87l, Yao et al. also reached similar
conclusions. This phenomenon was attributed to three sequential
mechanisms, as shown in Fig. 7b: (1) Initial decrease: vaporization of
high-permittivity water, reducing dipole count. (2) Further decrease
and loss: microwave-induced dipole polarization and friction in
polar components (e.g., fructose, -COOH) during the decomposi-
tion of biopolymers, with gradual decline as gaseous products (CO,,
CO) evolve. (3) Final increase: formation of conductive, porous
biochar, whose accumulating fraction significantly enhances both
permittivity and loss(®8l. Fan et al. further pointed out that the loss
tangent angle was 0.01-0.05 in the first two stages. It increased to
0.10-0.25 in the carbonization stage, indicating that the biowaste is
a low-loss material(89,

Biochar exhibits intrinsic light-absorbing and fluorescent properties,
which are driving new advances in environmental photochemistry
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Fig. 6 Dielectric constant and loss factor measurements as a function of biochar content at 2.45 GHz for each biomass®4,

and analytical sensing. This chapter reviews recent progress in these
optical properties of biochar, highlighting its evolution from a passive
environmental medium into an effective photosensitizer and fluor-
escent probe. This overview seeks to provide guiding perspectives for
designing advanced biochar-based optoelectronic devices and optical
sensing platforms.

Significant progress has been made in understanding biochar's optical
absorption, particularly its role as a functional component in photo-
catalytic composites for enhanced light harvesting. Studies have
revealed that biochar effectively enhances light absorption in com-
posites through several key mechanisms: (1) Band-gap narrowing of
photocatalytic materials: The composite structure formed between
biochar and semiconductors can reduce the band-gap energy®®°'.
This broadening of the light response range enables the utilization of a
greater portion of visible light for catalytic reactions. (2) Improved
charge separation and transport: Owing to its excellent electrical
conductivity, biochar functions as an electron shuttle and reservoir®,
effectively facilitating the transfer of photo-generated electrons from
the semiconductor to the biochar, thus significantly suppressing
electron-hole pair recombination. This process prolongs charge carrier
lifetime and enhances photocatalytic efficiency.

Lu et al. reported that incorporating walnut-shell biochar into a
TiO, composite notably enhanced its visible-light absorption and
activity, an effect that intensified with higher biochar loading
(Fig. 8a)3l. Fazal et al. found that all TiO,/biochar composite
samples demonstrated markedly enhanced absorbance across the
visible spectrum (400-700 nm) compared to pure TiO, (Fig. 8b)P4.
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Atta et al. demonstrated that incorporating 1% biochar into the
pristine blend reduced the optical band gap, as confirmed by a
reduction in the calculated absorption edge (Ed) from 4.9 to approx-
imately 4.7 eV. They attributed this band-gap narrowing to the
formation of localized states within the gap, induced by chemical
bonding between the blend and biochar (Fig. 8c). Furthermore,
elemental doping is a viable strategy for modifying biochar to opti-
mize its light-absorbing properties. For instance, Hu et al. reported
that the N-doped TiO,/biochar composite exhibited a redshifted
visible absorption edge due to band-gap narrowing induced by
nitrogen doping (Fig. 8d)l Doping with metal ions can induce
crystal-lattice distortion, capture photo-generated electrons, and
ultimately narrow the band gap due to the strong reducibility of
reduced metals. Zhang et al. successfully synthesized a f-
FeOOH/Fe;04/biochar composite and confirmed the presence of
Fe-O-C bonds between pS-FEOOH and biochar. This chemical
linkage facilitated the transfer of photo-generated electrons, conse-
quently enhancing the photocatalytic activity®’). In the highly
efficient BC/FeOOH/Bi,M0oOg composite fabricated by Xue et al.,
performance enhancement was primarily attributed to biochar. The
excellent conductivity of biochar facilitated electron migration,
thereby hindering charge-carrier recombination and improving the
overall photocatalytic efficiency©8l,

