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Introduction

Antibiotic resistance has been recognized as a global threat to the
environment and human health, with multidrug-resistant infections
contributing significantly to the rising number of deaths worldwidel' %,
Moreover, antibiotic resistance hinders modern medical advances,
making common infections difficult to treat. Antibiotic resistance has
been widely detected not only in clinical settings but also across
various environments®®. Its widespread distribution highlights the
need to tackle the problem under the One Health framework!**\. The
One Health concept emphasizes the interconnectedness of human,
animal, and environmental health, recognizing that resistant bacteria
and genes flow between these domains at local and global scalest*°.,
For example, antibiotic overuse in clinical and agricultural settings
contributes to the release of antibiotic residues and the spread of
resistant microorganisms. These have made diverse environments
reservoirs of antibiotic resistance genes (ARGs), which may facilitate
the transfer of resistance genes to pathogenic bacteria. Consequently,
addressing antibiotic resistance requires a multidisciplinary One Health
approach that integrates environmental surveillance alongside tradi-
tional clinical monitoring.

Horizontal gene transfer (HGT) plays a significant role in the
rapid dissemination of ARGs[®l. In contrast to vertical gene transfer,
HGT facilitates the transfer of ARGs across different bacterial species.
This process is mediated by mobile genetic elements (MGEs), includ-
ing plasmids, transposons, integrons, phages, and integrative and
conjugative elements (ICEs), which serve as vehicles for gene
transfer7-19, The mobility of ARGs via MGEs significantly acceler-
ates the spread of resistance, connecting environmental and clinical
resistomes. Consequently, environmental hotspots serve as breed-
ing grounds for novel ARGs, which pathogenic bacteria may subse-
quently acquire via HGTU''-131, ARGs located on conjugative plas-
mids or within transposable elements are generally considered
to have a higher potential for dissemination than chromosomal
genesl'. As a result, current surveillance strategies increasingly
incorporate the detection and characterization of plasmid-borne
ARGs and integron diversity, in addition to profiling ARG abun-
dance and diversity in environmental samples.

In response to the global antibiotic resistance crisis, advanced
molecular detection technologies have become essential for identi-
fying ARGs and assessing their associated risks!'>6l, In particular,
metagenomic sequencing has greatly improved ARG surveillance
by enabling culture-independent analysis of entire microbial
communities!'”. 18], High-throughput second-generation sequencing
remains widely used for profiling ARG diversity and abundance in
complex samples. Shotgun metagenomic sequencing of DNA
extracted directly from samples such as water, soil, air, or feces
enables the detection of ARGs in both culturable and unculturable
bacteria, providing a comprehensive overview of the resistome
profilel'519], However, the short read lengths of second-generation
sequencing often impede the reconstruction of complete ARG loci
or the determination of their genetic context, such as their associa-
tion with MGEs or identification of hosts29l. To overcome these

Table 1 Comparison of commonly used sequencing platforms

limitations, third-generation (long-read) sequencing platforms have
been increasingly employed, such as Oxford Nanopore and
PacBiol222, These technologies can span entire ARG regions along
with flanking sequences, providing information for host or plasmid
inference. In parallel, advances in assembly algorithms, binning
strategies, and proximity ligation methods have enhanced the reso-
lution of host-ARG associations!23-251, Additionally, specialized bioin-
formatics pipelines supported by curated reference databases have
been developed to accurately identify and classify ARGs[2627], These
tools can even detect novel or divergent resistance gene variants(28l,
These developments have also enabled quantitative frameworks for
assessing the public health relevance of ARGs, based on factors such
as mobility, host pathogenicity, and clinical relevancel29l,

This review summarizes current sequencing technologies and
bioinformatics pipelines for detecting and quantifying antibiotic
resistance genes (ARGs) in metagenomic datasets. It also examines
recent technical innovations and conceptual developments, empha-
sizing how metagenomics has broadened detection capabilities and
enhanced understanding of ARG-host associations and the ecologi-
cal risks associated with resistance genes. While previous reviews
have addressed individual aspects of ARG research in environmen-
tal contexts, such as sequencing strategies or database develop-
ment, few have integrated these components within a unified
framework. This review addresses this gap by integrating ARG
detection, host identification methods, quantification strategies,
and risk assessment into a comprehensive synthesis. By consolidat-
ing these topics, the review offers a thorough overview of metho-
dological and analytical advances in ARG investigation within
environmental research.

Metagenomic sequencing methods: from
second-generation to third-generation
technologies

The development of DNA sequencing technologies has significantly
deepened the understanding of microbial taxonomy and functions
in complex environmental samples. Since the introduction of first-
generation sequencing by Frederick Sanger in 1977, the field has
undergone a series of technological revolutions®?. For example, the
emergence of second- and third-generation sequencing over the past
decades has significantly reduced sequencing costs while markedly
improving throughput and speed (Table 1). These advances have
made large-scale genomic and metagenomic studies feasible on an
unprecedented scale. Nowadays, both second- and third-generation
sequencing technologies are widely used to study antibiotic-resistant
bacteria (ARB) and ARGs!'73"),

Second-generation sequencing technologies

Second-generation sequencing technologies marked a critical para-
digm shift from the linear, low-throughput nature of traditional
methods to massively parallel high-throughput approaches?.
Second-generation sequencing introduced massively parallel DNA

.?.2:‘#:2;‘;;3 Platform Read length Bias PCR-free s::flle-::;:g Basedrgig:)c:tlon Accuracy  Cost

