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Nanobiochar, engineered carbon nanoparticles derived from biomass, represents an
emerging interface between nanotechnology and environmental engineering. Produced
through mechanical, thermal, and hydrothermal processes, nanobiochar exhibits a markedly
higher specific surface area, enhanced surface reactivity, and improved sorption capacity
relative to conventional bulk biochar. This review synthesizes recent advances in
nanobiochar production pathways, physicochemical characteristics, and the mechanistic
controls governing its functional performance across environmental systems. In agricultural
applications, nanobiochar has been shown to enhance plant growth by improving nutrient
cycling, mitigating salinity stress through ionic immobilization, reducing nitrogen losses via
slow-release fertilizer delivery, and fostering beneficial soil microbial communities. Beyond
agroecosystems, nanobiochar-based materials demonstrate strong potential for heavy metal
immobilization, organic contaminant adsorption, and wastewater treatment. The review
further highlights an emerging and largely unexplored frontier in dryland restoration, where
nanobiochar may interact with biological soil crusts (BSCs). Preliminary evidence suggests
that, when used as a carrier for pioneer cyanobacteria, nanobiochar could contribute to
substrate stabilization, potentially influence exopolysaccharide production, and affect soil
moisture retention under arid conditions. Considering the global extent of drylands,
nanobiochar-BSC systems may offer an exploratory pathway for restoration with possible
implications for long-term carbon sequestration. Nevertheless, challenges related to energy-
intensive production and large-scale deployment remain and require careful optimization.
Overall, this review elucidates key design-function relationships underlying nanobiochar
performance, emphasizes the need for responsible upscaling, and identifies critical research
priorities for its application in sustainable agriculture, environmental remediation, and
ecosystem restoration.

Biochar nanocomposites, Nutrient cycling, Soil-water dynamics, Heavy metal adsorption, Water treatment

+ Nanobiochar outperforms bulk biochar in soil remediation due to superior surface area and reactivity.

+ Nanobiochar acts as an efficient carrier for slow-release fertilizers, reducing nitrogen leaching.

+ Ball milling offers a sustainable, solvent-free pathway for synthesizing highly functionalized nanobiochar.

+ Application of biochar nanocomposites alleviates salinity stress in crops by regulating osmotic balance and ion homeostasis.

+ It acts as a bio-ink anchor, enabling pioneer cyanobacteria to colonize unstable dryland soils.

* Correspondence: Haytham Salem (haytham@ms.xjb.ac.cn; eng_haytham1982@yahoo.com)

Full list of author information is available at the end of the article.
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Carbon-based nanomaterials have garnered growing scientific interest
because of their wide-ranging potential in agricultural and environ-
mental applications. Among these materials, biochar has gained
particular prominence due to its multifunctional contributions to
climate change mitigation, pollution remediation, and soil quality
enhancement. Biochar is a carbon-rich solid produced via the
thermochemical conversion of biomass feedstocks—including agri-
cultural residues, lignocellulosic materials, animal manures, and
other organic wastes—under oxygen-limited conditions (gasification)
or in the absence of oxygen (pyrolysis)'l. Biochar production is
generally considered cost-effective and environmentally sustainable,
as it utilizes readily available waste resources, typically involves
relatively low energy consumption, and is commonly carried out at
temperatures below 700 °Ct3!, These characteristics have supported its
widespread use in both research and practical applications aimed at
improving soil properties, promoting plant growth, and mitigating
environmental pollution (Fig. 1).

Beyond its environmental benefits, biochar has long been recog-
nized as a valuable amendment for promoting agricultural
sustainability!®. The physicochemical properties of bulk biochar vary
with feedstock type and thermochemical conditions, resulting in
particle sizes that commonly range from the micrometer to centi-
meter scalesl. These properties influence its interaction with soil,
water, and contaminants. Importantly, biochar also serves as a versa-
tile precursor material that can be further processed into finer par-
ticles to enhance its functional performance.

Nanobiochar represents a refined form of bulk biochar that has
been engineered to achieve substantially smaller particle sizes,
particularly at the nanoscale. Biochar itself is defined as a stable
form of charcoal derived from biomass sources, including wood,
agricultural residues, herbaceous materials, animal manure, or
sewage sludge, intended for applications that prevent rapid carbon
release to the atmospherel®l. Through additional processing, bulk
biochar can be transformed into nanobiochar using methods such
as hydrothermal carbonization, ball milling, and sonication!8l.
Reducing biochar particle size to the microscale (10-600 pm)
increases the number of exposed adsorption sites, thereby improv-
ing its ability to bind contaminants®'9. Further reduction to the
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nanoscale (£100 nm) dramatically enhances surface -to-volume
ratio, surface energy, reactivity, and biological effectiveness('0l.

As a result of these enhanced properties, nanobiochar has
become a focal point of contemporary research, combining the
established benefits of bulk biochar with the unique advantages of
nanoscale materials. Nanometer-sized particles are typically
produced through mechanical exfoliation or by controlling thermo-
chemical parameters such as pyrolysis temperaturel'’2), This
convergence of carbon stability, high reactivity, and tunable surface
properties positions nanobiochar as a promising, yet complex,
material for advanced environmental and agricultural applications.

While nanobiochar itself offers enhanced properties through size
reduction, further advances have extended these applications
through the synthesis of biochar nanocomposites, which integrate
nanobiochar or bulk biochar with functional nanomaterials to
achieve multifunctional properties!'3'4. Biochar nanocomposites
are hybrid, multi-component materials created by incorporating
functional nanomaterials (metal oxides, graphene, magnetic iron
particles, etc.) into biochar or by coating biochar with nanoparticles.
Nanocomposites incorporating nanobiochar display improved pore
architecture, surface chemistry, catalytic activity, and separation effi-
ciency, enabling simultaneous adsorption and degradation of
contaminantsl!516],

Biochar-based materials have been widely investigated as adsor-
bents due to their role in improving plant performance, enhancing
carbon sequestration, and contributing to climate mitigation!'7.18],
Their physicochemical characteristics—high surface area, micro-
porosity, environmental abundance, and strong sorption capacity—
enable them to remove a variety of contaminants from aqueous
systems, including minerals, vitamins, and pharmaceuticals!’920],
During thermochemical processing, biofuels and syngas are also
produced alongside biochar, making the entire process economi-
cally more attractive relative to direct biomass combustion('.
However, the performance of biochar in water treatment can be
constrained by the choice of feedstock, reaction conditions, and
pyrolysis method('l,

Raw biochar typically exhibits limited adsorption capacity, and
powdered forms can be difficult to recover from aqueous environ-
ments2'22, Nanobiochar helps overcome these limitations by
providing enhanced chemical, structural, and mechanical features.
Its nanoscale size offers a larger surface area and a greater
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Fig. 1 Multifunctional benefits of biochar: physical, chemical, and biological soil improvements.

abundance of reactive functional groups, as well as improved
mechanical and thermal stability23. Moreover, nanobiochar often
exhibits more negative zeta potentials, smaller hydrodynamic radii,
and a higher density of carbon and oxygen defect sites capable of
generating reactive organic species, all of which contribute to supe-
rior adsorption performance compared with bulk biocharl24],