The photoluminescent properties of biochar primarily originate from
its unique microstructure and chemical composition. During the
pyrolysis process, biomass components such as lignin, cellulose, and
hemicellulose  undergo  carbonization, forming  microscopic
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sp?-hybridized carbon domains. These domains, which resemble
structures such as carbon quantum dots or graphene fragments, serve
as the primary sources of light emission®'%%  Simultaneously,
abundant surface functional groups (e.g., hydroxyl and carboxyl
groups) and heteroatom doping (e.g., nitrogen, sulfur) create defect
states or surface states within the energy gap. Upon photoexcitation,
these defect states capture electron-hole pairs, whose subsequent
recombination generates fluorescence!'®". Notably, biochar commonly
exhibits excitation-dependent emission, where the fluorescence color
changes with the excitation wavelength. This behavior arises from
luminescent sites of different sizes and structures!'%2103],

The fluorescence properties of biochar can be effectively modu-
lated through several strategies to meet specific application require-
ments. The selection of raw materials serves as the foundation.
Different plant-based precursors yield biochars with distinct fluores-
cent characteristics due to their inherent compositional differences.
Nava et al. efficiently produced water-soluble fluorescent carbon
nanodots (CNDs) within minutes via picosecond-laser ablation of
biocarbon sources derived from orange peel, avocado peel, and
spent coffee grounds!®dl. The avocado-derived CNDs exhibited the
highest yield and smallest size (2.2 + 0.3 nm), displaying an amor-
phous structure and bright blue-green emission centered at 430 nm
under 330 nm excitation. In contrast, CNDs derived from orange
peel and spent coffee grounds were larger (5-40 nm), contained
partial graphitic phases, and demonstrated significantly weaker
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fluorescence. Placido et al. synthesized biochar-derived carbona-
ceous nanomaterials (BCN) from three types of biochar produced via
thermal conversion of biomass: microalgae, rice straw, and sorghum
straw. Fluorescence spectroscopy revealed significant differences
among the three BCN types. The Stokes shifts of SSB-CN, RSB-CN,
and MAB-CN were measured at 109, 90, and 72 nm, respectively,
highlighting the distinct optical properties imparted by different
biomass precursors!104],

Pyrolysis temperature plays a central role in determining carbon
graphitization and surface functional groups. These changes directly
influence the fluorescence color and intensity. Huang et al. investi-
gated the effect of pyrolysis temperature on the characteristics of
biochar-derived dissolved organic matter (BDOM) and its cad-
mium (Cd) binding behaviorl'%l, They found that elevated pyrolysis
temperatures enhanced the interaction between protein-like
components in BDOM and Cd. When the temperature increased
from 300 to 500 °C, the fluorescence quenching efficiency of these
components by Cd reached 51.64%. This indicated that higher
pyrolysis temperatures promote the complexation capacity of
biochar toward heavy metals. Based on a dataset of 480 samples
and employing six machine learning models, Chen et al. systemati-
cally investigated the relationship between biochar preparation
parameters and fluorescence quantum yield (QY)['%, Their results
demonstrated that production parameters exert a more significant
influence on QY than feedstock properties. Among four key
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parameters (pyrolysis temperature, residence time, nitrogen
content, and carbon-to-nitrogen ratio), pyrolysis temperature was
identified as the most critical determinant for QY.

Furthermore, doping modification represents a powerful tuning
approach!%7], Introducing elements such as nitrogen can enhance
the surface polarity of biochar materials, promoting interactions
with target molecules and consequently modifying their
luminescent behavior. A route demonstrated by Zhang et al.
valorized Chinese herbal medicine residues by converting them into
porous carbon materials and carbon dots. Through self-doping,
which utilized the residue's inherent nitrogen, the carbon dots
attained a quantum yield of 36.17%['%¢l. Marpongahtun et al.
synthesized carbon dots (CDs) and nitrogen-doped CDs (NCDs) from
candlenut shell biomass via a hydrothermal method (230 °C, 6 h)
using ethylenediamine as a nitrogen dopant (4%-12% v/v)l'01l,
Photoluminescence characterization revealed that undoped CDs
exhibited an emission peak at 494 nm with a quantum yield (QY) of
18%, while 8% NCDs showed the strongest fluorescence at 498 nm
and achieved the highest QY of 27%. This result demonstrated that
the luminescence performance was enhanced through optimal
nitrogen doping. Precise control over these parameters enables
tailored design of biochar fluorescence, including emission color
(spanning blue to red and even the near-infrared region) and quan-
tum efficiency.