Second generation lllumina ~150 to 300 bp PCR-related bias No No No >99.9% Low

DNBSEQ ~150 to 300 bp PCR-related bias No No No >99.9% Low

Third generation PacBio SMRT Tens of kb Low bias due to single- Yes No Yes >99.9% High
molecule sequencing

ONT Nanopore Tens of kb Signal fluctuations Yes Yes Yes >99.75%  High
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sequencing, allowing millions of fragments to be read simultaneously
and significantly increasing sequencing throughput®3. In contrast
to labor-intensive, time-consuming Sanger sequencing, second-
generation sequencing technology can complete whole-genome
sequencing within days or even hours. The workflow of second-
generation sequencing usually involves several steps, including frag-
mentation, tagging, and amplification®%. Specifically, the target DNA is
first broken into short fragments. These fragments are then tagged
with adapters, followed by bridge PCR or cluster ampilification to create
sequencing templates (Fig. 1a). The actual sequencing is performed
using reversible terminators or other chemical methods to identify the
bases.

Second-generation sequencing is currently the most widely used
sequencing technology, sequencing platforms including 454 pyro-
sequencing (Roche, Basel, Switzerland), SOLID sequencing (Applied
Biosystems, Foster City, CA, USA), lllumina sequencing-by-synthesis
(Illumina, San Diego, CA, USA), lon Torrent semiconductor sequenc-
ing (Thermo Fisher Scientific, Waltham, MA, USA), and DNA nanoball
sequencing (DNBSEQ, Beijing Genomics Institute/MGI Tech Co.,
Shenzhen, China). Among these, lllumina's sequencing-by-synthesis
and BGI's DNBSEQ platforms have become the dominant technolo-
gies owing to their high throughput, accuracy, and cost efficiency.
Several distinct advantages support its widespread usel3l. First,
it provides high sequencing throughput, capable of processing
millions of DNA fragments in a single run, thereby enabling large
sample batches to be sequenced within days or even hours. Second,
the per-base cost of sequencing has been significantly reduced by
continuous technological advancements and increasing commer-
cial competition, making comprehensive sequencing accessible to
a wide range of laboratories. Third, second-generation sequencers
deliver high accuracy for short reads and can detect low-frequency

variants with high accuracy and depth. Fourth, second-generation
sequencing workflows are highly automated, with most steps
performed on automated instruments or liquid-handling platforms.
However, second-generation technologies also have notable limita-
tions. A primary drawback of second-generation sequencing tech-
nology is its short read length (typically 150-300 base pairs), which
makes it difficult to resolve complex genomic regions. In addition,
PCR-based clonal amplification of DNA libraries can introduce biases
and errors, with some fragments amplifying more efficiently than
others, leading to uneven coverage. Lastly, second-generation
sequencing results in massive datasets, posing substantial demands
on data processing, storage, and interpretation(32:36:37],

Third-generation sequencing technologies

The application of third-generation sequencing has expanded, serving
both as a supplement to and a replacement for second-generation
methodsB%. At present, third-generation sequencing is dominated
by two platforms, Single-Molecule Real-Time (SMRT) sequencing from
Pacific Biosciences and nanopore sequencing from Oxford Nanopore
Technologies (ONT)B®! (Fig. 1b). SMRT sequencing relies on the real-
time observation of nucleotide incorporation by a DNA polymerase
immobilized at the base of a zero-mode waveguide®?. As deoxy-
nucleotide triphosphates (dNTPs) are added to the growing DNA
strand, their fluorescent labels emit base-specific signals that are
detected with high temporal resolution. The identity of each incor-
porated nucleotide is inferred based on the distinct spectral and kinetic
properties of these fluorescent emissions®l. In contrast, nanopore
sequencing detects DNA molecules as they pass through membrane-
embedded nanopores under an electric field, allowing direct, real-time
reading of nucleotide sequences. The passage of nucleotides through

(a) Second Generation Technology

- lllumina
m‘{&m i / i
Ly, ©, L d
e .
: it Adapter-ligated
DNA fragments
DNBSEQ

ssCirDNA

Single stranded
circular DNA

> 4O
@
-

Sequencing and output

©CA© T A®@
D P66 0 6
A AA G GA

®
L]

Sequencing and output

Nanopore RS

o Nooooool, | —— —

I —— VANVINN .

fitinitiiting S AGTCCCTAATCGAATACGCCGA
Library construction Sequencing Output
eeoaAaT
| I —— C:\,’\,’\,’\/:) — —_—

Library construction Output

Fig. 1 The principle of second- and third-generation sequencing technologies.
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the nanopore produces characteristic fluctuations in the ionic current,
which can be decoded to identify the DNA sequencel*’. These
changes are sequence-dependent and are decoded in real time to
reconstruct the underlying nucleotide sequence. Furthermore, several
companies have developed platforms based on third-generation
sequencing technologies, including Axbio Biotechnology, Qi-Tan Gene
Sequencing Pioneer, Beijing Polyseq Biotech, and BGI.

