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Abstract
Antibiotic  resistance  has  been  recognized  as  a  global  environmental  and  public  health

challenge.  Over  the  past  decades,  methods  of  studying  antibiotic  resistance  genes  (ARGs)

have  rapidly  evolved.  This  review  summarizes  progress  in  metagenomic  approaches  for

profiling  ARGs,  mobile  genetic  elements  (MGEs),  and  their  microbial  hosts.  The  transition

from second-generation to third-generation sequencing technologies, developments in ARG

detection pipelines,  and emerging strategies  for  absolute  quantification are  highlighted.  In

addition,  novel  approaches  for  linking  ARGs  to  their  hosts  and  assessing  resistome  risks  at

both gene and sample levels are discussed. Continuous improvements in methodologies are

deepening  the  understanding  of  resistance  dissemination,  and  providing  a  foundation  for

environmental surveillance and risk control.
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•  Summarized metagenomic technologies and computational tools for ARGs and MGEs profiling.

•  Compared methodological advances in host identification and absolute quantification of ARGs.

•  Integrated resistome risk assessment framework at gene and sample levels.
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 Introduction

Antibiotic  resistance  has  been  recognized  as  a  global  threat  to  the
environment  and  human  health,  with  multidrug-resistant  infections
contributing significantly to the rising number of deaths worldwide[1,2].
Moreover,  antibiotic  resistance  hinders  modern  medical  advances,
making  common  infections  difficult  to  treat.  Antibiotic  resistance  has
been  widely  detected  not  only  in  clinical  settings  but  also  across
various  environments[3].  Its  widespread  distribution  highlights  the
need to tackle the problem under the One Health framework[4,5].  The
One  Health  concept  emphasizes  the  interconnectedness  of  human,
animal,  and  environmental  health,  recognizing  that  resistant  bacteria
and genes flow between these domains at  local  and global  scales[4,5].
For  example,  antibiotic  overuse  in  clinical  and  agricultural  settings
contributes  to  the  release  of  antibiotic  residues  and  the  spread  of
resistant  microorganisms.  These  have  made  diverse  environments
reservoirs  of  antibiotic  resistance  genes  (ARGs),  which  may  facilitate
the transfer of resistance genes to pathogenic bacteria. Consequently,
addressing antibiotic resistance requires a multidisciplinary One Health
approach  that  integrates  environmental  surveillance  alongside  tradi-
tional clinical monitoring.

Horizontal  gene  transfer  (HGT)  plays  a  significant  role  in  the
rapid dissemination of  ARGs[6].  In  contrast  to vertical  gene transfer,
HGT facilitates the transfer of ARGs across different bacterial species.
This process is mediated by mobile genetic elements (MGEs), includ-
ing  plasmids,  transposons,  integrons,  phages,  and  integrative  and
conjugative  elements  (ICEs),  which  serve  as  vehicles  for  gene
transfer[7−10].  The  mobility  of  ARGs  via  MGEs  significantly  acceler-
ates the spread of resistance, connecting environmental and clinical
resistomes.  Consequently,  environmental  hotspots  serve  as  breed-
ing grounds for novel ARGs, which pathogenic bacteria may subse-
quently  acquire  via  HGT[11−13].  ARGs  located  on  conjugative  plas-
mids  or  within  transposable  elements  are  generally  considered
to  have  a  higher  potential  for  dissemination  than  chromosomal
genes[14].  As  a  result,  current  surveillance  strategies  increasingly
incorporate  the  detection  and  characterization  of  plasmid-borne
ARGs  and  integron  diversity,  in  addition  to  profiling  ARG  abun-
dance and diversity in environmental samples.

In  response  to  the  global  antibiotic  resistance  crisis,  advanced
molecular detection technologies have become essential for identi-
fying  ARGs  and  assessing  their  associated  risks[15,16].  In  particular,
metagenomic  sequencing  has  greatly  improved  ARG  surveillance
by  enabling  culture-independent  analysis  of  entire  microbial
communities[17,18].  High-throughput second-generation sequencing
remains  widely  used  for  profiling  ARG  diversity  and  abundance  in
complex  samples.  Shotgun  metagenomic  sequencing  of  DNA
extracted  directly  from  samples  such  as  water,  soil,  air,  or  feces
enables  the  detection of  ARGs in  both culturable  and unculturable
bacteria,  providing  a  comprehensive  overview  of  the  resistome
profile[15,19].  However,  the  short  read  lengths  of  second-generation
sequencing  often  impede  the  reconstruction  of  complete  ARG  loci
or the determination of their genetic context, such as their associa-
tion  with  MGEs  or  identification  of  hosts[20].  To  overcome  these

limitations, third-generation (long-read) sequencing platforms have
been  increasingly  employed,  such  as  Oxford  Nanopore  and
PacBio[21,22].  These technologies can span entire ARG regions along
with flanking sequences,  providing information for host or  plasmid
inference.  In  parallel,  advances  in  assembly  algorithms,  binning
strategies, and proximity ligation methods have enhanced the reso-
lution of host-ARG associations[23−25]. Additionally, specialized bioin-
formatics pipelines supported by curated reference databases have
been developed to accurately identify and classify ARGs[26,27]. These
tools can even detect novel or divergent resistance gene variants[28].
These developments have also enabled quantitative frameworks for
assessing the public health relevance of ARGs, based on factors such
as mobility, host pathogenicity, and clinical relevance[29].

This  review  summarizes  current  sequencing  technologies  and
bioinformatics  pipelines  for  detecting  and  quantifying  antibiotic
resistance genes  (ARGs)  in  metagenomic  datasets.  It  also  examines
recent technical innovations and conceptual developments, empha-
sizing how metagenomics has broadened detection capabilities and
enhanced understanding of ARG-host associations and the ecologi-
cal  risks  associated  with  resistance  genes.  While  previous  reviews
have addressed individual  aspects  of  ARG research in  environmen-
tal  contexts,  such  as  sequencing  strategies  or  database  develop-
ment,  few  have  integrated  these  components  within  a  unified
framework.  This  review  addresses  this  gap  by  integrating  ARG
detection,  host  identification  methods,  quantification  strategies,
and risk assessment into a comprehensive synthesis.  By consolidat-
ing  these  topics,  the  review  offers  a  thorough  overview  of  metho-
dological  and  analytical  advances  in  ARG  investigation  within
environmental research.