Owing to its tunable optical properties, excellent biocompatibility,
and low toxicity, biochar demonstrates broad application potential
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across multiple fields. Biochar's efficient photothermal conversion
makes it well-suited for interfacial solar evaporators. This offers a
promising pathway for sustainable seawater desalination'®~"%, In
environmental monitoring, functionalized fluorescent biochar serves
as a sensitive probe for detecting heavy metal ions (e.g., HgZ!'"?,
Cd?1031 Fe3H114))  and organic pollutants!'®. Upon interaction
between its luminescent sites and these contaminants, fluorescence
quenching or enhancement occurs, enabling highly selective and
sensitive detection. In biomedicine, biochar, particularly in the form of
carbon dots, acts as a safe fluorescent probe for cellular imaging, in
vivo tracking, and even drug delivery systems due to its outstanding
biocompatibility!'®'"?], Additionally, fluorescent biochar provides a
low-cost and environmentally friendly luminescent material for
optoelectronic devices. It can serve in light-emitting diodes (LEDs)
phosphor layers or be combined with semiconductors to improve
photoactivity!e~118],

The physical properties of biochar are inherently interlinked through
shared structural elements. Hierarchical porosity simultaneously
governs adsorption capacity, heat transfer, and mechanical stability.
Graphitic ordering underlies both electrical and thermal conductivities,
while mechanical resilience supports electrochemical durability. These
correlations define biochar as a multifunctional carbon system rather
than a single-purpose material.
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The multifunctional behavior of biochar originates from its inherently
hierarchical structure, which spans atomic, microstructural, and
macroscopic scales. At the atomic scale, sp?/sp® carbon domains,
defects, and heteroatom dopants control electron delocalization,
phonon transport, and surface reactivity. These factors collectively
determine the material's electrical, thermal, and chemical behavior.
Biochar features interconnected micro-, meso-, and macropores. Their
size distribution, connectivity, and wall morphology determine
adsorption, transport efficiency, mechanical stiffness, and thermal
insulation. Micropores contribute high surface area, mesopores
facilitate diffusion and phonon scattering, and macropores provide
mechanical load-bearing pathways. At the macroscopic level, bulk
density, anisotropy, and structural continuity further modulate long-
range transport and mechanical integrity. These multiscale features are
not independent. Instead, they form a tightly coupled structural
network in which modifications at one scale inevitably influence
properties at others. Consequently, biochar's hierarchical architecture
co-regulates its adsorption, thermal, electrical, and mechanical
behaviors, making it a prime example of a material governed by cross-
property coupling.

Biochar exhibits a unique combination of mechanical robustness,
thermal insulation, and electrical conductivity—properties that are
typically difficult to achieve simultaneously in conventional
materials. These synergies arise from the interplay between the sp*
hybridized carbon network and the hierarchical pore structure formed
during pyrolysis. The interconnected graphitic domains provide
continuous pathways for electron transport while simultaneously
serving as a mechanically supportive skeleton capable of distributing
stress and preventing structural collapse. Meanwhile, the porous
architecture introduces abundant air-filled voids and interface bound-
aries that strongly scatter phonons, thereby suppressing thermal
conductivity without significantly disrupting electrical percolation. This
selective decoupling of electron and phonon transport enables
biochar to maintain electrical conductivity even under conditions
where thermal conduction is minimized. Furthermore, the carbon
walls that facilitate electron and phonon transport also contribute to
mechanical stiffness, allowing the material to retain structural integrity
under compression or cyclic loading. These mechanisms act syner-
gistically, allowing electrical, thermal, and mechanical behaviors to
reinforce rather than compete. As a result, biochar emerges as a strong
multifunctional candidate for energy management, EMI shielding, and
integrated structural-electrical applications.

Although strong cross-property synergies are well-documented
across adsorption, thermal, electrical, mechanical, and electrochemi-
cal behaviors, it must be acknowledged that the current biochar
literature remains highly fragmented in terms of experimental
design. Most studies characterize only one or two physical proper-
ties at a time, often using different feedstocks, activation routes, and
thermochemical conditions. As a result, direct multi-property
measurements on the same biochar system—together with quanti-
tative correlations linking multiple properties through unified
descriptors such as degree of graphitization, pore connectivity,
or defect density—are still largely absent. This limitation reflects
the broader research landscape rather than any specific method-
ological constraint, as different physical properties are typically
investigated by separate research communities with distinct charac-
terization infrastructures. The Physical Genome framework
proposed here aims to synthesize these dispersed findings into a
coherent conceptual model and to highlight the need for future
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multi-property datasets that can quantitatively validate these cross-
property linkages.