Third-generation sequencing offers notable improvements
over second-generation sequencing?43l, First, third-generation
sequencing can produce long reads spanning several kilobases,
significantly improving the resolution of complex genomic regions.
Second, third-generation sequencing workflows are PCR-free, ena-
bling the direct sequencing of native DNA molecules and thereby
reducing amplification-associated biases and errors. Third, nanopore
sequencing provides real-time access to sequencing information
during the run, facilitating rapid turnaround, adaptive sampling, and
time-sensitive decisions. Lastly, third-generation sequencing can
detect base modifications, such as DNA methylation, allowing simul-
taneous capture of both genetic and epigenetic information from
the same molecule. However, third-generation sequencing tech-
nologies are still limited by several technical and financial factors.
First, the sequencing cost per base of third-generation sequencing
remains higher than that of second-generation sequencing. Second,
third-generation sequencing platforms generally exhibit higher
raw error rates, thereby requiring consensus sequencing or hybrid
correction strategies. Third, their data throughput per run is com-
paratively lower, which can be a constraint in applications requiring
deep coverage, such as metagenomic profiling. Finally, long read
data present unique analytical challenges, including error correc-
tion and structural variant detection, which require specialized
bioinformatics tools and workflows.

Characterization of ARGs and MGEs based
on a metagenomics approach

In recent years, metagenomics has dramatically improved the
identification of ARGs and MGEs, providing crucial insights into the
occurrence and dissemination of antibiotic resistance!*** (Fig. 2). The
second-generation sequencing technology has become the main-
stream platform for metagenomic research due to its high throughput,
high accuracy, and relatively low cost!“®. Furthermore, third-generation
sequencing technology, i.e., long-read sequencing, has significantly
expanded the scope of metagenomic analysis*’¢!,

Metagenomics data analysis workflow

In studies using the metagenomics method for the detection of ARGs
and MGEs, bioinformatics is critical. The initial step involves quality
control of raw sequencing reads, including the removal of low-quality
reads, trimming of adapter sequences, and filtering for potential
contaminants™ ), In bacterial metagenomic analysis, host-derived reads
are also commonly removed by aligning them to a reference host
genome using tools such as Bowtie2 or BWAP>"1, Once quality control
and host removal are completed, the clean reads are assembled de
novo into contiguous sequences (contigs). Common assemblers used
in metagenomic contexts include MEGAHIT and metaSPAdes, both
of which are optimized for the complexity and uneven coverage of
environmental microbial communities?*? (Fig. 3).

Assembly enables the reconstruction of longer genomic frag-
ments, facilitating the detection of novel genes and gene clusters
that are difficult to identify from unassembled short reads. This step
significantly enhances the ability to characterize the diversity and
genomic context of ARGs and MGEs in complex microbial environ-
ments. Subsequently, contigs can be grouped into metagenome-
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Fig. 2 Workflow for metagenomic-based identification of ARGs and MGEs.
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assembled genomes (MAGs) using binning algorithms such as
BASALT, MetaBAT2, CONCOCT, or MaxBin2[23:>3-551, These MAGs
provide draft-level genomes that support downstream functional
annotation, taxonomic classification, and comparative genomic
analyses, offering a more complete picture of the resistome and
mobilome architecture.

Metagenomic characterization of ARGs and ARG
abundance units

ARG profiling from metagenomic data

In metagenomic studies of microbial communities, detecting ARGs
relies on sequence comparisons against curated reference databases.
Depending on the research objectives, alignments can be performed
using short reads, assembled contigs, or metagenome assembled
genomes. For analysis based on contigs and MAGs, open reading
frames (ORFs) are first predicted from assembled sequences, and
candidate ARGs are identified using sequence similarity and alignment
criteria. Matches that meet the required identity and coverage criteria
are annotated as ARGs utilizing a variety of established databases and
tools. These databases differ in gene coverage, update frequency,
classification strategy, and underlying curation methods.

ResFinder is one of the earliest ARG databases, maintained by the
Center for Genomic Epidemiology and focusing on acquired resis-
tance genes in clinically relevant bacterial®l. It employs BLAST for
homology searches and performs well on assembled draft genomes
from cultured isolatesi®”. However, its gene coverage is relatively
limited, which can be a drawback for complex or environmental
samples. The Comprehensive Antibiotic Resistance Database (CARD)
provides a more comprehensive, functionally annotated set of
ARGsP8l, It includes annotations on resistance mechanisms, drug
classes, and functional characteristics. When paired with the Resis-

homology-based and model-based detection, providing a reliable
framework for studies of clinical and environmental resistomes(>9l.
Its frequent updates and structured ontology enhance its reliability
for high-confidence identification. For studies focusing on environ-
mental samples, the Structured Antibiotic Resistance Gene (SARG)
database provides a valuable framework(®9. It incorporates entries
from CARD and the Antibiotic Resistance Genes Database (ARDB)
and reclassifies ARGs into a unified three-level hierarchy (type,
subtype, and reference sequence), facilitating standardized compar-
ative analyses across datasets. The accompanying ARGs-OAP
pipeline integrates gene prediction, quality filtering, and abun-
dance normalization, and is widely used for resistome profiling in
environmental metagenomics. Later, the CARD database also incor-
porated ARDB content, expanding its coveragel®'l,

In addition to the databases described above, several other ARG
databases and tools have been applied in various contexts, includ-
ing ARDB, DeepARG, and AMRFinder!26:62631. While these databases
are not discussed in detail here, they serve as valuable alternatives.