 Metagenomic sequencing methods: from
second-generation to third-generation
technologies

The  development  of  DNA  sequencing  technologies  has  significantly
deepened  the  understanding  of  microbial  taxonomy  and  functions
in  complex  environmental  samples.  Since  the  introduction  of  first-
generation  sequencing  by  Frederick  Sanger  in  1977,  the  field  has
undergone  a  series  of  technological  revolutions[30].  For  example,  the
emergence of second- and third-generation sequencing over the past
decades  has  significantly  reduced  sequencing  costs  while  markedly
improving  throughput  and  speed  (Table  1).  These  advances  have
made  large-scale  genomic  and  metagenomic  studies  feasible  on  an
unprecedented  scale.  Nowadays,  both  second- and  third-generation
sequencing technologies are widely used to study antibiotic-resistant
bacteria (ARB) and ARGs[17,31].

 Second-generation sequencing technologies
Second-generation  sequencing  technologies  marked  a  critical  para-
digm  shift  from  the  linear,  low-throughput  nature  of  traditional
methods  to  massively  parallel  high-throughput  approaches[32].
Second-generation  sequencing  introduced  massively  parallel  DNA

 

Table 1  Comparison of commonly used sequencing platforms

Sequencing
Technology Platform Read length Bias PCR-free Real-time

sequencing
Base modification

detection Accuracy Cost

Second generation Illumina ~150 to 300 bp PCR-related bias No No No > 99.9% Low
DNBSEQ ~150 to 300 bp PCR-related bias No No No > 99.9% Low

Third generation PacBio SMRT Tens of kb Low bias due to single-
molecule sequencing

Yes No Yes > 99.9% High

ONT Nanopore Tens of kb Signal fluctuations Yes Yes Yes > 99.75% High
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sequencing, allowing millions of fragments to be read simultaneously
and  significantly  increasing  sequencing  throughput[33].  In  contrast
to  labor-intensive,  time-consuming  Sanger  sequencing,  second-
generation  sequencing  technology  can  complete  whole-genome
sequencing  within  days  or  even  hours.  The  workflow  of  second-
generation  sequencing  usually  involves  several  steps,  including  frag-
mentation, tagging, and amplification[34]. Specifically, the target DNA is
first  broken  into  short  fragments.  These  fragments  are  then  tagged
with adapters, followed by bridge PCR or cluster amplification to create
sequencing  templates  (Fig.  1a).  The  actual  sequencing  is  performed
using reversible terminators or other chemical methods to identify the
bases.

Second-generation sequencing is currently the most widely used
sequencing  technology,  sequencing  platforms  including  454  pyro-
sequencing (Roche,  Basel,  Switzerland),  SOLiD sequencing (Applied
Biosystems,  Foster  City,  CA,  USA),  Illumina sequencing-by-synthesis
(Illumina, San Diego, CA, USA), Ion Torrent semiconductor sequenc-
ing (Thermo Fisher Scientific, Waltham, MA, USA), and DNA nanoball
sequencing  (DNBSEQ,  Beijing  Genomics  Institute/MGI  Tech  Co.,
Shenzhen, China). Among these, Illumina's sequencing-by-synthesis
and BGI's DNBSEQ platforms have become the dominant technolo-
gies  owing  to  their  high  throughput,  accuracy,  and  cost  efficiency.
Several  distinct  advantages  support  its  widespread  use[35].  First,
it  provides  high  sequencing  throughput,  capable  of  processing
millions  of  DNA  fragments  in  a  single  run,  thereby  enabling  large
sample batches to be sequenced within days or even hours. Second,
the  per-base  cost  of  sequencing  has  been  significantly  reduced  by
continuous  technological  advancements  and  increasing  commer-
cial  competition,  making  comprehensive  sequencing  accessible  to
a  wide  range  of  laboratories.  Third,  second-generation  sequencers
deliver high accuracy for short reads and can detect low-frequency

variants  with  high  accuracy  and  depth.  Fourth,  second-generation
sequencing  workflows  are  highly  automated,  with  most  steps
performed on automated instruments or liquid-handling platforms.
However, second-generation technologies also have notable limita-
tions.  A  primary  drawback  of  second-generation  sequencing  tech-
nology is its short read length (typically 150–300 base pairs),  which
makes  it  difficult  to  resolve  complex  genomic  regions.  In  addition,
PCR-based clonal amplification of DNA libraries can introduce biases
and  errors,  with  some  fragments  amplifying  more  efficiently  than
others,  leading  to  uneven  coverage.  Lastly,  second-generation
sequencing results in massive datasets, posing substantial demands
on data processing, storage, and interpretation[32,36,37].

 Third-generation sequencing technologies
The application of third-generation sequencing has expanded, serving
both  as  a  supplement  to  and  a  replacement  for  second-generation
methods[34].  At  present,  third-generation  sequencing  is  dominated
by two platforms, Single-Molecule Real-Time (SMRT) sequencing from
Pacific  Biosciences  and  nanopore  sequencing  from  Oxford  Nanopore
Technologies  (ONT)[38] (Fig.  1b).  SMRT  sequencing  relies  on  the  real-
time  observation  of  nucleotide  incorporation  by  a  DNA  polymerase
immobilized  at  the  base  of  a  zero-mode  waveguide[39].  As  deoxy-
nucleotide  triphosphates  (dNTPs)  are  added  to  the  growing  DNA
strand,  their  fluorescent  labels  emit  base-specific  signals  that  are
detected  with  high  temporal  resolution.  The  identity  of  each  incor-
porated nucleotide is inferred based on the distinct spectral and kinetic
properties  of  these  fluorescent  emissions[40].  In  contrast,  nanopore
sequencing detects DNA molecules as they pass through membrane-
embedded nanopores under an electric field, allowing direct, real-time
reading of nucleotide sequences. The passage of nucleotides through

 

Fig. 1  The principle of second- and third-generation sequencing technologies.
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the nanopore produces characteristic fluctuations in the ionic current,
which  can  be  decoded  to  identify  the  DNA  sequence[41].  These
changes  are  sequence-dependent  and  are  decoded  in  real  time  to
reconstruct the underlying nucleotide sequence. Furthermore, several
companies  have  developed  platforms  based  on  third-generation
sequencing technologies, including Axbio Biotechnology, Qi-Tan Gene
Sequencing Pioneer, Beijing Polyseq Biotech, and BGI.