Defects in carbon nanomaterials—whether topological or located
at material edges—play a major role in modulating their physico-
chemical behavior. These structural irregularities increase the
number of unpaired n electrons, reduce formation energy, enhance
electron transfer, and influence catalytic reactions such as oxygen
reduction?%], Owing to these properties, nanobiochar is now widely
recognized as an effective soil amendment, enzyme support, and
multifunctional adsorbent. Its high specific surface area, microporos-
ity, and hydrophobic surfaces enable it to retain diverse pollutants,
including herbicides, heavy metals, polychlorinated biphenyls, and
polycyclic aromatic hydrocarbons. Its inherent alkalinity also
contributes to reductions in soil acidity[26:27],

Nanobiochar may exhibit properties different from its well-known
macroforms, and these different properties have raised questions
about potential environmental risks, including toxicity in aquatic
and terrestrial environments, the remediation of pollutants, and
influence on crop yields[?8l, Hybrid nanocomposites, such as carbon
nanotube-biochar combinations, have shown promise as low-cost
materials for removing dyes and organic contaminants. Emerging
evidence indicates that such hybrids may also provide efficient and
economical options for heavy metal remediation('4,

With drylands accounting for 41% of the Earth's land surface and
experiencing degradation at rates approaching 12 million hectares
annually, there is an urgent need for innovative restoration
strategies(??l. Conventional approaches often fail due to extreme
abiotic stress, particularly in hyper-arid regions. In this context,
biochar offers a promising pathway by facilitating the establish-
ment and development of biological soil crusts (BSCs)3%3'1, Through
nanoscale interactions with pioneer cyanobacteria, nanobiochar can
enhance exopolysaccharides (EPS) production, improve moisture
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retention, and help stabilize mobile sandy substrates, effectively
acting as a bio-geoengineering agent.

This review bridges recognized knowledge gaps by establishing
mechanistic connections between nanobiochar production method-
ologies, encompassing mechanical attrition and hydrothermal
synthesis, and the physicochemical transformations governing
material performance. Rather than enumerating isolated case stud-
ies, it develops integrated design-function frameworks that clarify
mechanistic explanations for nanobiochar's enhanced functionality
relative to macroscale biochar amendments across diverse soil and
aqueous environments. Significantly, this analysis advances nano-
biochar as a bio-geoengineering platform material capable of
catalyzing cyanobacterial recruitment, enhancing extracellular poly-
saccharide biosynthesis, and stabilizing unstable desert substrates.
Consequently, nanobiochar transitions from a conventional soil
conditioner to a strategic agent for large-scale desertification miti-
gation and ecological recovery of degraded arid lands.

This review pursues four integrated objectives: (1) to establish
quantitative relationships between nanobiochar synthesis path-
ways and the physicochemical attributes controlling functional
capacity; (2) to identify convergent mechanistic principles underly-
ing performance in nutrient bioavailability and pollutant immobi-
lization; (3) to delineate nanobiochar-BSC interactions as a frontier
research domain for accelerating dryland ecosystem recovery; and
(4) to systematically evaluate sustainability constraints encompass-
ing production energy intensity, technology scalability, environ-
mental persistence, and potential ecological perturbations. These
integrated analyses aim to inform responsible technology transla-
tion from laboratory-scale investigations toward operational
deployment in agricultural and restoration contexts.

The objectives of this review are fourfold: (i) to connect nano-
biochar synthesis methods with key physicochemical properties
that govern functionality; (ii) to identify shared mechanistic princi-
ples underlying its performance in nutrient management and
contaminant remediation; (iii) to establish nanobiochar-BSC interac-
tions as a promising frontier for accelerating dryland recovery;
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and (iv) to critically assess sustainability challenges related to energy
demand, scalability, environmental fate, and potential ecological
risks. Together, these perspectives aim to support the responsible
translation of nanobiochar from laboratory studies to real-world
agricultural and ecological applications.

A systematic literature review was conducted, synthesizing
evidence from four international scientific databases—Web of
Science, Scopus, PubMed, and Google Scholar—which captured
peer-reviewed primary literature, edited chapters, and technical
reports. Literature collection employed a hierarchical keyword strat-
egy across three thematic domains to optimize both comprehen-
siveness and specificity. Domain 1 (Production and Characterization)
utilized search terms such as nanobiochar synthesis, ball-milled
biochar, hydrothermal carbonization, biochar nanocomposites, and
physicochemical properties. Domain 2 (Agricultural and Environ-
mental Applications) incorporated keywords including soil remedia-
tion, nutrient release, heavy metal adsorption, wastewater treat-
ment, and sustainable agriculture. Domain 3 (Dryland Restoration—
the review's primary focus) employed cross-disciplinary search
strings coupling nanotechnology with arid ecological processes:
nanobiochar and biological soil crusts, cyanobacteria inoculation,
dryland restoration, desertification control, and soil aggregate
stability. This tiered methodology facilitated the systematic capture
of knowledge spanning nanobiochar development, mechanistic
functionality, and innovative applications in degraded arid ecosys-
tems.

Biochar synthesis employs diverse thermochemical pathways. The
primary routes—slow pyrolysis, fast pyrolysis, gasification, and
carbonization—convert biomass feedstocks, including agricultural
residues, wood, and animal waste, into biochar®>*3], Among these
approaches, slow pyrolysis in oxygen-depleted conditions yields

Stage 1: Input
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approximately 35% biochar by mass?4-3%. Fast pyrolysis is commonly
preferred for biofuel generation, whereas gasification is mainly used to
produce syngas that can subsequently be utilized for heat and power
production®®”), Previous studies have shown that lignocellulosic
feedstocks produce greater amounts of nanobiochar than municipal
solid waste materials®.. The effectiveness of biochar for targeted appli-
cations can be significantly improved through various physical and
chemical modification strategies. Chemical approaches include CO,
activation, oxidative treatments, acid or alkaline modification, steam
activation, and the incorporation of engineered nanoparticles®®. In
contrast, physical modification methods, such as ball milling, have
demonstrated considerable potential but remain less extensively
investigated®339),

Nanobiochar synthesis involves various techniques applied to
conventional biochar. Mechanical grinding is employed to generate
nanoparticles (Fig. 2), while flash heating directly produces graphitic
nanosheets from biocharl“?l, Ultrasonic vibration and sonication
techniques disperse biochar and facilitate the formation of nano-
sized particles®'l. Ball milling represents the most widely applied
industrial method for nanobiochar production!®2l. In this process,
repeated impacts and friction generated by moving metallic balls
within a milling chamber induce bond rupture and facilitate charge
redistribution within the material. The resulting particle size distri-
bution can be precisely regulated by modifying operational para-
meters such as milling time, rotational speed, and ball-to-material
ratiol4344], Alternative methods for nanobiochar preparation include
double-disc milling and vibration disc milling, with the latter
demonstrating superior results in generating a higher quantity of
nanobiochar with uniform shape and sizel*'l. Additionally, nano-
biochar can be produced through a hydrothermal reaction method
using agricultural waste and its by-products. For instance, cattle
dung and soybean straw can be converted into bulk biochar, which
is then subjected to concentrated sulfuric and nitric acid digestion
in a high-pressure hydrothermal reactor.