ARG abundance units in the metagenomic method

Metagenomic sequencing is widely used to quantify ARGs in samples
from various environments, and ARG abundance has been reported
in multiple units across studies. Parts per million (PPM), originally
introduced by Yang et al., was among the earliest units used to quan-
tify ARG abundance and represents the number of ARG-like sequences
per one million metagenomic reads®l. Although PPM offers a
straightforward way to describe relative abundance, but it does not
account for gene length. Therefore, some studies have employed
normalized units such as Reads Per Kilobase per Million reads (RPKM),
which adjust read counts based on both gene length and sequencing
depth®, This method allows comparisons between ARGs of different
sizes, offering a more refined representation of relative abundance.

tance Gene Identifier (RGI) tool, CARD supports both  However, both PPM and RPKM remain relative measures and do not
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directly reflect the number of ARG copies per microorganism or per
cell. Therefore, more biologically meaningful units have been
proposed®!. A commonly adopted approach is to express ARG
abundance as the number of copies per 165 rRNA gene, providing
an estimate of ARG prevalence per bacterium and allowing direct
comparison with those obtained via qPCR in other studies!"”\. A further
refinement is to normalize ARG counts to the number of microbial
cells, yielding a unit of copies per cell, which allows for more direct
ecological and risk-related interpretations©%°°,

Absolute quantification of ARGs via the metagenomic method
As mentioned above, metagenomic sequencing provides relative
abundance data for ARGs, rather than direct measurement of absolute
abundance. While relative abundance is useful for within-sample com-
parisons, it is often unreliable for comparing across samples. Therefore,
absolute quantification has become increasingly important for accu-
rately assessing the burden and dynamics of ARGs across samples.
To address this, additional experimental measurements are combined
with metagenomics to quantify absolute abundance. Quantitative PCR
(gPCR) is among the most commonly used techniques. It can estimate
the total number of 165 rRNA gene copies per samplel®”. These values
are then used to normalize the sequencing-based ARG counts, yielding
estimates of gene copy numbers per unit volume. However, these
indirect approaches rely on multiple experimental platforms and are
susceptible to variability introduced by differences in amplification
efficiency or sample processing protocols.

To overcome these limitations, the spike-in internal standard
method has been developed for the direct quantification of
ARGs%8-701 This approach involves adding a known quantity of
exogenous materials to each sample. There are two types of inter-
nal standard, namely synthetic DNA fragments and cellular internal
standards (for example, Gram-positive and Gram-negative bacteria).
DNA fragment standards are typically introduced after DNA extrac-
tion but before library preparation, to correct for variations in library
construction and sequencing depthl®. In contrast, cellular internal
standards are added before DNA extraction, allowing correction for
biases in cell lysis and DNA recovery efficiency’9. The internal stan-
dard sequence must not be present in the original sample, as
confirmed by PCR. After spiking, a defined number of internal stan-
dard copies are added, and the sample is processed and sequenced
alongside the native microbial DNA. During downstream analysis,
sequencing reads are mapped to both the internal standard refe-
rence and the ARG database. By comparing the read counts of the
internal standard with its known input amount, a conversion factor
can be calculated, allowing inference of the absolute copy number
of ARGs in the sample. These methods improve quantification accu-
racy by controlling for variation in library construction and sequenc-
ing depth, and enables more reliable comparisons of ARG loads
across different samples and studies.

Characterization of mobile genetic elements
(MGEs)

Horizontal gene transfer (HGT) is the primary pathway for ARG dis-
semination and is mediated by mobile genetic elements, including
plasmids, transposons, phages, integrons, and ICEs. Identifying MGEs in
metagenomic datasets is essential for elucidating the mechanisms
underlying ARG dissemination. There are different strategies and tools
for identifying various MGEs (Fig. 3).

Plasmids are extrachromosomal DNA molecules that often carry
multiple resistance genes and can move between different bacterial
species!’!], The identification of plasmids from metagenomic data
relies on a combination of computational tools and curated data-
bases. Alignment-based methods, such as PlasmidFinder, detect

known plasmid replicon sequences through BLASTV2. These
methods offer high precision when matching known replicon types
but are limited by database coverage and the fragmented nature of
contigs in complex samples. In contrast, sequence composition-
based approaches such as PlasFlow and cBar use machine learning
models to classify DNA sequences as plasmid- or chromosome-
derived!73741, Assembly-based methods like PlasmidSPAdes recon-
struct putative plasmid sequences by identifying subgraphs with
uneven coverage or circularity features, while Recycler specifically
targets circular contigs indicative of closed plasmids(7576],

Composite transposons, which often mediate the horizontal
transfer of ARGs, are mobile genetic elements composed of one or
more cargo genes flanked by insertion sequences, i.e., IS elements.
Most detection approaches identify transposase genes and flanking
repeats by either directly aligning sequences to databases such as
ISfinder or by applying profile-based tools such as ISEScan, which
employs HMMs built from curated IS protein families’7.78], Alterna-
tively, read-mapping tools like panlSa look for signs of novel inser-
tions by identifying split or anomalous read pairs’?l. However, the
fragmented nature of short-read assemblies often prevents the
reconstruction of large complete composite elements.

Integrons are genetic elements that are capable of capturing and
expressing gene cassettes, often carrying ARGs. They are identified
by the presence of the integrase gene (intl) and the associated
recombination site (attC). A widely used tool for this purpose is
IntegronFindert8%, It combines HMIM searches for integrase proteins
with covariance models that detect attC structures, enabling the
identification of full-length integrons and incomplete forms, such as
integrase-only or cassette-only arrays. Its design allows the applica-
tion to isolate both genomes and complex metagenomes.