Third-generation  sequencing  offers  notable  improvements
over  second-generation  sequencing[42,43].  First,  third-generation
sequencing  can  produce  long  reads  spanning  several  kilobases,
significantly improving the resolution of complex genomic regions.
Second,  third-generation  sequencing  workflows  are  PCR-free,  ena-
bling  the  direct  sequencing  of  native  DNA  molecules  and  thereby
reducing amplification-associated biases and errors. Third, nanopore
sequencing  provides  real-time  access  to  sequencing  information
during the run, facilitating rapid turnaround, adaptive sampling, and
time-sensitive  decisions.  Lastly,  third-generation  sequencing  can
detect base modifications, such as DNA methylation, allowing simul-
taneous  capture  of  both  genetic  and  epigenetic  information  from
the  same  molecule.  However,  third-generation  sequencing  tech-
nologies  are  still  limited  by  several  technical  and  financial  factors.
First,  the  sequencing  cost  per  base  of  third-generation  sequencing
remains higher than that of second-generation sequencing. Second,
third-generation  sequencing  platforms  generally  exhibit  higher
raw  error  rates,  thereby  requiring  consensus  sequencing  or  hybrid
correction  strategies.  Third,  their  data  throughput  per  run  is  com-
paratively lower, which can be a constraint in applications requiring
deep  coverage,  such  as  metagenomic  profiling.  Finally,  long  read
data  present  unique  analytical  challenges,  including  error  correc-
tion  and  structural  variant  detection,  which  require  specialized
bioinformatics tools and workflows.

 Characterization of ARGs and MGEs based
on a metagenomics approach

In  recent  years,  metagenomics  has  dramatically  improved  the
identification  of  ARGs  and  MGEs,  providing  crucial  insights  into  the
occurrence and dissemination of antibiotic resistance[44,45] (Fig. 2). The
second-generation  sequencing  technology  has  become  the  main-
stream platform for metagenomic research due to its high throughput,
high accuracy, and relatively low cost[46]. Furthermore, third-generation
sequencing  technology,  i.e.,  long-read  sequencing,  has  significantly
expanded the scope of metagenomic analysis[47,48].

 Metagenomics data analysis workflow
In studies using the metagenomics method for the detection of ARGs
and  MGEs,  bioinformatics  is  critical.  The  initial  step  involves  quality
control of raw sequencing reads, including the removal of low-quality
reads,  trimming  of  adapter  sequences,  and  filtering  for  potential
contaminants[49]. In bacterial metagenomic analysis, host-derived reads
are  also  commonly  removed  by  aligning  them  to  a  reference  host
genome using tools such as Bowtie2 or BWA[50,51]. Once quality control
and  host  removal  are  completed,  the  clean  reads  are  assembled de
novo into contiguous sequences  (contigs).  Common assemblers  used
in  metagenomic  contexts  include  MEGAHIT  and  metaSPAdes,  both
of  which  are  optimized  for  the  complexity  and  uneven  coverage  of
environmental microbial communities[24,52] (Fig. 3).

Assembly  enables  the  reconstruction  of  longer  genomic  frag-
ments,  facilitating  the  detection  of  novel  genes  and  gene  clusters
that are difficult to identify from unassembled short reads. This step
significantly  enhances  the  ability  to  characterize  the  diversity  and
genomic  context  of  ARGs and MGEs in  complex  microbial  environ-
ments.  Subsequently,  contigs  can  be  grouped  into  metagenome-

 

Fig. 2  Workflow for metagenomic-based identification of ARGs and MGEs.
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assembled  genomes  (MAGs)  using  binning  algorithms  such  as
BASALT,  MetaBAT2,  CONCOCT,  or  MaxBin2[23,53−55].  These  MAGs
provide  draft-level  genomes  that  support  downstream  functional
annotation,  taxonomic  classification,  and  comparative  genomic
analyses,  offering  a  more  complete  picture  of  the  resistome  and
mobilome architecture.

 Metagenomic characterization of ARGs and ARG
abundance units
 ARG profiling from metagenomic data
In  metagenomic  studies  of  microbial  communities,  detecting  ARGs
relies  on sequence comparisons  against  curated reference databases.
Depending on the  research objectives,  alignments  can be performed
using  short  reads,  assembled  contigs,  or  metagenome  assembled
genomes.  For  analysis  based  on  contigs  and  MAGs,  open  reading
frames  (ORFs)  are  first  predicted  from  assembled  sequences,  and
candidate ARGs are identified using sequence similarity and alignment
criteria. Matches that meet the required identity and coverage criteria
are annotated as ARGs utilizing a variety of established databases and
tools.  These  databases  differ  in  gene  coverage,  update  frequency,
classification strategy, and underlying curation methods.

ResFinder is one of the earliest ARG databases, maintained by the
Center  for  Genomic  Epidemiology  and  focusing  on  acquired  resis-
tance  genes  in  clinically  relevant  bacteria[56].  It  employs  BLAST  for
homology searches and performs well on assembled draft genomes
from  cultured  isolates[57].  However,  its  gene  coverage  is  relatively
limited,  which  can  be  a  drawback  for  complex  or  environmental
samples. The Comprehensive Antibiotic Resistance Database (CARD)
provides  a  more  comprehensive,  functionally  annotated  set  of
ARGs[58].  It  includes  annotations  on  resistance  mechanisms,  drug
classes,  and  functional  characteristics.  When  paired  with  the  Resis-
tance  Gene  Identifier  (RGI)  tool,  CARD  supports  both

homology-based  and  model-based  detection,  providing  a  reliable
framework  for  studies  of  clinical  and  environmental  resistomes[59].
Its frequent updates and structured ontology enhance its reliability
for  high-confidence identification.  For  studies  focusing on environ-
mental  samples,  the  Structured  Antibiotic  Resistance  Gene  (SARG)
database  provides  a  valuable  framework[60].  It  incorporates  entries
from  CARD  and  the  Antibiotic  Resistance  Genes  Database  (ARDB)
and  reclassifies  ARGs  into  a  unified  three-level  hierarchy  (type,
subtype, and reference sequence), facilitating standardized compar-
ative  analyses  across  datasets.  The  accompanying  ARGs-OAP
pipeline  integrates  gene  prediction,  quality  filtering,  and  abun-
dance  normalization,  and  is  widely  used  for  resistome  profiling  in
environmental metagenomics. Later, the CARD database also incor-
porated ARDB content, expanding its coverage[61].

In  addition to  the databases  described above,  several  other  ARG
databases  and tools  have been applied in  various  contexts,  includ-
ing ARDB,  DeepARG,  and AMRFinder[26,62,63].  While  these databases
are not discussed in detail here, they serve as valuable alternatives.