Several studies have investigated the creation of functional
composites by incorporating modified nanoparticles into biomass
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Fig. 2 Biochar production and nanobiochar synthesis: integration of multiple pathways.
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prior to pyrolysis. For example, graphene-enhanced biochar com-
posites were produced using slow pyrolysis of wheat straw biomass
treated with graphene. The results indicated that graphene-coated
biochar exhibited increased surface area, enhanced thermal stabil-
ity, and improved mercury and phenanthrene removal capabilities,
along with a greater abundance of functional groups, compared to
untreated biocharl*®l. The development of biochar-based nanocom-
posites, which integrate the advantages of biochar with various
nanomaterials, has shown significant promise. Nanobiochar parti-
cles typically exhibit sizes in the nanometer range, achievable
through methods such as controlling exfoliation or pyrolysis
temperature techniques, as reported in numerous studies!*647],
Exfoliated biochar has been observed to possess particle sizes
smaller than 10 nm.

Magnetic nanobiochar composites have been synthesized by first
carbonizing biochar via pyrolysis, followed by FeCl; pretreatment,
sulfuric acid sulfonation, and oleic acid acidification to enhance
acidity, ultimately yielding magnetic nanobiochar composites with
improved catalytic properties. Nanobiochar derived from pine wood
biochar has been successfully produced using the planetary ball mill
method. Pretreating the biochar prior to milling reduced particle
size by approximately 60 nm and increased the nanobiochar surface
area by 15-fold compared to conventional biochar.

Thermal and chemical treatments of biomass not only yield
syngas and biofuels but also promote biochar formation, thereby
addressing multiple objectives: waste recycling, pollutant removal,
energy production, and carbon sequestrationl“8], Therefore, the
production of biochar nanomaterials holds significant promise in
effectively addressing these goals. The demonstrated advantages of
nanocomposites suggest their potential as innovative adsorbents
for economically removing pollutants such as chromium (Cr VI) from
aqueous solutions. Tailored biochar nanocomposites can be synthe-
sized by slow pyrolysis of bagasse biomass coated with a suspen-
sion of carbon nanotubes*?), On the other hand, physical modifica-
tion techniques such as ball milling have not gained significant
attention, despite limited research indicating promising outcomes
that merit further exploration. Mechanical grinding or milling is
commonly employed to generate nanoparticlesi®?. Despite the
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application of mechanical techniques, direct nanobiochar produc-
tion through flash ignition can lead to the formation of graphitic
nanosheets. Researchers have also employed ultrasonic vibration to
physically disintegrate biochar, followed by sonication to produce
nanosized particles®l. According to current literature, nanobiochar
production via ball milling is considered the most suitable and
recommended method®2. Ball milling achieves grinding through
particle collisions, which decreases particle size. Another method for
producing nanobiochar is double-disc milling, although its higher
operational costs make it less common[34],

While numerous strategies exist for nanobiochar fabrication,
selecting the appropriate synthesis pathway is critical for determin-
ing the material's final physicochemical properties and scalability. As
summarized in Table 1, production methods are generally catego-
rized into 'top-down' approaches (e.g., ball milling), and 'bottom-up’
approaches (e.g., hydrothermal carbonization). Top-down methods,
which rely on mechanical attrition, are currently favored for large-
scale environmental applications due to their scalability and
solvent-free nature. However, bottom-up synthesis allows for supe-
rior control over surface functionality, creating 'hydrochars' that may
offer enhanced water-retention capabilities valuable for dryland
restoration. Table 1 provides a comparative assessment of these
primary synthesis routes, evaluating their respective advantages,
limitations, and potential for industrial scaling.

The synthesis of nanobiochar from diverse feedstocks results in
method-specific transformations in physicochemical properties that
clearly distinguish it from bulk biochar. As summarized in Table 2,
nanobiochar characteristics arise from distinct interactions between
feedstock type and production technique. Sonication promotes
carbon enrichment primarily through selective ash removal“d,
whereas mechanical milling increases the hydrogen-containing
functional groups and enhances structural and mechanical
properties>3, Microwave-assisted processing yields nanobiochar
with high carbon purity and improved thermal stability’®¥, while
chemical modification combined with thermal treatment produces
materials with highly developed surface characteristics suitable for
adsorption-driven applications®>. These contrasting pathways high-
light the importance of tailoring nanobiochar production protocols

Table 1 Comprehensive comparison of nanobiochar synthesis methods: production pathways and performance metrics

Synthesis

method Classification and process description Key advantages Limitations Ref.
Ball milling (Top-down) Mechanical grinding of bulk Eco-friendly; solvent-free; significantly ~ High energy consumption; long [56-62]
biochar using planetary mills; repeated increases surface area (up to 15-fold); ~ processing times; potential
impacts and friction induce particle size creates acidic and oxygen-containing ~ contamination from milling media;
reduction; parameters include milling functional groups crucial for water particle size distribution variability;
time, rotational speed, and ball-to- retention; can be integrated into requires careful optimization of
material ratio existing biochar supply chains milling parameters
Hydrothermal (Bottom-up) Thermochemical conversion  Produces uniform, spherical Lower porosity compared to [34,59]
carbonization of wet biomass in water at high pressure hydrochar nanoparticles; rich in pyrolysis chars; requires post-
and temperature (using concentrated surface functional groups; ideal for synthesis activation; expensive
sulfuric and nitric acid in high-pressure coating seeds or bacteria; superior reactor infrastructure; higher capital
reactor) control over surface functionality; costs; more complex operational
enhanced water-retention parameters
Pyrolysis + (Hybrid) Conventional pyrolysis at Effectively separates graphitic layers; ~ Lower yield of nanoscale fraction; [20,40,63]
sonication 500-700 °C followed by high-intensity improves aqueous dispersion; ideal difficulty achieving uniform particle
ultrasonic exfoliation; ultrasonic vibration  for hydro-seeding applications; size distribution; energy-intensive
physically disintegrates biochar to carbon enrichment through selective  sonication stage; incomplete particle
facilitate nanosized particle formation ash removal; enhanced dispersion in separation
water
Vibration disc (Top-down) Similar to ball milling but uses  Superior results compared to ball Higher operational costs than [34,41]
milling vibrating disc mechanism instead of milling in uniform shape and size planetary ball milling; less widely
planetary mills; mechanical particle generation; higher quantity of available equipment; similar energy
reduction through disc oscillation nanobiochar produced; consistent demands
particle morphology
Double-disc (Top-down) Mechanical grinding between  Produces fine particles; alternative to Higher operational costs; limited [34]
milling rotating discs; two-stage milling process ball milling; suitable for specific industrial adoption; requires

for particle size reduction
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Table 2 Comprehensive physicochemical characterization of biochar and nanobiochar: transformation of properties by feedstock type and production method