Despite its inherent synergies, biochar also exhibits several
performance conflicts arising from the competing structural
requirements of different functionalities. For example, increasing
porosity enhances adsorption capacity and thermal insulation but
often reduces mechanical strength due to thinner pore walls. Similarly,
higher degrees of graphitization improve electrical and thermal
conductivity but may diminish surface area and limit adsorption or
catalytic activity. These conflicts highlight the need for rational
structural design strategies that balance or decouple competing
properties. Hierarchical pore engineering offers one solution by
assigning distinct roles to micro-, meso-, and macro-pores, enabling
simultaneous optimization of adsorption, diffusion, and mechanical
support. Dual-network architectures, in which graphitic domains
provide conductive pathways while amorphous carbon regions offer
mechanical buffering, further mitigate trade-offs between conductivity
and structural stability. Gradient or functionally partitioned structures
can spatially separate thermal insulation, electrical conduction, and
mechanical reinforcement, allowing each region to be optimized
independently. Additionally, defect and interface engineering can fine-
tune electronic structure and interfacial polarization without
compromising mechanical integrity. Through these strategies, biochar
can overcome intrinsic performance conflicts and achieve synergistic
multifunctionality tailored to specific application demands.

Biochar's cross-property synergies allow it to function as a versatile
platform for multifunctional applications. Achieving this requires
careful structural engineering to meet specific performance needs. In
electrochemical energy storage, the combination of a conductive
carbon framework, hierarchical porosity, and mechanical resilience
supports rapid electron transport, efficient ion diffusion, and stable
cycling under mechanical and thermal stresses. In photoelectrical and
catalytic systems, the porous architecture provides high-dispersion
support and abundant reactive interfaces. Graphitic domains further
aid charge separation and electron extraction, collectively enhancing
catalytic efficiency. For electromagnetic interference shielding, biochar
benefits from its conductive network, defect-induced polarization, and
porous interfaces, which together promote multiple attenuation
mechanisms. In thermal management, the combination of low thermal
conductivity and mechanical stability enables biochar to function as a
lightweight, structurally robust insulator. Environmental remediation
applications further leverage its high surface area, tunable surface
chemistry, and hierarchical porosity. These diverse functionalities
illustrate how biochar's multiscale structure can be strategically
manipulated to integrate adsorption, conduction, insulation, mechan-
ical support, and catalytic activity within a single material system.

To translate the empirical trends summarized in this review into
actionable engineering strategies, we introduce a decision-oriented
design framework grounded in the Physical Genome concept. In this
framework, lignocellulosic composition, inorganic content, and
macromolecular architecture of the feedstock determine the initial
distribution of precursor 'genes'. Pyrolysis temperature, heating rate,
residence time, activation chemistry, and post-treatments regulate
the expression of these genes into specific structural features—such
as pore topology, graphitization level, and defect density. These
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structural units are treated as tunable design variables whose evolu-
tion can be predicted and steered through synthesis choices.
Building on this foundation, application-oriented design path-
ways are outlined that specify which structural units should be
prioritized for different functional targets. Adsorption-dominated
environmental applications require high microporosity, abundant
edge defects, and accessible surface functional groups. Photother-
mal conversion benefits from enhanced graphitic domains,
broadband absorptive features, and hierarchical pore networks that
facilitate light trapping. Thermal management applications priori-
tize interconnected meso-macropores and moderate graphitiza-
tion to balance conductivity and structural integrity. Electrochemical
stability relies on mechanically robust pore architectures, low
defect-induced degradation pathways, and stable mineral-carbon
interfaces. These pathways provide explicit guidance on how to
match structural 'genes' with performance requirements.
Representative examples further illustrate how this framework
informs synthesis decisions. For instance, high adsorption capacity
can be achieved by choosing feedstocks rich in hemicellulose.
Low-to-moderate pyrolysis temperatures (450-650 °C) help preserve
microporosity. Subsequent CO, activation further improves pore
connectivity. Strong photothermal performance benefits from lignin-
rich feedstocks and high-temperature pyrolysis (> 800 °C), which
promote graphitization. KOH activation can be added to create
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hierarchical pores that enhance light absorption. For electrochemi-
cal stability, moderate pyrolysis temperatures (600-800 °C) are
preferred. Maintaining certain mineral phases or applying post-
treatment stabilization helps strengthen mechanical robustness
and prevent structural collapse during cycling. These examples
demonstrate how the physical genome framework can be opera-
tionalized into stepwise, application-specific design logic for
precision engineering of multifunctional biochar.