 ARG abundance units in the metagenomic method
Metagenomic sequencing is widely used to quantify ARGs in samples
from  various  environments,  and  ARG  abundance  has  been  reported
in  multiple  units  across  studies.  Parts  per  million  (PPM),  originally
introduced by Yang et al., was among the earliest units used to quan-
tify ARG abundance and represents the number of ARG-like sequences
per  one  million  metagenomic  reads[64].  Although  PPM  offers  a
straightforward  way  to  describe  relative  abundance,  but  it  does  not
account  for  gene  length.  Therefore,  some  studies  have  employed
normalized units such as Reads Per Kilobase per Million reads (RPKM),
which adjust read counts based on both gene length and sequencing
depth[65].  This method allows comparisons between ARGs of different
sizes,  offering  a  more  refined  representation  of  relative  abundance.
However,  both  PPM  and  RPKM  remain  relative  measures  and  do  not

 

Fig. 3  Overview of the metagenomic pipeline for identifying ARGs and MGEs.
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directly  reflect  the  number  of  ARG  copies  per  microorganism  or  per
cell.  Therefore,  more  biologically  meaningful  units  have  been
proposed[66].  A  commonly  adopted  approach  is  to  express  ARG
abundance  as  the  number  of  copies  per  16S  rRNA  gene,  providing
an  estimate  of  ARG  prevalence  per  bacterium  and  allowing  direct
comparison with those obtained via qPCR in other studies[19]. A further
refinement  is  to  normalize  ARG  counts  to  the  number  of  microbial
cells,  yielding  a  unit  of  copies  per  cell,  which  allows  for  more  direct
ecological and risk-related interpretations[60,66].

 Absolute quantification of ARGs via the metagenomic method
As  mentioned  above,  metagenomic  sequencing  provides  relative
abundance data for ARGs, rather than direct measurement of absolute
abundance. While relative abundance is useful for within-sample com-
parisons, it is often unreliable for comparing across samples. Therefore,
absolute  quantification  has  become  increasingly  important  for  accu-
rately  assessing  the  burden  and  dynamics  of  ARGs  across  samples.
To address this, additional experimental measurements are combined
with metagenomics to quantify absolute abundance. Quantitative PCR
(qPCR) is among the most commonly used techniques. It can estimate
the total number of 16S rRNA gene copies per sample[67]. These values
are then used to normalize the sequencing-based ARG counts, yielding
estimates  of  gene  copy  numbers  per  unit  volume.  However,  these
indirect  approaches  rely  on  multiple  experimental  platforms  and  are
susceptible  to  variability  introduced  by  differences  in  amplification
efficiency or sample processing protocols.

To  overcome  these  limitations,  the  spike-in  internal  standard
method  has  been  developed  for  the  direct  quantification  of
ARGs[68−70].  This  approach  involves  adding  a  known  quantity  of
exogenous  materials  to  each  sample.  There  are  two  types  of  inter-
nal standard, namely synthetic DNA fragments and cellular internal
standards (for example, Gram-positive and Gram-negative bacteria).
DNA fragment standards are typically  introduced after  DNA extrac-
tion but before library preparation, to correct for variations in library
construction  and  sequencing  depth[69].  In  contrast,  cellular  internal
standards are added before DNA extraction, allowing correction for
biases in cell lysis and DNA recovery efficiency[70]. The internal stan-
dard  sequence  must  not  be  present  in  the  original  sample,  as
confirmed by PCR. After spiking, a defined number of internal stan-
dard copies are added, and the sample is processed and sequenced
alongside  the  native  microbial  DNA.  During  downstream  analysis,
sequencing  reads  are  mapped  to  both  the  internal  standard  refe-
rence and the ARG database.  By  comparing the read counts  of  the
internal standard with its known input amount, a conversion factor
can be calculated,  allowing inference of  the absolute copy number
of ARGs in the sample. These methods improve quantification accu-
racy by controlling for variation in library construction and sequenc-
ing  depth,  and  enables  more  reliable  comparisons  of  ARG  loads
across different samples and studies.

 Characterization of mobile genetic elements
(MGEs)
Horizontal  gene  transfer  (HGT)  is  the  primary  pathway  for  ARG  dis-
semination  and  is  mediated  by  mobile  genetic  elements,  including
plasmids, transposons, phages, integrons, and ICEs. Identifying MGEs in
metagenomic  datasets  is  essential  for  elucidating  the  mechanisms
underlying ARG dissemination. There are different strategies and tools
for identifying various MGEs (Fig. 3).

Plasmids  are  extrachromosomal  DNA  molecules  that  often  carry
multiple resistance genes and can move between different bacterial
species[71].  The  identification  of  plasmids  from  metagenomic  data
relies  on  a  combination  of  computational  tools  and  curated  data-
bases.  Alignment-based  methods,  such  as  PlasmidFinder,  detect

known  plasmid  replicon  sequences  through  BLAST[72].  These
methods offer high precision when matching known replicon types
but are limited by database coverage and the fragmented nature of
contigs  in  complex  samples.  In  contrast,  sequence  composition-
based approaches such as PlasFlow and cBar use machine learning
models  to  classify  DNA  sequences  as  plasmid- or  chromosome-
derived[73,74].  Assembly-based  methods  like  PlasmidSPAdes  recon-
struct  putative  plasmid  sequences  by  identifying  subgraphs  with
uneven  coverage  or  circularity  features,  while  Recycler  specifically
targets circular contigs indicative of closed plasmids[75,76].

Composite  transposons,  which  often  mediate  the  horizontal
transfer  of  ARGs,  are mobile  genetic  elements composed of  one or
more cargo genes flanked by insertion sequences,  i.e.,  IS  elements.
Most detection approaches identify transposase genes and flanking
repeats  by  either  directly  aligning  sequences  to  databases  such  as
ISfinder  or  by  applying  profile-based  tools  such  as  ISEScan,  which
employs  HMMs  built  from  curated  IS  protein  families[77,78].  Alterna-
tively,  read-mapping tools  like  panISa look for  signs  of  novel  inser-
tions  by  identifying  split  or  anomalous  read  pairs[79].  However,  the
fragmented  nature  of  short-read  assemblies  often  prevents  the
reconstruction of large complete composite elements.

Integrons are genetic elements that are capable of capturing and
expressing gene cassettes,  often carrying ARGs.  They are  identified
by  the  presence  of  the  integrase  gene  (intI)  and  the  associated
recombination  site  (attC).  A  widely  used  tool  for  this  purpose  is
IntegronFinder[80]. It combines HMM searches for integrase proteins
with  covariance  models  that  detect attC structures,  enabling  the
identification of full-length integrons and incomplete forms, such as
integrase-only or cassette-only arrays. Its design allows the applica-
tion to isolate both genomes and complex metagenomes.