:;::Istock SZ‘T‘:‘::': dni:?;:gd Particle size transformation Sur(f::é?ga)rea Moisture (%) Ash (%) H/Cratio Ref.
Wheat straw  Pyrolysis at 700 °C followed by Bulk biochar reduced to Bulk: 56.65; Bulk:41.14; Bulk:53.87; Bulk:0.39; [40]
sonication nanoparticles via ultrasonic Nano:884  Nano:52.35 Nano:27.88 Nano:0.67
exfoliation
Dairy manure Pyrolysis at 500 °C with sonication Bulk biochar transformed to - Bulk: 38.5; Bulk: 50.5; Bulk:0.12;  [64]
(30 min) and centrifugation nanoparticles through ultrasonic Nano:56.6  Nano:6.58 Nano: 3.65
separation
Corn straw Pyrolysis at 500 °C with planetary ball  Bulk biochar mechanically milled to Bulk: 8.1; Bulk:5.13;  Bulk:78.96; Bulk:0.72; [53]
milling (600 rpm, 150 min) approximately 60 nm particle size Nano: 7.9 Nano:6.27 Nano:77.62 Nano:0.51
Rice husk Pyrolysis at 500 °C with planetary ball  Bulk biochar ground to nanoparticles  Bulk: 8.6; Bulk:31.55; Bulk:54.62; Bulk:0.77; [53]
milling (600 rpm, 150 min) via mechanical attrition Nano: 8.7 Nano:31.51 Nano:53.05 Nano:0.78
Pine wood Pyrolysis at 525 °C with ball milling Bulk biochar mechanically reduced to  Bulk: 47.25; Bulk: 2; - Bulk: 1.0;  [65]
(575 rpm, 100 min) nanoscale particles Nano: higher  Nano:2.11 Nano: 0.5
values
Rice hull Carbonization at 600 °C with Bulk biochar processed to Bulk: 27.1; Bulk: 79.62;  Bulk: 1.08; - [66]
centrifugation (10,000 rpm, 30 min) nanoparticles through centrifugal Nano:123.2  Nano:80.87 Nano: 1.27
and freeze-drying separation
Rice husk Pyrolysis at 600 °C with planetary ball  Bulk biochar converted to Bulk: —; - - - [67]
milling and chemical amendment nanoparticles Nano: 1,736

(Iron Oxide nanobiochar)

A dash (—) indicates that specific data for that property were not reported. H/C: Hydrogen-to-Carbon ratio.

to meet specific environmental remediation and industrial perfor-
mance objectives.

The fabrication methods for various biochar-based nanomaterials are
illustrated in Fig. 3. Based on the nanomaterials incorporated into
nanobiochar, these materials can be classified into three categories:
oxide/hydroxide-biochar nanocomposites, magnetic-biochar nano-
composites, and biochar coated with functional nanoparticles (such as
graphene, graphene oxide, chitosan, and carbon nanotubes). These
composites are synthesized through different methods, typically
involving two treatment processes: pre-treatment and post-treatment
of biomass!'”,

Oxide/hydroxide biochar nanocomposites are primarily synthesized
through three methods: (i) fortification with target elements via
bioaccumulation; (ii) pre-treatment of biomass using metal salts; and
(iii) post-pyrolysis insertion of nanometal oxides. The first two methods
involve pre-pyrolysis metal impregnation of the biomass, whereas the
third method involves the direct introduction of oxide/hydroxide
nanometals into the pyrolyzed biochart'>1°l,

Biochar coated with functional nanoparticles, including graphene and
its carbon, chitosan, oxide nanotubes, and layered double hydroxides,
forms effective nanocomposite materials. These composites are
capable of efficiently removing various contaminants.

Considering the challenges associated with separating biochar from
aqueous solutions, magnetic biochar composites can be synthesized
using two primary approaches: pre-treatment of biomass with iron
ions or chemical co-precipitation of iron oxides onto biochar. These
methods facilitate the coating of nanosized magnetic iron oxides, such
as CoFe,0, and Fe;0,%%%%, onto the biochar surface. This modification
not only imparts magnetic properties to the biochar, enabling easy
separation from solutions, but also enhances the availability of active
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sites for iron oxide, thereby improving the removal of pollutants and
increasing adsorption capacity!'®.

Biochar-based nanocomposites, which exhibit enhanced parame-
ters such as specific surface area, availability of active sites, catalytic
degradation capacity, pore size distribution, pore volume, and ease
of separation, have demonstrated high efficiency in contaminant
removal. Numerous studies have shown that these composites
possess superior adsorption capabilities, allowing them to adsorb a
wide variety of contaminants from aqueous solutions7%71, Addi-
tionally, these nanocomposites, when incorporating diverse reduc-
tive/oxidative and catalytic nanoparticles (such as graphitic C3N,
and nanoscale zero-valent iron), can simultaneously adsorb and
degrade various toxic substances!'>). Therefore, biochar-based
nanocomposites hold significant potential for treating various waste
materials and have diverse environmental applications.

Biochar, an organic material, has been recognized for its diverse
applications in agriculture, including enhancing plant growth,
managing diseases, remediating pesticides, serving as a fertilizer and
soil amendment, and supporting microbial growth. Additionally,
biochar has been reported to improve crop productivity, reduce soil
salinity, and enhance soil quality and plant biomass. The incorporation
of biochar into agricultural soils has also been shown to decrease
dependence on chemical fertilizers, particularly nitrogen fertilizers,
thereby reducing nitrogen leaching into groundwater.

Global agriculture faces a critical soil nutrient deficit driven by multiple
anthropogenic pressures: intensive monoculture, livestock over-
grazing, forest clearance, and industrialization. Traditionally, chemical
fertilizers have been the primary solution for addressing soil nutrient
deficiencies”?. While synthetic fertilizers can temporarily remedy
these deficiencies, their continuous application generates significant
environmental costs through nutrient runoff and groundwater
contamination’3>~7%), Despite numerous strategies proposed to tackle
nutrient management challenges and resource limitations, practical
solutions remain scarce.
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Fig. 3 Engineering biochar nanocomposites: synthesis methods for metal oxide, graphene, and magnetic systems.

Recent evidence indicates that nanobiochar amendments act as
highly effective soil conditioners, mitigating nutrient loss while
sustaining plant-available nutrient pools through enhanced sorp-
tion and controlled release mechanismsl’7.78l, Biochar can improve
fertilizer use efficiency by preserving nutrients and reducing their
loss from soill79l, Researchers have documented favorable plant
responses to biochar amendments, noting that nanobiochar func-
tions effectively as a soil conditioner that enhances plant growth by
effectively delivering and retaining nutrients, among other
benefits8, Nanobiochar enhances plant nutrient acquisition due to
its nutrient-rich composition and release characteristics, as well as
its ability to increase nutrient sorption, enhance soil cation
exchange capacity, improve soil physical properties, boost water
retention capacity, and adjust soil pHB'.,

Nanobiochar has demonstrated more promising results in
enhancing plant growth in acidic soils compared to alkaline soils[82..
A study by Graber et al.83! investigated the effects of nanobiochar in
soilless growth media, finding significant benefits in improving
yields of crops such as peppers and tomatoes. With the horticultural
industry increasingly acknowledging the need to reduce or elimi-
nate peat use in favor of more sustainable and cost-effective growth
media, biochar has emerged as a leading alternative. Research indi-
cates that combining biochar with engineered nanomaterials and
chemicals can provide additional benefits. For instance, the use of
biochar with water-soluble carbon nanotubes significantly
enhanced wheat growth['7l. In terms of root growth, alkaline
nanobiochar has been shown to significantly increase root biomass
compared to biochar with a lower pH4, Both biochar and non-
pyrogenic organic amendments have demonstrated positive effects
on plant growth; their variable impacts can limit their widespread
agricultural usel®l. A study by Scheifele et al.[8%! found that applying
bamboo biochar at concentrations below 10% stimulated nodula-
tion and improved soybean growth. Plant nutrition and dry mass are
influenced by the quantity and type of biomass applied during agri-
cultural practices and cropping.