Bacteriophages contribute to the spread of ARGs by mediating
transduction. However, their identification in metagenomic datasets
remains challenging due to the lack of conserved marker genes and
high sequence variability. To overcome this, homology-based tools
such as VirSorter and VirSorter2 have been developed to scan
metagenomic contigs for known viral hallmark genes(®'l. These tools
are effective for identifying well-characterized viral sequences
and generally yield high precision, though they may miss novel or
highly divergent phages. In contrast, k-mer-based methods such
as VirFinder, DeepVirFinder, and Seeker rely on oligonucleotide
frequencies or on deep learning models trained on viral genomic
signatures8283, These methods tend to have higher sensitivity for
novel phages, but are also more prone to false positives, especially
when host-derived sequences share similar sequence features.
More recently, geNomad has emerged as a widely used tool for viral
identification. Built on a foundation model framework, geNomad
integrates gene content information and deep neural network
representations, using deep-learning-derived protein embeddings
for sequence classification and HMM-based profile searches for func-
tional gene annotation®4, Furthermore, CheckV has become the
standard tool for downstream quality and completeness assess-
ment, ensuring reliable interpretation of viral genomes!®l. Hybrid
tools like VIBRANT and viralVerify incorporate both gene content
and structural genome features, such as coding density and genome
length, to improve classification accuracy!®el,

Approaches for identifying hosts of ARGs

Metagenomic techniques have significantly expanded the under-
standing of ARGs and MGEs in both environmental and clinical
settings. However, linking these elements to their microbial hosts
remains a significant challenge. Determining the host microorganisms
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of ARGs and MGEs is essential for elucidating their ecological distri-
bution, assessing their potential for HGT, and evaluating public health
risks. To address this gap, a variety of complementary approaches have
been developed (Table 2), ranging from traditional cultivation and
genome binning to single-cell and proximity-ligation techniques
(Fig. 4)17,

Cultured-based isolation method

The culture-based method is one of the earliest and most fundamental
approaches for identifying antibiotic-resistant bacteria. This method
recovers resistant bacteria by cultivating environmental and clinical
samples on selective media containing specific antibiotics!®® (Fig. 4a).
Isolates obtained through this process can subsequently be charac-
terized using whole-genome sequencing or other molecular techni-
ques to determine species identity as well as the presence of ARGs and
MGEs!®®. The culture-based method could offer high resolution and
specificity, with the added advantage of linking genotypic data to
phenotypic resistance traits. Moreover, this allows for the direct
association of ARGs with their native genomic and mobile contexts.
However, most environmental bacteria remain unculturable under
standard laboratory conditions. As a result, these methods often cap-
ture only a small and potentially biased subset of the resistome.
Additionally, culturing is time-consuming and labor-intensive, and the
selective conditions may favor the growth of strains that are not
representative of the broader microbial community.

Network analysis for host-gene association
inference

Network analysis infers potential ARG hosts by calculating statistical co-
occurrence patterns across multiple samples!'®® (Fig. 4b). In this
approach, the relative abundances of ARGs and microbial taxa are
quantified, and pairwise correlations are calculated to identify associa-
tions between them. A co-occurrence network is then constructed,
with nodes representing ARGs or taxa and edges indicating statistically
significant correlations, suggesting possible host-gene relationships.
While this method can identify candidate associations at scale, it is
inherently indirect and does not provide definitive evidence of physi-
cal linkage. Additionally, complex microbial communities and the
presence of low-abundance taxa may introduce noise and spurious
correlations, limiting the reliability of inferred associations. Therefore,

Table 2 Comparison of primary methods for identifying the hosts of ARGs and MGEs

network analysis is best used in combination with other methods that
provide direct host-gene linkage.

Emulsion paired isolation and concatenation PCR
(epicPCR)

EpicPCR is a culture-independent method for directly associating
functional genes with phylogenetically marked genes from the same
microbial cell®. In this approach, individual cells are encapsulated
within polyacrylamide beads and lysed inside microdroplets. A
subsequent fusion PCR step amplifies both a portion of the 16S rRNA
gene and a target ARG, generating a chimeric amplicon that links the
functional gene to the taxonomic identity of its host. Sequencing these
chimeric products provides high-resolution host-ARG associations
without the need for genome assembly (Fig. 4c). EpicPCR is a high-
throughput method that can process millions of droplets in parallel®®™,
However, as a PCR-based method, it is subject to limitations such as
primer mismatch, nonspecific amplification, and amplification bias
across taxa. Additionally, more than one cell may be encapsulated
within a single droplet in some single-cell or droplet-based assays,
which can lead to false positives. The method is semi-quantitative, as
variations in cell lysis efficiency and PCR performance can affect the
relative representation of different taxa. Moreover, the detection range
is constrained by primer design, limiting the approach to predefined
target genes. Despite these limitations, epicPCR offers a powerful tool
for mapping gene-host relationships in complex microbial
communities®'*2,

Genome binning approach

For the binning-based approach, short reads are first assembled into
contigs, which are then clustered into MAGs using sequence com-
position and abundance profiles across multiple samplest*” (Fig. 4d).
By assigning a taxonomy to each MAG, any ARG found on a MAG can
be linked to that host!®3. This approach allows recovery of a near-
complete genome, including both chromosomal and plasmid
sequences, thus preserving the genomic context of ARGs. MAGs also
provide high-resolution taxonomic assignments and can reveal the
co-occurrence of multiple ARGs within the same genome, offering
valuable insights into multidrug resistance and gene linkage!®*.
However, the binning-based method is limited by its reliance on
assembly, which typically utilizes only a fraction of the total

Method Principle

Advantages Limitations

Selective cultivation of resistant bacteria on
antibiotic-containing media

Culture-based
isolation

Statistical correlation of ARG abundance with
microbial taxa abundance across samples