Bacteriophages  contribute  to  the  spread  of  ARGs  by  mediating
transduction. However, their identification in metagenomic datasets
remains challenging due to the lack of conserved marker genes and
high sequence variability.  To overcome this,  homology-based tools
such  as  VirSorter  and  VirSorter2  have  been  developed  to  scan
metagenomic contigs for known viral hallmark genes[81]. These tools
are  effective  for  identifying  well-characterized  viral  sequences
and  generally  yield  high  precision,  though  they  may  miss  novel  or
highly  divergent  phages.  In  contrast,  k-mer-based  methods  such
as  VirFinder,  DeepVirFinder,  and  Seeker  rely  on  oligonucleotide
frequencies  or  on  deep  learning  models  trained  on  viral  genomic
signatures[82,83].  These  methods  tend  to  have  higher  sensitivity  for
novel  phages,  but are also more prone to false positives,  especially
when  host-derived  sequences  share  similar  sequence  features.
More recently, geNomad has emerged as a widely used tool for viral
identification.  Built  on  a  foundation  model  framework,  geNomad
integrates  gene  content  information  and  deep  neural  network
representations,  using  deep-learning-derived  protein  embeddings
for sequence classification and HMM-based profile searches for func-
tional  gene  annotation[84].  Furthermore,  CheckV  has  become  the
standard  tool  for  downstream  quality  and  completeness  assess-
ment,  ensuring  reliable  interpretation  of  viral  genomes[85].  Hybrid
tools  like  VIBRANT  and  viralVerify  incorporate  both  gene  content
and structural genome features, such as coding density and genome
length, to improve classification accuracy[86].

 Approaches for identifying hosts of ARGs

Metagenomic  techniques  have  significantly  expanded  the  under-
standing  of  ARGs  and  MGEs  in  both  environmental  and  clinical
settings.  However,  linking  these  elements  to  their  microbial  hosts
remains a significant challenge. Determining the host microorganisms

https://doi.org/10.48130/biocontam-0025-0027

page 6 of 14 Fang et al.  |  Volume 2  |  2026  |  e002

https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027
https://doi.org/10.48130/biocontam-0025-0027


of  ARGs  and  MGEs  is  essential  for  elucidating  their  ecological  distri-
bution, assessing their potential for HGT, and evaluating public health
risks. To address this gap, a variety of complementary approaches have
been  developed  (Table  2),  ranging  from  traditional  cultivation  and
genome  binning  to  single-cell  and  proximity-ligation  techniques
(Fig. 4)[87].

 Cultured-based isolation method
The culture-based method is one of the earliest and most fundamental
approaches  for  identifying  antibiotic-resistant  bacteria.  This  method
recovers  resistant  bacteria  by  cultivating  environmental  and  clinical
samples on selective media containing specific  antibiotics[88] (Fig.  4a).
Isolates  obtained  through  this  process  can  subsequently  be  charac-
terized  using  whole-genome  sequencing  or  other  molecular  techni-
ques to determine species identity as well as the presence of ARGs and
MGEs[88].  The  culture-based  method  could  offer  high  resolution  and
specificity,  with  the  added  advantage  of  linking  genotypic  data  to
phenotypic  resistance  traits.  Moreover,  this  allows  for  the  direct
association  of  ARGs  with  their  native  genomic  and  mobile  contexts.
However,  most  environmental  bacteria  remain  unculturable  under
standard laboratory conditions.  As a result,  these methods often cap-
ture  only  a  small  and  potentially  biased  subset  of  the  resistome.
Additionally, culturing is time-consuming and labor-intensive, and the
selective  conditions  may  favor  the  growth  of  strains  that  are  not
representative of the broader microbial community.

 Network analysis for host-gene association
inference
Network analysis infers potential ARG hosts by calculating statistical co-
occurrence  patterns  across  multiple  samples[19,89] (Fig.  4b).  In  this
approach,  the  relative  abundances  of  ARGs  and  microbial  taxa  are
quantified, and pairwise correlations are calculated to identify associa-
tions  between  them.  A  co-occurrence  network  is  then  constructed,
with nodes representing ARGs or taxa and edges indicating statistically
significant  correlations,  suggesting  possible  host-gene  relationships.
While  this  method  can  identify  candidate  associations  at  scale,  it  is
inherently indirect and does not provide definitive evidence of physi-
cal  linkage.  Additionally,  complex  microbial  communities  and  the
presence  of  low-abundance  taxa  may  introduce  noise  and  spurious
correlations,  limiting  the  reliability  of  inferred  associations.  Therefore,

network analysis is best used in combination with other methods that
provide direct host-gene linkage.

 Emulsion paired isolation and concatenation PCR
(epicPCR)
EpicPCR  is  a  culture-independent  method  for  directly  associating
functional  genes  with  phylogenetically  marked  genes  from  the  same
microbial  cell[90].  In  this  approach,  individual  cells  are  encapsulated
within  polyacrylamide  beads  and  lysed  inside  microdroplets.  A
subsequent fusion PCR step amplifies both a portion of the 16S rRNA
gene and a target ARG, generating a chimeric amplicon that links the
functional gene to the taxonomic identity of its host. Sequencing these
chimeric  products  provides  high-resolution  host-ARG  associations
without  the  need  for  genome  assembly  (Fig.  4c).  EpicPCR  is  a  high-
throughput method that can process millions of droplets in parallel[91].
However,  as  a  PCR-based  method,  it  is  subject  to  limitations  such  as
primer  mismatch,  nonspecific  amplification,  and  amplification  bias
across  taxa.  Additionally,  more  than  one  cell  may  be  encapsulated
within  a  single  droplet  in  some  single-cell  or  droplet-based  assays,
which can lead to false positives.  The method is  semi-quantitative,  as
variations  in  cell  lysis  efficiency  and  PCR  performance  can  affect  the
relative representation of different taxa. Moreover, the detection range
is  constrained  by  primer  design,  limiting  the  approach  to  predefined
target genes. Despite these limitations, epicPCR offers a powerful tool
for  mapping  gene–host  relationships  in  complex  microbial
communities[91,92].