Salem | Volume2 | 2026 | e009

Biochar enhances soil structure by promoting aggregation and
reducing compaction. As a physical conditioner, it aids in forming
stable soil aggregates, leading to the development of macro- and
micro-aggregates. These improvements increase soil porosity and
aeration, facilitating better root penetration and water infiltration(¢”58],
The effect of biochar on soil hydraulic conductivity is dependent on
soil water content, providing valuable insights into how biochar
influences soil hydrological properties. Enhanced water infiltration and
drainage reduce the risk of waterlogging and increase oxygen avail-
ability to plant roots!®?., Biochar also helps mitigate soil hydrophobicity,
improving infiltration and water distribution®®.,

To mitigate excessive soil salinity, plant scientists utilize various
techniques, including sub-soiling, sand mixing, seed bed preparation,
and salt scraping®". Modern agronomic practices such as the
application of hydrophilic polymers, gypsum, sulfuric acid, green
manuring, humic substances, olive mill wastes, farmyard manures,
improved irrigation systems, and cultivation of salt-tolerant crops are
also employed®®2%3,

Biochar application has been widely reported to improve soil
quality under saline conditions through multiple, interrelated mech-
anisms. One of the most important effects is its capacity to immobi-
lize excess sodium ions in the soil matrix, thereby facilitating the
release and uptake of essential mineral nutrients and alleviating
osmotic stress in the root zone. Previous studies have demon-
strated that biochar amendments can significantly reduce
exchangeable sodium levels and lower the sodium-to-potassium
(Na*/K*) ratio in saline soils, resulting in a more balanced and favor-
able rhizospheric environment for plant development®4. In addi-
tion, biochar influences nutrient cycling by enhancing the retention
and availability of essential elements, while simultaneously limiting
the bioavailability of potentially toxic ions commonly associated
with saline conditions.
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Improvements in soil chemical and physical properties following
biochar addition are closely reflected in plant performance under
salinity stress. Numerous studies have demonstrated that biochar
enhances plant tolerance to salinity by stimulating antioxidant
defense systems and reducing oxidative damagel®>%. Biochar-
amended soils have been associated with improvements in key
morphological traits, including seedling establishment, leaf expan-
sion, shoot and root biomass accumulation, plant height, dry matter
production, and final yield under saline stress conditions!>l. More-
over, biochar contributes to improved osmotic regulation by
increasing soil water-holding capacity and enhancing carbon diox-
ide assimilation. These changes promote higher transcriptional
activity, increased stomatal conductance, and improved photosyn-
thetic efficiency®’). Collectively, these responses highlight the inte-
grated nature of soil-plant interactions and underscore the role of
biochar as a soil amendment that mediates physiological resilience
through improvements in soil quality.

Nanobiochar, due to its nanoscale dimensions and increased
surface area, effectively alleviates salinity stress in plants and soils
through several mechanismes. Its increased porosity and surface area
enhance its ability to adsorb ions, particularly chloride and sodium,
which are the dominant soluble salts in saline soils. The simultane-
ous removal of both Na* and CI- is essential because each ion
creates distinct phytotoxic effects: sodium causes osmotic stress and
interferes with potassium uptake, while chloride accumulates in
plant tissues to toxic levels independent of sodium presencel®899,
This adsorption capability effectively lowers the concentration of
detrimental salts in the rhizosphere, thereby minimizing osmotic
stress on plants. Additionally, nano-biochar can improve nutrient
cycling dynamics in saline soils by enhancing nutrient availability. It
adsorbs and retains essential nutrients, preventing their leaching
and creating a favorable microenvironment that enhances nutrient
uptake by plants. This process mitigates the adverse effects of salin-
ity by improving nutrient absorption(®9,

Biochar produced from biomass is not only a carbon-rich material but
also contains appreciable quantities of essential macro- and micro-
nutrients, including nitrogen, phosphorus, potassium, calcium, mag-
nesium, sulfur, manganese, copper, zing, iron, and ash. This nutrient-
rich composition underpins its growing use as an organic soil
amendment and fertilizer!°’. The use of biochar as a nutrient carrier
has opened new avenues for the development of slow-release
biofertilizers. For example, nitrogen use efficiency has been shown to
increase by up to 64.3%, while nitrogen leaching losses and surface
migration are substantially reduced, leading to improved crop growth
and nutrient availability over timel'%%107],

At the nanoscale, nanobiochar has demonstrated considerable
potential as a slow-release nutrient source, contributing to
improved soil fertility and enhanced crop productivity®4. Yield and
growth improvements observed in rice systems have been largely
attributed to synergistic interactions between nanobiochar and
mineral fertilizers, resulting in increases in plant height, tiller
number, and overall biomass['92103], These findings highlight the
effectiveness of nanobiochar—fertilizer combinations as efficient
nutrient delivery systems in intensive cropping systems.

The superior performance of nanobiochar is closely linked to its
physicochemical characteristics. Its large specific surface area and
charged surface facilitate the adsorption and subsequent availabil-
ity of nutrients following fertilization['941051, Oxygen-containing
functional groups on nanobiochar surfaces further enhance the
adsorption of ammonium and ammonia, improving nitrogen
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retention and reducing losses through leaching and
volatilization['92], The porous structure of nanobiochar also enables
the capture and retention of nitrate ions, limiting their displace-
ment by irrigation or rainfalll'%l, Through these mechanisms, nano-
biochar improves key soil nitrogen processes such as mineralization
and nitrification, ensuring a more consistent and readily available
nitrogen supply for plant uptake and ultimately supporting higher
productivity!'%7], In parallel, improvements in soil structure and
microbial diversity further enhance nutrient cycling and
availability!'08l,

Beyond conventional fertilizers, biochar-based nanocomposites
derived from agricultural wastes, such as corn residues, have been
developed to provide slow-release macro- and micronutrients to
plants’7l. These approaches contribute to sustainable waste
management by transforming agricultural by-products into value-
added fertilizers, while also mitigating nutrient leaching associated
with traditional fertilization practices!'%. More recently, hydrogel-
based biochar composites have been introduced as environmen-
tally safe materials capable of retaining moisture and nutrients,
thereby supporting eco-friendly and resource-efficient agricultural
production systems['9, Despite these advances, further research
remains necessary to fully evaluate the capacity of biochar-derived
fertilizers to simultaneously immobilize heavy metals while provid-
ing controlled and sustained nitrogen release under diverse soil
and environmental conditions.

Nanobiochar has emerged as a promising option for soil enhance-
ment, enzyme activity promotion, and pollutant adsorption due to its
porous structure and unique physical and chemical properties. These
properties, including a high surface area, hydrophobicity, and micro-
porosity, enable nanobiochar to effectively adsorb pollutants such as
heavy metals, herbicides, polycyclic aromatic hydrocarbons, and
polychlorinated biphenyls®?”). Additionally, nanobiochar's alkaline
nature makes it effective in neutralizing soil acidity, broadening its
applications in agriculture and environmental management by
improving soil quality.