Network analysis

EpicPCR Droplet encapsulation of single cells; fusion PCR
linking the ARG fragment with the 16S rRNA gene
Binning Short reads are first assembled into contigs,
which are then clustered into MAGs
Hi-C Cross-linking DNA in cells; proximity ligation
yields read pairs linking contigs from the same
cell host genomes; no prior targeting
FACS Flow cytometric sorting of fluorescently labeled

High specificity; linking genotype to
phenotype; preservation of native genomic
and mobile context

Culture-independent; predicting large-scale
candidate associations

Culture-independent; direct gene-host
linkage

Culture-independent; providing genomic
context; linking ARGs to host genomes

Culture-independent; physical linkage
capture; linking ARG-carrying plasmid to

Culture-independent; isolation of target cells

Most bacteria unculturable; labor-
intensive, and biased toward fast-
growing strains

Indirect; spurious correlations;
low-abundance taxa introduce noise;
no physical linkage

PCR bias; primer limitations; multi-
cell droplets cause false positives;
ARG regions fragmentation;
assembly bias; mis-binning; inability
to link plasmids to host genomes
Complex pretreatment; specialized
bioinformatics; variable cross-linking
efficiency; high sequencing-depth
requirements

Requires fluorescent labeling; low

bacteria with high purity; support for conjugation throughput
studies
Single cellRaman  Isotopic probing (D,0) identifies metabolically Culture-independent; label-free operation; Low throughput; low accessibility of
spectroscopy active ARB via Raman spectral shifts identify active ARB single-cell Raman platforms

EpicPCR refers to emulsion paired isolation and concatenation PCR; Hi-C refers to high-throughput chromosome conformation capture; FACS refers to fluorescence-

activated cell sorting.
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Fig. 4 Overview of current approaches for identifying hosts of ARGs. EpicPCR refers to emulsion paired isolation and concatenation PCR; Hi-C refers to
high-throughput chromosome conformation capture; FACS refers to fluorescence-activated cell sorting. This figure is modified from Rice et al.l®’.,

sequencing reads. Conserved ARGs or repetitive elements often
disrupt contig assembly, resulting in short or fragmented ARG-
containing sequences that are difficult to bin accurately. Consequently,
crucial contextual information may be lost, such as the taxonomic
origin or mobility of a gene. Additionally, contigs can be misassigned
to incorrect bins, producing chimeric MAGs, and mobile genetic
elements such as plasmids may remain unbinned due to their distinct
sequence characteristics2.

High-throughput chromosome conformation
capture (Hi-C)

Chromosome conformation capture (3C), and 3C-based methods,
including Hi-C, were initially developed to study chromatin interac-
tions in eukaryotic cells through proximity ligation. Hi-C begins with
formaldehyde fixation of intact cells to cross-link DNA regions that are
in close spatial proximity!®>. After DNA fragmentation and re-ligation,
paired-end sequencing of the Hi-C library yields read pairs that link
genomic regions originally co-localized within the same cell (Fig. 4e). In
metagenomic applications, this linkage information can be combined
with shotgun assembly to assign contigs, including plasmids or
fragments containing ARGs, to specific microbial genomes®. Unlike
traditional 3C approaches, which depend on predetermined primers to
detect selected loci, Hi-C captures chromatin interactions without prior
sequence targeting. However, the Hi-C technique requires complex
sample preparation and specialized bioinformatics to interpret the
interaction data, and cross-linking efficiency can vary, potentially

biasing the detection of DNA proximities. Additionally, resolving the
genomes of low-abundance microorganisms in highly diverse
communities from metagenomic Hi-C data can be challenging.

Fluorescence-activated cell sorting (FACS)
Fluorescence-activated cell sorting (FACS) is a technique that
integrates flow cytometry with downstream molecular analysis, such as
metagenomics, to sort and isolate target cells based on fluorescence.
In this approach, the target ARGs or ARB must be fluorescently labeled
to be detected and isolated®” (Fig. 4f). One advantage of FACS is the
ability to physically separate and collect fluorescently tagged cells with
high purity, facilitating targeted study of their genomic or phenotypic
properties. For example, FACS has been applied to study the
conjugative transfer of ARGs in environmental samples by sorting
donor cells carrying labeled ARGs and recipient cells that acquire them
during horizontal gene transfer®”], Despite these strengths, FACS is not
well-suited for comprehensive profiling of ARG hosts in complex
microbial communities, because only pre-selected or labeled targets
can be detected. Combining FACS with techniques such as rolling-
circle amplification FISH (RCA-FISH) or catalyzed reporter deposition
FISH (CARD-FISH) may enable in situ detection of ARG hosts and
broaden their use in environmental microbiology. However, these
combined approaches are constrained by low throughput, the high
cost of fluorescent probes, and the need for specialized instrumenta-
tion and expertise.
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Single-cell Raman spectroscopy (SCRS)

Single-cell Raman spectroscopy is an emerging, culture-independent
method for identifying ARB at single-cell resolution. Single-cell Raman
spectroscopy is often combined with isotopic probing (e.g., D,O-
labeled water) to distinguish metabolically active ARB cells from non-
resistant or inhibited cells under antibiotic exposurel®® (Fig. 4g). Cells
that grow and incorporate deuterium exhibit characteristic shifts in
their Raman spectra (due to C-D bond formation), allowing resistant
and metabolically active bacteria to be distinguished from susceptible
or inactive cells under antibiotic exposure. SCRS combined with
Raman-activated cell sorting (RACS) enables single-cell isolation based
on Raman spectral profiles, enabling further analyses such as genome
sequencing or ARG detection. A significant advantage of SCRS is that
it does not require prior knowledge of specific resistance genes or
the use of fluorescent labels, making it particularly valuable for
detecting unknown or unculturable resistant taxa. However, the
technique is limited by low throughput, complex instrumentation, and
the inability to directly identify ARG sequences, necessitating its use
in conjunction with complementary molecular methods for compre-
hensive characterization.