 Genome binning approach
For  the  binning-based  approach,  short  reads  are  first  assembled  into
contigs,  which  are  then  clustered  into  MAGs  using  sequence  com-
position  and  abundance  profiles  across  multiple  samples[45] (Fig.  4d).
By assigning a taxonomy to each MAG, any ARG found on a MAG can
be  linked  to  that  host[93].  This  approach  allows  recovery  of  a  near-
complete  genome,  including  both  chromosomal  and  plasmid
sequences,  thus  preserving  the  genomic  context  of  ARGs.  MAGs  also
provide  high-resolution  taxonomic  assignments  and  can  reveal  the
co-occurrence  of  multiple  ARGs  within  the  same  genome,  offering
valuable  insights  into  multidrug  resistance  and  gene  linkage[94].
However,  the  binning-based  method  is  limited  by  its  reliance  on
assembly,  which  typically  utilizes  only  a  fraction  of  the  total

 

Table 2  Comparison of primary methods for identifying the hosts of ARGs and MGEs

Method Principle Advantages Limitations

Culture-based
isolation

Selective cultivation of resistant bacteria on
antibiotic-containing media

High specificity; linking genotype to
phenotype; preservation of native genomic
and mobile context

Most bacteria unculturable; labor-
intensive, and biased toward fast-
growing strains

Network analysis Statistical correlation of ARG abundance with
microbial taxa abundance across samples

Culture-independent; predicting large-scale
candidate associations

Indirect; spurious correlations;
low-abundance taxa introduce noise;
no physical linkage

EpicPCR Droplet encapsulation of single cells; fusion PCR
linking the ARG fragment with the 16S rRNA gene

Culture-independent; direct gene-host
linkage

PCR bias; primer limitations; multi-
cell droplets cause false positives;

Binning Short reads are first assembled into contigs,
which are then clustered into MAGs

Culture-independent; providing genomic
context; linking ARGs to host genomes

ARG regions fragmentation;
assembly bias; mis-binning; inability
to link plasmids to host genomes

Hi-C Cross-linking DNA in cells; proximity ligation
yields read pairs linking contigs from the same
cell

Culture-independent; physical linkage
capture; linking ARG-carrying plasmid to
host genomes; no prior targeting

Complex pretreatment; specialized
bioinformatics; variable cross-linking
efficiency; high sequencing-depth
requirements

FACS Flow cytometric sorting of fluorescently labeled
bacteria

Culture-independent; isolation of target cells
with high purity; support for conjugation
studies

Requires fluorescent labeling; low
throughput

Single cell Raman
spectroscopy

Isotopic probing (D2O) identifies metabolically
active ARB via Raman spectral shifts

Culture-independent; label-free operation;
identify active ARB

Low throughput; low accessibility of
single-cell Raman platforms

EpicPCR  refers  to  emulsion  paired  isolation  and  concatenation  PCR;  Hi-C  refers  to  high-throughput  chromosome  conformation  capture;  FACS  refers  to  fluorescence-
activated cell sorting.
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sequencing  reads.  Conserved  ARGs  or  repetitive  elements  often
disrupt  contig  assembly,  resulting  in  short  or  fragmented  ARG-
containing sequences that are difficult to bin accurately. Consequently,
crucial  contextual  information  may  be  lost,  such  as  the  taxonomic
origin or mobility of  a gene.  Additionally,  contigs can be misassigned
to  incorrect  bins,  producing  chimeric  MAGs,  and  mobile  genetic
elements such as plasmids may remain unbinned due to their distinct
sequence characteristics[52].

 High-throughput chromosome conformation
capture (Hi-C)
Chromosome  conformation  capture  (3C),  and  3C-based  methods,
including  Hi-C,  were  initially  developed  to  study  chromatin  interac-
tions  in  eukaryotic  cells  through  proximity  ligation.  Hi-C  begins  with
formaldehyde fixation of intact cells to cross-link DNA regions that are
in close spatial  proximity[95].  After DNA fragmentation and re-ligation,
paired-end  sequencing  of  the  Hi-C  library  yields  read  pairs  that  link
genomic regions originally co-localized within the same cell (Fig. 4e). In
metagenomic applications, this linkage information can be combined
with  shotgun  assembly  to  assign  contigs,  including  plasmids  or
fragments  containing  ARGs,  to  specific  microbial  genomes[96].  Unlike
traditional 3C approaches, which depend on predetermined primers to
detect selected loci, Hi-C captures chromatin interactions without prior
sequence  targeting.  However,  the  Hi-C  technique  requires  complex
sample  preparation  and  specialized  bioinformatics  to  interpret  the
interaction  data,  and  cross-linking  efficiency  can  vary,  potentially

biasing  the  detection  of  DNA  proximities.  Additionally,  resolving  the
genomes  of  low-abundance  microorganisms  in  highly  diverse
communities from metagenomic Hi-C data can be challenging.

 Fluorescence-activated cell sorting (FACS)
Fluorescence-activated  cell  sorting  (FACS)  is  a  technique  that
integrates flow cytometry with downstream molecular analysis, such as
metagenomics,  to sort  and isolate target  cells  based on fluorescence.
In this approach, the target ARGs or ARB must be fluorescently labeled
to be detected and isolated[97] (Fig. 4f).  One advantage of FACS is the
ability to physically separate and collect fluorescently tagged cells with
high purity, facilitating targeted study of their genomic or phenotypic
properties.  For  example,  FACS  has  been  applied  to  study  the
conjugative  transfer  of  ARGs  in  environmental  samples  by  sorting
donor cells carrying labeled ARGs and recipient cells that acquire them
during horizontal gene transfer[97]. Despite these strengths, FACS is not
well-suited  for  comprehensive  profiling  of  ARG  hosts  in  complex
microbial  communities,  because  only  pre-selected  or  labeled  targets
can  be  detected.  Combining  FACS  with  techniques  such  as  rolling-
circle  amplification  FISH  (RCA-FISH)  or  catalyzed  reporter  deposition
FISH  (CARD-FISH)  may  enable in  situ detection  of  ARG  hosts  and
broaden  their  use  in  environmental  microbiology.  However,  these
combined  approaches  are  constrained  by  low  throughput,  the  high
cost  of  fluorescent  probes,  and the need for  specialized instrumenta-
tion and expertise.