An investigation of nanobiochar's effects on tobacco rhizosphere
microbiology['% demonstrated substantial increases in bacterial
and fungal diversity alongside shifts in microbial community
composition. These shifts coincided with elevated soil enzyme activ-
ities (catalase, invertase, phosphatase) and enhanced microbial
biomass carbon and nitrogen pools. Application rates of 3%
nanobiochar proved optimal for maximizing metabolic activity and
community diversity in tobacco-cultivated soil, with statistically
significant positive correlations between enzymatic activity and
microbial richness!190,

In a study conducted in a rubber tree plantation in Northeast
Thailand, increasing doses of nanobiochar were found to influence
soil pH, nutrient content, and microbial communities, with fungal
communities being more affected than bacterial communities!''l,
Nanobiochar impacts soil microbial diversity and function through
both abiotic processes and modifications to the soil's physical envi-
ronment. Changes in pH and oxidation potential due to nanobio-
char can affect microbial population structure and activity, as well as
nitrogen and carbon adsorption dynamics. Nanobiochar's porous
structure provides a microhabitat for soil fungi and bacteria, supply-
ing essential organic components and minerals. This structure
supports microbial growth, enhancing soil nutrient content and
altering community structures!''?, Understanding nanobiochar's
effects on microbial populations and functions is crucial for develop-
ing systems that maintain soil health and improve degraded soils,
ultimately protecting plantst''2..
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The environmental applications of macro-biochar have been exten-
sively studied and documented by various researchers. However,
nanobiochar is now being explored for numerous environmental
purposes, including phytoremediation, carbon sequestration, and
energy generation, as well as applications in waste management,
wastewater treatment, and pollutant removal.

Nanobiochar demonstrates effective sorption properties for
removing pollutants such as pesticides, steroid hormones, pharma-
ceuticals, and toxic metals!''3l. These micropollutants pose signifi-
cant risks to human health and the environment, primarily spread-
ing through improper wastewater discharge, waste disposal, and
agricultural chemical use. Nanobiochar and biochar modified with
nanominerals exhibit exceptional adsorption capabilities due to
their unique characteristics compared to conventional biochart®3l,
Furthermore, by adsorbing toxic chemicals like pesticides and
immobilizing metals, nanobiochar contributes to remediating pollu-
tion that can lead to severe environmental and health issues. There-
fore, nanobiochar is increasingly recognized as a promising agent
for the bioremediation of a wide range of contaminants.

The superior environmental performance of nanobiochar com-
pared to bulk biochar fundamentally derives from enhanced physic-
ochemical properties that create multiple coordinated remediation
mechanisms!''4,  Nanobiochar exhibits dramatically increased
specific surface area and porosity, generating exponentially more
adsorption sites and reactive functional groups (hydroxyl, carboxyl,
and phenolic groups) capable of binding diverse pollutants!''3l, The
primary mechanism for nanobiochar interacting with heavy metals
and organic pollutants is adsorption, enabled by surface functional
groups including lactone, carboxyl, and hydroxyl moieties that
increase its ability to adsorb and immobilize various contaminants
through multiple simultaneous pathways: interactions with aroma-
tic organics (e.g., pesticides, pharmaceutical compounds), coordina-
tion bonding with metal cations, and pore-filling mechanismsl'14,
For heavy metal removal, aged nanobiochar exhibits a higher
surface area and more functional groups favorable for binding
cadmium through enhanced chemisorption and physical adsorp-
tion processes such as hydrogen bonding and pore filling, with
chemical ageing producing the most significant effect!'¢l, Critically,
the synthesis method determines the primary remediation mecha-
nism: ball milling and mechanical grinding increase surface area and
porosity suitable for contaminant immobilization, while chemical
modifications incorporating metal oxides enable catalytic degrada-
tion pathways in addition to adsorptionl''117], Notably, magnetic
nanobiochar modifications incorporating iron nanoparticles impart
magnetic properties, enabling facile recovery of treated nanobio-
char from water and supporting multiple regeneration cycles. These
integrated mechanisms—combining adsorption, absorption, preci-
pitation, complexation, and catalytic transformation—position nano-
biochar as a multifunctional environmental remediator substan-
tially outperforming conventional biochar across diverse conta-
minant classes (heavy metals, organic pollutants, pharmaceuticals)
and environmental matrices (contaminated water and soil)118l,

Water contamination by persistent heavy metals (Pb, Cd, Zn, Cu)
represents a major environmental and public health hazard due to
bioaccumulation and non-degradability. The most widely accepted
methods for removing heavy metals include adsorption, ion exchange,
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and chemical precipitation!''”. Among these, adsorption from
aqueous solutions or effluents has gained popularity due to its
economic feasibility.

Conventional remediation technologies, including activated
carbon, zeolite, iron oxide, and silica gel-based adsorbents, exhibit
significant practical limitations, including oxidative instability, sub-
optimal adsorption kinetics, insufficient selectivity, and prohibitive
costs!'20], These constraints have motivated the investigation of
nanobiochar-based alternatives. Recent research has focused on
synthesizing different types of nanobiochar to enhance its adsorp-
tion capacity for aqueous and ionic pollutants!’2122], Studies have
demonstrated significant improvements in wastewater treatment
using biochar nanocomposites, highlighting their removal efficien-
cies and adsorption capacities.

Heavy metals such as cadmium, arsenic, copper, and chromium
contribute significantly to water pollution, primarily due to their
adsorption and degradation by nanobiochar and biochar-based
nanocomposites. A study by Liu et al.®? demonstrated that trans-
forming pristine magnetic biochars into ball-milled magnetic nano-
biochar derived from wheat straw markedly improved the removal
efficiency of tetracycline and mercury from contaminated irrigation
water. Recent studies have shown that modifying biochar with
hydroxides, metal oxides, magnetic iron particles, and other func-
tional nanoparticles has enabled researchers to harness its potential
for wastewater treatmentl'23.124, These biochar-based nanocom-
posites have proven highly efficient, sustainable, and cost-effective
for the bioremediation of wastewater by adsorbing toxic metals and
other contaminants.

Biochar is widely recognized for its adsorption capabilities and has
been utilized to remove pollutants effectively. Additionally, various
forms of nano-carbon materials, such as carbon black, activated
carbon, or engineered carbon nanomaterials, have demonstrated a
high ability to adsorb natural organic matter. Research has shown that
contaminants like heavy metals, pharmaceuticals, and dyes can be
effectively removed using biochar, with nanobiochar proving
particularly efficient. Table 3 summarizes the effectiveness of different
nanobiochar composites. Furthermore, numerous studies have
confirmed that biochar nanocomposites possess a significant capacity
to eliminate major heavy metal contaminants, including arsenic, lead,
copper, chromium, and cadmium, as well as other pollutants such as
toxic chemicals, dyes, and antibiotics. For instance, as shown in Table 3,
a study by Li et al.l'"* reported that ZnO/ZnS-modified nanobiochar
demonstrated high potential for adsorbing Cr®*, Cu?*, and Pb?*.