Biochar research holds significant implications for achieving sustain-
able societal development. Figure 9 outlines the development road-
map of biochar. The field has progressed past foundational challenges,
including synthesis methodologies and basic characterization, which
have now reached a stage of maturity. The research paradigm has
consequently shifted toward a deeper mechanistic investigation and
the expansion of application domains.

Current biochar research faces several critical challenges that
hinder its transition from fundamental studies to industrial applica-
tions. The absence of standardized testing protocols makes data
from different research groups difficult to compare, which directly
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limits accurate property assessment and the formulation of reliable
application guidelines. Theoretically, the correlation mechanisms
between microstructure and macroscopic properties remain incom-
pletely elucidated, particularly regarding multi-scale structure—
property relationships. This knowledge gap results in a considerable
degree of empiricism in material design. From a technical perspec-
tive, the synergistic regulation of multiple properties presents
substantial challenges, as enhancing one characteristic (e.g., electri-
cal conductivity) often occurs at the expense of others (eg.,
mechanical strength). For practical applications, research on long-
term performance in complex environments remains insufficient.
This is especially true for studies on aging and ecological impacts in
real soil and aquatic matrices. To address these challenges, future
biochar research should systematically advance along the following
key directions.

The lack of unified testing protocols impedes cross-study compar-
ability. Consequently, there is an urgent need to establish standardized
characterization systems and develop shared databases covering the
entire 'precursor-process-structure-property’ chain. This foundation
will provide essential benchmarks and data support for material
development. Simultaneously, multi-scale correlations between micro-
structure and macroscopic performance remain partially empirical.
Coupled modeling and in situ analytics are needed to capture dynamic
transformations during pyrolysis.

Enhancing one property often compromises another. By combining
data-driven methods such as machine learning, quantitative models
connecting preparation parameters, structure, and performance can
be established, revealing balanced synthesis pathways. This advance-
ment will facilitate functional customization for specific application
scenarios (e.g., high-sensitivity sensing and efficient energy storage).
Particular attention should be paid to multi-property optimization
strategies, aiming to develop green preparation processes that can
synergistically regulate pore structure, surface chemistry, and crystal-
line architecture.

From an application-expansion perspective, innovative applications in
frontier interdisciplinary fields should be actively explored. Beyond
traditional environmental remediation and agricultural utilization,
biochar demonstrates potential value in emerging sectors, including
intelligent sensing, thermal management, electromagnetic shielding,
and even space technology. Realizing this potential requires
strengthened interdisciplinary collaboration to generate new research
directions and application scenarios through knowledge integration.
By systematically addressing these challenges and pursuing
sustained exploration along these directions, biochar research will
progressively evolve from its current empirically dominated phase
toward a new stage of precision control. This transition will provide
a strong foundation for innovative applications in high-technology
fields, increase the value of biochar, and promote the high-value
utilization of carbon resources toward sustainable development.

A closed-loop framework is envisioned that couples multiscale
modeling, in situ/operando analytics, and machine learning to steer
synthesis toward target property vectors. The 'physical genome'
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comprises tunable structural genes—graphitic domain size, pore
hierarchy, and heteroatom/inorganic interfaces—that jointly modu-
late charge, heat, light, and mechanical responses.

The following rules guide the design: (1) maximize contiguous sp?
pathways for co-optimized electrical and thermal transport; (2) co-
engineer micro-meso porosity to balance surface area and strength;
(3) exploit anisotropy to manage conduction; and (4) leverage
catalytic graphitization to tune defects and order. This predictive
workflow will accelerate the transition from empirical carbonization
to precision-engineered, application-specific biochar for energy,
photothermal, and EMI applications. It also reveals a tunable 'physi-
cal genome' that connects atomic bonding and hierarchical poros-
ity to the mechanical, thermal, electrical, and optical behaviors of
biochar across scales.
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