 

Fig. 4  Overview of current approaches for identifying hosts of ARGs. EpicPCR refers to emulsion paired isolation and concatenation PCR; Hi-C refers to
high-throughput chromosome conformation capture; FACS refers to fluorescence-activated cell sorting. This figure is modified from Rice et al.[87].
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 Single-cell Raman spectroscopy (SCRS)
Single-cell  Raman  spectroscopy  is  an  emerging,  culture-independent
method for identifying ARB at single-cell resolution. Single-cell Raman
spectroscopy  is  often  combined  with  isotopic  probing  (e.g.,  D2O-
labeled water)  to distinguish metabolically active ARB cells  from non-
resistant  or  inhibited cells  under  antibiotic  exposure[98] (Fig.  4g).  Cells
that  grow  and  incorporate  deuterium  exhibit  characteristic  shifts  in
their  Raman  spectra  (due  to  C-D  bond  formation),  allowing  resistant
and metabolically active bacteria to be distinguished from susceptible
or  inactive  cells  under  antibiotic  exposure.  SCRS  combined  with
Raman-activated cell sorting (RACS) enables single-cell isolation based
on Raman spectral profiles, enabling further analyses such as genome
sequencing or  ARG detection.  A significant advantage of  SCRS is  that
it  does  not  require  prior  knowledge  of  specific  resistance  genes  or
the  use  of  fluorescent  labels,  making  it  particularly  valuable  for
detecting  unknown  or  unculturable  resistant  taxa.  However,  the
technique is limited by low throughput, complex instrumentation, and
the  inability  to  directly  identify  ARG  sequences,  necessitating  its  use
in  conjunction  with  complementary  molecular  methods  for  compre-
hensive characterization.

 Comprehensive risk assessment of ARGs

Metagenomic  sequencing  has  significantly  improved  the  ability  to
characterize ARGs profiles in diverse environments. However, not every
resistance gene poses the same risk, and identifying which ARGs pose
a  threat  to  human  health  is  not  straightforward.  Therefore,  compre-
hensive  risk  assessment  frameworks  are  needed  to  assess  the  threat
posed  by  ARGs.  In  recent  years,  studies  have  reported  ARG  risk  eva-
luation at two complementary levels: one focusing on the inherent risk
of individual genes based on their genetic context, mobility, and host
range; and the other assessing the overall resistome risk at the sample
level  by  integrating  abundance,  potential  for  HGT,  and  pathogen
association.

 Gene-level risk evaluation of ARGs
Recent methods score individual resistance genes using ecological and
genomic  criteria.  Zhang  et  al.  first  reported  a  simple  decision  tree
based  on  three  key  criteria:  (1)  human-association  (enrichment  in
anthropogenic environments); (2) mobility (presence on mobile gene-
tic  elements);  and  (3)  host  pathogenicity  (presence  in  known  human
pathogens)[99].  Using  these  criteria,  ARGs  are  classified  into  four  risk
ranks[29] (Fig.  5a).  ARGs  that  do  not  meet  the  first  criterion  are
designated  'Rank  IV'  (lowest  risk).  Those  meeting  only  enrichment
are  Rank  III,  those  meeting  enrichment  and  mobility  (but  not  yet  in
pathogens) are Rank II ('future threats'), and those meeting all three are
Rank I ('current threats'). This framework clearly differentiates high-risk
ARGs (Rank I and II) from the lower-risk pool (Rank III and IV), and aligns
well with expert assessments of clinical importance.

Other  gene-centric  approaches  assign  a  continuous  risk  index
rather  than  discrete  ranks.  For  example,  Zhang  et  al.  define  four
quantitative  indicators  capturing  different  risk  dimensions:  human
accessibility  (HA),  mobility  (MO),  human  pathogenicity  (HP),  and
clinical availability (CA)[99] (Fig. 5b). In this framework, HA is the aver-
age abundance multiplied by the prevalence of the ARG in human-
associated  samples;  MO  is  the  number  of  MGEs  known  to  carry
the  ARG;  HP  is  the  fraction  of  ARG-hosting  taxa  that  are  human
pathogens;  and  CA  sums  the  clinical  usage  of  antibiotics  the  ARG
can  resist.  The  gene-level  risk  index  (RI)  is  then  calculated  as  RI  =
HA  ×  MO  ×  HP  ×  CA,  so  that  high  values  indicate  that  an  ARG  is
abundant  in  humans,  widely  mobile,  present  in  pathogens,  and
confers  resistance  to  heavily  used  drugs.  These  gene-level  frame-
works  are  directly  interpretable:  each  ARG  is  classified  or  scored
for  risk  and  can  be  monitored  or  reported  as  a  priority.  They  rely
on  metagenomic  surveillance  data  and  reference  databases  to
determine human enrichment,  mobility,  and presence in pathogen
genomes. However, a limitation is that these assessments are based
on  sequence  homology  and  co-occurrence  data  rather  than  on
direct experimental confirmation of resistance phenotypes.

 

Fig. 5  Gene risk assessment framework. (a) Assessment workflow for decision tree[29]. (b) Risk index calculation[99].
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 Sample-level risk evaluation of ARGs
Rather  than  evaluating  individual  genes,  sample-level  approaches
assign a risk score to an entire metagenomic sample or environment,
based  on  its  collective  resistome.  These  methods  integrate  gene
occurrences and their context to rank environments or hosts by overall
ARG  threat.  A  well-known  pipeline  is  MetaCompare,  which  estimates
resistome risk  by  analyzing assembled metagenomic  contigs  for  ARG
presence  and  co-occurrence  with  mobility  and  pathogen  markers[100]

(Fig.  6a).  The  MetaCompare  pipeline  first de  novo assembles  the
metagenomic  sequencing  reads,  then  screens  the  assembled  contigs
for  three  categories  of  features:  (1)  contigs  containing  any  ARG;  (2)
contigs  containing  an  ARG  co-located  with  an  MGE;  and  (3)  contigs
containing  an  ARG  co-located  with  both  an  MGE  and  a  pathogen-
associated sequence. The proportions of contigs in each category are
normalized,  and each sample is  placed in a three-dimensional  hazard
space, with samples assigned a resistome risk score. In effect, samples

with more ARGs co-localized with MGEs and pathogens rank as higher
risk. The output is a single quantitative score for each sample, allowing
comparison across environments or treatments.