The intersection of nanotechnology and ecological restoration
represents a paradigm shift in dryland management. While
traditional restoration efforts often rely on the passive natural
recovery of BSCs—a process that can take decades and is prone to
failure under hyper-arid conditions—the integration of carbon-
based amendments offers a pathway to active, accelerated 'bio-geo-
engineering'. Although existing research has primarily documented
the benefits of bulk biochar in facilitating BSCs establishment3°31132],
the theoretical properties of nanobiochar suggest that it could
overcome the limitations of macroscopic amendments. By creating a
hybrid material system with exponentially higher surface area and
colloidal reactivity, nanobiochar-amended BSCs are hypothesized to
transcend the performance of either component individually. This
section explores the future trajectory of this synergy, proposing how
nanobiochar could facilitate the emergence of resilient, self-sustaining
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Table 3 Comprehensive assessment of pollutant elimination through adsorption using nanobiochar and biochar nanocomposites

r:rlr:g'\:lael:its Pollutant category Composite composition Adsorption mechanism Application scope Ref.
Pb?*, Cu?*, Zn?* Heavy metals Biochar + hydroxyapatite Chelation bonding with Industrial wastewater treatment;  [126]
mineral coating phosphate groups; ion exchange  Contaminated water remediation
Crb*, Cu?t, Pb2* Heavy metals Biochar integrated with zinc Redox reduction of Cré* to Cr3*; Chromium-contaminated [125]
(hexavalent oxide and zinc sulfide electrostatic adsorption; wastewater; Metal-rich industrial
chromium) nanoparticles complexation effluents
Pb?* Heavy metal (lead) Biochar surface coated with Oxidation-adsorption synergy; Lead contamination in aqueous [69]
manganese oxide manganese oxide sorption sites;  solutions; Mining wastewater
nanoparticles ion exchange
Metformin Pharmaceutical Biochar treated with sodium Electrostatic attraction to basic Pharmaceutical wastewater [127]
hydrochloride pollutant (antidiabetic hydroxide creating alkaline sites; hydrogen bonding; pore
(MFH) drug metabolite) surface filling
Tetracycline and Antibiotic + toxic Biochar with embedded Magnetic adsorption; surface Antibiotic-contaminated [128]
Hg** metal magnetic iron oxide functional group binding; agricultural runoff; Mercury-
nanoparticles (Fe;0,4 or chelation contaminated water; Easy
CoFe,0,) magnetic recovery
Fluoride (inorganic) Inorganic anion Biochar derived from corn lon exchange mechanism with Fluoride-contaminated [129]
pollutant stover with iron oxide iron oxide sites; adsorption to groundwater; Industrial fluoride-
modification hydroxyl groups containing wastewater
Cu?t, Cd?*, Pb2* Multiple heavy metals  Biochar surface treated with Oxidative adsorption from Multi-metal contaminated [130]

potassium permanganate
creating nanometal oxide sites
Biochar with magnesium oxide
and magnesium hydroxide
nanoparticles

Phosphate
(inorganic)

Nutrient ion pollutant
(eutrophication
control)

permanganate sites; ion
exchange; complexation
Precipitation reaction with
magnesium species; Lewis acid-
base interactions

solutions; Electroplating industry
wastewater

Nutrient-rich wastewater
treatment; Eutrophication
prevention; Agricultural runoff

[131]

soil skins in degraded drylands more effectively than conventional
methods.

Bio-ink carriers and protection
A major constraint in dryland restoration is the high mortality of
inoculated cyanobacteria, which are often destroyed by wind erosion
and intense UV radiation before they develop protective pigments or
filament networks!'>>'34, While bulk biochar has been shown to
provide physical shelter for microbial colonization”, a promising
direction for future work is the development of nanobiochar-based
'bio-inks' for precision hydro-seeding. In this proposed approach,
nanobiochar particles (50-200 nm) would act as protective colloidal
carriers for cyanobacterial inocula. Their superior surface area-to-
volume ratio compared to bulk biochar suggests they could promote
the rapid formation of stable organo-mineral aggregates immediately
upon application.

As illustrated in Fig. 4, this microscopic interaction is central to the
hypothesized method's effectiveness because nanobiochar's

enhanced surface area and nanoscale pore structure create mecha-
nistic advantages for cyanobacterial colonization. Nanobiochar
particles possess higher surface area-to-volume ratios, enabling
stronger electrostatic anchoring of cyanobacterial cells and more
rapid stabilization of soil micro-aggregates. The nanoscale pores
reduce diffusion distances for essential nutrients and water,
supporting rapid metabolic activity during critical early establish-
ment phases. Additionally, nanobiochar's superior capacity to bind
and concentrate EPS creates stronger bio-cement for aggregate
stability, addressing wind erosion—a dominant failure mechanism
in arid restoration. Unlike macroscopic biochar granules, which
simply mix with soil, nanobiochar particles position themselves
between sand grains and filamentous cyanobacteria, functioning as
electrostatic micro-anchors within the EPS biofilm matrix. This inte-
grated three-component assembly creates a refined micro-niche
environment that provides mechanical stability, enhances water
retention, and buffers early cyanobacterial cells from UV stress and
desiccation during the critical establishment phase. Furthermore,

S "~ EPS biofilm and production

- % - p-
SLUT AR |

Cyanobacteria
filament

Nutrient uptake
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S
© N\

Fig. 4 Nanobiochar-mediated bio-Ink formation: nano-microbe-EPS interface in BSCs.
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nanobiochar-amended formulations are expected to maintain
matric water at levels usable by cyanobacteria more effectively
than bulk amendments, prolonging the metabolic window for
photosynthesis and EPS secretion processes essential for initiating
biological soil crust formation.

Future research will likely focus on nanobiochar not just as a physical
anchor, but as a highly efficient biochemical catalyst for the
'cyanosphere'—the consortium of heterotrophic bacteria that
supports cyanobacterial growth. Bulk biochar is already utilized as a
carrier for beneficial microbes, but nanobiochar offers a superior
platform due to its increased loading capacity. By engineering
nanobiochar to be pre-loaded with specific signaling molecules or
limiting nutrients (e.g., phosphorus), restorationists could selectively
recruit beneficial heterotrophs (Bacteroidetes, Actinobacteria) with
greater precision than is possible with macroscopic carriers. This
synergy could transform the restoration process from a linear
accumulation of biomass to an exponential assembly of community
function. Field trials using biochar carriers suggest that co-inoculation
strategies can compress succession timelines; shifting to nanobiochar
could theoretically accelerate this further, potentially reducing
recovery times in even nutrient-depleted substrates like mining
tailings.

Perhaps the most critical advantage of transitioning from bulk to
nanobiochar is the potential for emergent resilience to climate change
stressors!'3”), particularly in cold deserts. Evidence indicates that
biochar-amended soils exhibit improved resistance to freeze-thaw
cycles, a major cause of crust destabilization!'*®l. Nanobiochar is
expected to amplify this effect through ‘'thermal buffering' and
structural reinforcement. Its nanoscale pores can better accommodate
the volumetric expansion of freezing soil water without disrupting the
aggregate structure, while its uniform dispersion provides a darker
albedo that increases surface temperatures. This would create a 'bio-
composite armor' capable of withstanding erosion forces that would
strip away natural crusts—an application particularly relevant for
alpine steppes facing increasing climate variability.

Finally, the widespread application of nanobiochar-BSC systems pre-
sents a scalable opportunity for carbon sequestration. This approach
offers a 'double-locking' mechanism for carbon storage: the recalci-
trant, aromatic carbon of the nanobiochar itself (stable for centuries)
and the labile, photosynthetically fixed carbon trapped within the
mineralized crust matrix. While biochar is a known carbon sink,
nanobiochar's potential for deeper integration into the mineral matrix
suggests it may be less susceptible to oxidative loss. As global carbon
markets evolve, quantifying this sequestration potential could mone-
tize dryland restoration, providing the economic model necessary to
fund landscape-scale initiatives.