Comprehensive risk assessment of ARGs

Metagenomic sequencing has significantly improved the ability to
characterize ARGs profiles in diverse environments. However, not every
resistance gene poses the same risk, and identifying which ARGs pose
a threat to human health is not straightforward. Therefore, compre-
hensive risk assessment frameworks are needed to assess the threat
posed by ARGs. In recent years, studies have reported ARG risk eva-
luation at two complementary levels: one focusing on the inherent risk
of individual genes based on their genetic context, mobility, and host
range; and the other assessing the overall resistome risk at the sample
level by integrating abundance, potential for HGT, and pathogen
association.

Gene-level risk evaluation of ARGs

Recent methods score individual resistance genes using ecological and
genomic criteria. Zhang et al. first reported a simple decision tree
based on three key criteria: (1) human-association (enrichment in
anthropogenic environments); (2) mobility (presence on mobile gene-
tic elements); and (3) host pathogenicity (presence in known human
pathogens)’®”.. Using these criteria, ARGs are classified into four risk
ranks?” (Fig. 5a). ARGs that do not meet the first criterion are
designated 'Rank IV' (lowest risk). Those meeting only enrichment
are Rank Ill, those meeting enrichment and mobility (but not yet in
pathogens) are Rank Il (‘future threats'), and those meeting all three are
Rank | (‘current threats'). This framework clearly differentiates high-risk
ARGs (Rank | and II) from the lower-risk pool (Rank lll and IV), and aligns
well with expert assessments of clinical importance.

Other gene-centric approaches assign a continuous risk index
rather than discrete ranks. For example, Zhang et al. define four
quantitative indicators capturing different risk dimensions: human
accessibility (HA), mobility (MO), human pathogenicity (HP), and
clinical availability (CA)®9 (Fig. 5b). In this framework, HA is the aver-
age abundance multiplied by the prevalence of the ARG in human-
associated samples; MO is the number of MGEs known to carry
the ARG; HP is the fraction of ARG-hosting taxa that are human
pathogens; and CA sums the clinical usage of antibiotics the ARG
can resist. The gene-level risk index (RI) is then calculated as Rl =
HA x MO x HP x CA, so that high values indicate that an ARG is
abundant in humans, widely mobile, present in pathogens, and
confers resistance to heavily used drugs. These gene-level frame-
works are directly interpretable: each ARG is classified or scored
for risk and can be monitored or reported as a priority. They rely
on metagenomic surveillance data and reference databases to
determine human enrichment, mobility, and presence in pathogen
genomes. However, a limitation is that these assessments are based
on sequence homology and co-occurrence data rather than on
direct experimental confirmation of resistance phenotypes.

(a) Decision Tree

[ ARG (candidate) ]

! N
No Rank IV
lowest risk

Human-association?
100x enrichment |

|

S

Rank IlI
enriched only

No

~—

Yes

T
No Rank Il
—>|future threats

Host pathogenicity? 2

-

(b) Risk Index

4 Y
[ ]
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HA=Average abundance, _ xprevalence, ... II
N J

p
MO: mobility

~
O0=0
related MGEs in completed genomes
\ J
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@,&
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HP=Numbergatogenic/Numbery,

(& J
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CA: clinical availability ==

n (=]
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Fig.5 Gene risk assessment framework. (a) Assessment workflow for decision treel?., (b) Risk index calculation®,
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Sample-level risk evaluation of ARGs

Rather than evaluating individual genes, sample-level approaches
assign a risk score to an entire metagenomic sample or environment,
based on its collective resistome. These methods integrate gene
occurrences and their context to rank environments or hosts by overall
ARG threat. A well-known pipeline is MetaCompare, which estimates
resistome risk by analyzing assembled metagenomic contigs for ARG
presence and co-occurrence with mobility and pathogen markers!'%”!
(Fig. 6a). The MetaCompare pipeline first de novo assembles the
metagenomic sequencing reads, then screens the assembled contigs
for three categories of features: (1) contigs containing any ARG; (2)
contigs containing an ARG co-located with an MGE; and (3) contigs
containing an ARG co-located with both an MGE and a pathogen-
associated sequence. The proportions of contigs in each category are
normalized, and each sample is placed in a three-dimensional hazard

with more ARGs co-localized with MGEs and pathogens rank as higher
risk. The output is a single quantitative score for each sample, allowing
comparison across environments or treatments.