Furthermore,  Zhang  et  al.  extended  their  gene-level  index  into
a  sample-level  metric[99].  In  their  framework,  once  each  ARG  is
assigned a gene RI as described above, the risk index of a sample is
calculated as the abundance-weighted sum of the RIs of all ARGs in
that  sample (Fig.  6b).  That  means a  sample's  risk  reflects  both how
many  high  RI  genes  it  carries  and  how  abundant  they  are.  In  prin-
ciple,  this  approach  yields  a  continuous  risk  index  for  each
metagenome,  leveraging  the  same  underlying  data  (ARG  annota-
tions,  abundances,  MGE/host  associations)  computed  in  the  gene-
level  analysis,  but  aggregating  them  to  the  sample  level.  Other
sample-level  metrics  have  been  proposed.  For  instance,  the  Meta-
Compare  pipeline  has  been  updated  to  version  2.0  to  distinguish
between  human  health-related  resistome  risk  and  broader

 

Fig.  6  Sample  risk  assessment  framework.  (a)  Risk  score  assessment  workflow  based  on  MetaCompare  2.0[101].  (b)  The  risk  assessment  framework
integrates  four  key  components,  including  absolute  quantification[70].  ARG  refers  to  antibiotic  resistance  gene;  MGE  refers  to  mobile  genetic  element,
PATH  refers  to  pathogen;  ESKAPE  refers  to Enterococcus  faecium, Staphylococcus  aureus, Klebsiella  pneumoniae, Acinetobacter  baumannii, Pseudomonas
aeruginosa, and Enterobacter species; EV refers to Escherichia coli and Vibrio.
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ecological  resistome  risk  for  each  sample[101].  In  general,  sample-
level  frameworks  emphasize  the  mobility  potential  of  ARGs,  along
with  overall  ARG  load  and  the  taxonomic  composition  of  the
community.

More recently, Shi et al. have developed a comprehensive frame-
work  for  sample  risk  assessment  that  integrates  four  key  compo-
nents:  pathogens  (A),  resistance  (B),  facial  indicators  (C),  and  the
mobilome  (D)[70].  This  framework  quantifies  multiple  risk  dimen-
sions,  including  pathogens  abundance  (A1)  and  cumulative  likeli-
hood  of  infection  (A2);  absolute  abundance  of  high-risk  ARG  cate-
gories such as rank 1, 2 (B1) and ESKAPE (Enterococcus faecium, Sta-
phylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species) + EV (Escherichia
coli and Vibrio)-related genes (B2); abundance of faecal indicators E.
coli (C1)  and Enterococci (C2);  and  the  prevalence  of  plasmids  (D1)
and  other  MGEs  (D2).  An  overall  environmental  risk  index  is  then
derived  as  the  arithmetic  mean  of  these  eight  criteria,  with  higher
values indicating greater sample-level environmental risk.

It should be noted that the data requirements and outputs differ
between gene- and sample-metric approaches. Gene-level schemes
require  large  reference  databases  of  ARGs,  MGEs,  and  pathogen
genomes,  as  well  as  broad  metagenomic  surveys  to  determine
where  each  ARG  is  enriched.  While  read-based  methods  are  suita-
ble  for  gene-level  profiling,  assembly-based  strategies  are  often
employed  to  recover  genomic  context  and  improve  annotation.
Building  on  these,  sample-level  pipelines  typically  involve de  novo
assembly  and  integration  with  curated  databases,  making  them
computationally  intensive.  The  interpretability  of  the  results  also
differs:  gene-level  scores  directly  label  specific  ARGs  as  high-risk
(facilitating  targeted  monitoring),  whereas  sample  risk  scores  pro-
vide  a  single  index  per  environment  that  must  be  contextualized
(e.g.,  comparing  hospitals  vs  soils).  Both  levels  of  assessment  are
complementary,  and  together  they  contribute  to  a  more  compre-
hensive  understanding  of  antibiotic  resistance  risks  in  different
environments.

 Quantification strategies and their implications
for risk assessment
Several  of  the  above-mentioned  risk  assessment  frameworks  rely  on
relative  abundance  derived  from  metagenomic  sequencing.  While
relative metrics allow comparisons of ARGs within a sample, they have
several  limitations.  First,  changes  in  relative  abundance  may  reflect
shifts  in  other  community  members  rather  than  an  actual  change  in
the absolute burden of  resistance.  Second,  relative abundance values
cannot  be  readily  compared  across  studies  or  environments  because
microbial biomass and community composition vary among samples.
As  a  result,  risk  scores  derived  solely  from  relative  abundance  may
overestimate risks in low-biomass environments or underestimate risks
in high-biomass settings where absolute ARG loads are high.

With the increasing application of absolute quantification approa-
ches,  some recent frameworks have begun to incorporate absolute
ARG  abundance  into  risk  evaluation[70].  Accumulating  evidence
demonstrates that absolute quantification is essential for correcting
compositional  biases.  Integrating  absolute  abundance  into  risk
assessment  captures  not  only  the  genetic  attributes  of  ARGs  but
also  their  real-world  concentrations,  which  more  accurately  reflect
transmission potential  and public  health relevance.  This  distinction
is critical because the ecological impact and public health risk posed
by ARGs are ultimately determined by the absolute number of resis-
tance  genes,  their  hosts,  and  the  biomass  that  carries  them.  For
example,  two  samples  may  display  similar  relative  ARG  profiles  yet

differ  by orders  of  magnitude in their  total  microbial  biomass;  only
absolute  measurements  can  reveal  whether  an  environment  har-
bors  a  negligible  number  of  resistance  determinants  or  discharges
large quantities of high-risk ARGs into downstream ecosystems.

 Summary and outlook

Metagenomic approaches have expanded the ability to detect,  quan-
tify, and characterize ARGs across diverse environments. They facilitate
the  identification  of  both  known  and  emerging  resistance  genes,
reveal  their  association  with  MGEs,  and  allow  inferences  about  their
microbial  hosts.  These  insights  are  essential  for  understanding  the
mechanisms  and  pathways  driving  the  dissemination  of  antibiotic
resistance.

Looking  ahead,  several  technological  developments  are  likely  to
influence  how  ARGs  are  monitored  and  evaluated.  Improvements
in  long-read  and  real-time  sequencing  are  beginning  to  provide
clearer  resolution  of  plasmids,  genomic  islands,  and  other  mobile
elements  that  are  often  difficult  to  assemble  from  short  reads.
Advancements  in  host-linking  technologies  will  allow  more  accu-
rate assignment of ARGs to their native hosts. At the computational
level,  hybrid  assembly  pipelines,  deep  learning-based  ARG  predic-
tion, and comprehensive risk modeling frameworks are expected to
enhance the detection of  novel  resistance determinants  and refine
assessments  of  their  mobility  and  pathogenicity.  Additionally,  pro-
gress in absolute quantification and standardized methodology will
also help improve comparisons of ARGs across different studies and
environments.

By  integrating  these  technological  advances  with  coordinated
international monitoring and data sharing, future work can achieve
more precise identification of high-risk ARGs, improve the design of
targeted  interventions,  and  ultimately  support  efforts  to  safeguard
antibiotic effectiveness and public health.
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