The growing interest in nanobiochar is primarily attributed to its
distinctive physicochemical properties associated with particle size,
including a higher specific surface areal''”, reduced hydrodynamic
radius and more negative zeta potential®¥, increased abundance of
oxygen-containing functional groups, and the presence of carbon
defects relative to pristine biochar!'3”). These characteristics enhance
the reactivity of nanobiochar and underpin its strong adsorption
capacity for trace metals and organic contaminants such as polycyclic
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aromatic hydrocarbons*, which has promoted its application in
wastewater treatment and contaminant immobilization. However,
these same properties also introduce a range of limitations and
potential adverse effects that require careful evaluationt''*,

At the soil scale, both biochar and nanobiochar can alter soil
physical structure in ways that are strongly dependent on soil
texture, application rate, and surface chemistry. Due to their
extremely small size and high surface reactivity, nanobiochar parti-
cles are capable of migrating into soil pore spaces, which may
reduce macroporosity and restrict gas exchange and root penetra-
tion when applied at excessive rates!'38l, In addition, surface chemi-
cal characteristics inherited from feedstock selection and pyrolysis
conditions may enhance hydrophobic behavior at the nanoscale.
This water repellency can disrupt aggregate bonding mechanisms,
increasing the susceptibility of soil aggregates to slaking and break-
down during repeated wetting and drying cycles. Consequently,
improvements in soil structure observed at low application rates
may shift toward compaction and structural instability under less
controlled conditions.

Alterations in soil structure are closely linked to changes in soil
water dynamics, where the effects of nanobiochar are often contra-
dictoryt’39, While the internal porosity and surface functional
groups of nanobiochar can increase soil water-holding capacity,
particularly in coarse-textured soils, surface-applied nanobiochar
may simultaneously accelerate moisture loss. In some cases,
nanobiochar forms thin surface layers that promote capillary rise
and rapid evaporation rather than sustained moisture storage.
Moreover, the high mobility of nano-sized particles can modify
hydraulic conductivity and promote preferential flow pathways,
resulting in uneven water distribution within the soil profilel'39], As a
result, enhanced soil water retention does not always translate into
improved plant water availability. A study by Chen et al.l"4! reported
that nanobiochar increased water repellency and decreased soil
water retention, a discrepancy that may be largely attributed to
differences in raw materials and preparation methods. Another
contributing factor may be the redistribution of soil pore structure
caused by nanobiochar entering small- and medium-sized pores,
leading to the formation of zigzagging and complex water flow
channelsl'#1],

In addition to physical and hydrological effects, high application
rates of biochar and nanobiochar may negatively influence soil
biological properties. Excessive inputs can result in the accumula-
tion of toxic compounds or the formation of physical barriers that
impede microbial growth, ultimately reducing microbial abundance
and diversityl'#2, The presence of potentially toxic components
within biochar and nanobiochar may further suppress bacterial
populations!'3]. These effects may also be linked to reductions in
soil organic carbon availability, as discussed earlier, while elevated
C/N ratios in nanobiochar can restrict carbon metabolism among
microbial communities, thereby exerting additional pressure on
microbial diversity®,

Beyond soil-related effects, the production of nanobiochar raises
important economic and energy concerns. The conversion of bulk
biochar into nano-sized material typically relies on energy-intensive
post-processing techniques such as ball milling, chemical oxidation,
or ultrasonication. These processes substantially increase produc-
tion costs and embodied energy compared with conventional
biochar, limiting the feasibility of large-scale agricultural or restora-
tion applications(?8l, From a life-cycle perspective, the environmen-
tal benefits attributed to nanobiochar may be offset by its high
energy demand unless its performance clearly exceeds that of bulk
biochar, thereby confining its use primarily to specialized or high-
value applications.
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Given that both bulk biochar and nanobiochar are increasingly
applied in agriculture and soil remediation['44, it is essential to
assess their impacts on plants and diverse groups of organisms.
Physicochemical characterization and contaminant profiling alone
are insufficient for evaluating the environmental risks associated
with nanobiocharl#?], due to the complex interactions between
nanobiochar, environmental matrices, and biological systems, as
well as the dynamic nature of contaminant release and particle
transport.

This review highlights the rapidly expanding role of nanobiochar and
biochar-based nanocomposites in addressing critical agricultural and
environmental challenges. Accumulating evidence demonstrates that
nanobiochar can substantially enhance plant performance by
improving nutrient cycling, alleviating salinity stress, and increasing
fertilizer use efficiency. These benefits arise not only from its unique
physicochemical properties but also from its capacity to influence the
soil-plant-microbe continuum. In particular, nanobiochar-induced
shifts in microbial activity and community structure play a central role
in sustaining long-term soil fertility, ecosystem functioning, and
resilience.

Beyond agronomic applications, nanobiochar exhibits strong
environmental remediation potential due to its high sorption capa-
city associated with its large surface area and fine pore structure.
This enables effective immobilization of a wide range of organic
and inorganic contaminants in soils, aquatic systems, and even
atmospheric environments. When coupled with its role in waste
valorization and its contribution to enhanced crop productivity,
these multifunctional attributes position nanobiochar as a key
material supporting sustainable development goals.

An emerging and particularly promising frontier identified in this
review is the application of nanobiochar in dryland restoration,
especially through its interaction with biological soil crusts. Synthe-
sis of current studies suggests that nanobiochar can act as an effec-
tive nucleation substrate for BSC initiation, helping to overcome
constraints such as wind erosion, nutrient limitation, and rapid mois-
ture loss in arid ecosystems. By promoting cyanobacterial coloniza-
tion and strengthening the physical integrity of desert surface soils,
nanobiochar facilitates the development of a stable bio-composite
matrix. In this context, nanobiochar transcends the role of a conven-
tional soil amendment and emerges as a strategic tool for bio—geo-
engineering, offering a scalable, nature-based approach to com-
bating desertification and enhancing long-term soil carbon
sequestration.

To fully realize the potential of nanobiochar across agricultural
and ecological systems, several research priorities must be
addressed. First, mechanistic studies are required to unravel the
complex and often non-linear interactions among nanobiochar, soil
mineralogy, and microbial networks. Such knowledge is essential for
the design of precision-engineered nanobiochar formulations
tailored to specific soil types and degradation levels. Second, greater
emphasis should be placed on optimizing biochar-organic and
biochar-microbial consortia, particularly co-inoculation strategies
that integrate nanobiochar with cyanobacteria, mycorrhizal fungi,
or other beneficial microorganisms to enhance restoration success
in nutrient-poor drylands.

Third, scaling up nanobiochar production remains a critical
challenge. Advances in energy-efficient manufacturing pathways
such as optimized ball milling, hydrothermal carbonization, and
controlled pyrolysis are needed to improve product consistency,
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reduce energy demand, and enable landscape-scale applications.
Fourth, the functional scope of nanobiochar extends beyond soil
systems into emerging technological domains, including energy
storage materials such as supercapacitor electrodes and the devel-
opment of 'smart' soil sensors that integrate nanomaterials with
real-time environmental monitoring technologies.

Finally, long-term ecological evaluations are indispensable for the
responsible deployment of nanobiochar. Comprehensive field-
based studies examining particle stability, mobility, trophic transfer,
and ecosystem-level impacts over multi-year to decadal timescales
are necessary to ensure environmental safety and regulatory accep-
tance. Addressing these knowledge gaps will allow the scientific
community to harness the full versatility of nanobiochar, advancing
innovative solutions for sustainable agriculture, environmental
remediation, and the restoration of fragile dryland ecosystems.
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