Furthermore, Zhang et al. extended their gene-level index into
a sample-level metric®. In their framework, once each ARG is
assigned a gene Rl as described above, the risk index of a sample is
calculated as the abundance-weighted sum of the Rls of all ARGs in
that sample (Fig. 6b). That means a sample's risk reflects both how
many high Rl genes it carries and how abundant they are. In prin-
ciple, this approach yields a continuous risk index for each
metagenome, leveraging the same underlying data (ARG annota-
tions, abundances, MGE/host associations) computed in the gene-
level analysis, but aggregating them to the sample level. Other
sample-level metrics have been proposed. For instance, the Meta-
Compare pipeline has been updated to version 2.0 to distinguish

space, with samples assigned a resistome risk score. In effect, samples  between human health-related resistome risk and broader
(a) ERR Risk Score
Ecological Resistome Risk 3D hazard space .
Theoretical
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3
<
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Fig. 6 Sample risk assessment framework. (a) Risk score assessment workflow based on MetaCompare 2.01'°"). (b) The risk assessment framework
integrates four key components, including absolute quantification!’%. ARG refers to antibiotic resistance gene; MGE refers to mobile genetic element,
PATH refers to pathogen; ESKAPE refers to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas

aeruginosa, and Enterobacter species; EV refers to Escherichia coli and Vibrio.

page 10 of 14

Fangetal. | Volume2 | 2026 | 002


https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027

https://doi.org/10.48130/biocontam-0025-0027

Biocontaminant

ecological resistome risk for each samplel'°l, In general, sample-
level frameworks emphasize the mobility potential of ARGs, along
with overall ARG load and the taxonomic composition of the
community.

More recently, Shi et al. have developed a comprehensive frame-
work for sample risk assessment that integrates four key compo-
nents: pathogens (A), resistance (B), facial indicators (C), and the
mobilome (D)9, This framework quantifies multiple risk dimen-
sions, including pathogens abundance (A1) and cumulative likeli-
hood of infection (A2); absolute abundance of high-risk ARG cate-
gories such as rank 1, 2 (B1) and ESKAPE (Enterococcus faecium, Sta-
phylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) + EV (Escherichia
coli and Vibrio)-related genes (B2); abundance of faecal indicators E.
coli (C1) and Enterococci (C2); and the prevalence of plasmids (D1)
and other MGEs (D2). An overall environmental risk index is then
derived as the arithmetic mean of these eight criteria, with higher
values indicating greater sample-level environmental risk.

It should be noted that the data requirements and outputs differ
between gene- and sample-metric approaches. Gene-level schemes
require large reference databases of ARGs, MGEs, and pathogen
genomes, as well as broad metagenomic surveys to determine
where each ARG is enriched. While read-based methods are suita-
ble for gene-level profiling, assembly-based strategies are often
employed to recover genomic context and improve annotation.
Building on these, sample-level pipelines typically involve de novo
assembly and integration with curated databases, making them
computationally intensive. The interpretability of the results also
differs: gene-level scores directly label specific ARGs as high-risk
(facilitating targeted monitoring), whereas sample risk scores pro-
vide a single index per environment that must be contextualized
(e.g., comparing hospitals vs soils). Both levels of assessment are
complementary, and together they contribute to a more compre-
hensive understanding of antibiotic resistance risks in different
environments.

Quantification strategies and their implications
for risk assessment

Several of the above-mentioned risk assessment frameworks rely on
relative abundance derived from metagenomic sequencing. While
relative metrics allow comparisons of ARGs within a sample, they have
several limitations. First, changes in relative abundance may reflect
shifts in other community members rather than an actual change in
the absolute burden of resistance. Second, relative abundance values
cannot be readily compared across studies or environments because
microbial biomass and community composition vary among samples.
As a result, risk scores derived solely from relative abundance may
overestimate risks in low-biomass environments or underestimate risks
in high-biomass settings where absolute ARG loads are high.

With the increasing application of absolute quantification approa-
ches, some recent frameworks have begun to incorporate absolute
ARG abundance into risk evaluation’, Accumulating evidence
demonstrates that absolute quantification is essential for correcting
compositional biases. Integrating absolute abundance into risk
assessment captures not only the genetic attributes of ARGs but
also their real-world concentrations, which more accurately reflect
transmission potential and public health relevance. This distinction
is critical because the ecological impact and public health risk posed
by ARGs are ultimately determined by the absolute number of resis-
tance genes, their hosts, and the biomass that carries them. For
example, two samples may display similar relative ARG profiles yet

differ by orders of magnitude in their total microbial biomass; only
absolute measurements can reveal whether an environment har-
bors a negligible number of resistance determinants or discharges
large quantities of high-risk ARGs into downstream ecosystems.

Summary and outlook

Metagenomic approaches have expanded the ability to detect, quan-
tify, and characterize ARGs across diverse environments. They facilitate
the identification of both known and emerging resistance genes,
reveal their association with MGEs, and allow inferences about their
microbial hosts. These insights are essential for understanding the
mechanisms and pathways driving the dissemination of antibiotic
resistance.

Looking ahead, several technological developments are likely to
influence how ARGs are monitored and evaluated. Improvements
in long-read and real-time sequencing are beginning to provide
clearer resolution of plasmids, genomic islands, and other mobile
elements that are often difficult to assemble from short reads.
Advancements in host-linking technologies will allow more accu-
rate assignment of ARGs to their native hosts. At the computational
level, hybrid assembly pipelines, deep learning-based ARG predic-
tion, and comprehensive risk modeling frameworks are expected to
enhance the detection of novel resistance determinants and refine
assessments of their mobility and pathogenicity. Additionally, pro-
gress in absolute quantification and standardized methodology will
also help improve comparisons of ARGs across different studies and
environments.

By integrating these technological advances with coordinated
international monitoring and data sharing, future work can achieve
more precise identification of high-risk ARGs, improve the design of
targeted interventions, and ultimately support efforts to safeguard
antibiotic effectiveness and public health.
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