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Abstract
The coffee industry produces a considerable quantity of biomass residue, with coffee pulp representing a particularly prevalent by-product. Inadequate
management of coffee pulp disposal contributes to significant environmental concerns. However, biorefinery approaches offer a sustainable solution by
converting this agro-industrial waste into high-value bio-based products, aligning with the principles of the Bio-Circular-Green (BCG) economy. This
review comprehensively examines biorefinery processes applicable to coffee biomass, including extraction, enzymatic hydrolysis, fermentation, and
thermochemical conversion. These processes are applied to produce biofuels, organic acids, bioplastics, biofertilizers, and functional compounds. The study
highlights the potential of circular economy strategies in optimizing waste valorization, promoting resource efficiency, and minimizing environmental
impact through the integration of green technology and renewable resources. Furthermore, this review identifies research gaps and proposes future
directions for advancing industrial applications and scientific innovation in coffee pulp utilization. This work serves as a valuable resource for researchers,
industry stakeholders, and policymakers aiming to cultivate a circular and sustainable bioeconomy within the coffee industry by providing a perspective on
the sustainable transformation of coffee pulp into high-value commodities.
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Introduction

Coffee is the most frequently consumed beverage, as well as one
of the most widely produced industrial crops in Thailand. Arabica
coffee (Coffea arabica) is popularly cultivated in Northern Thailand.
This variety is highly regarded among the several types of coffee
beans for its outstanding quality and commercially accepted
tastel'2l. The output volume of Arabica coffee reached 70%, with
demand anticipated to increase by around 10% annually®4. In
coffee manufacturing, biological losses can reach 40%-45%, encom-
passing pulp, husk, parchment, and silver skinl®l, It was also esti-
mated that coffee pulp accounts for > 60% of the total biomass
generated. This specific contamination issue leads to environmental
pollution which results in substantial management costs®-8l, In light
of its accessibility and very low cost, efforts have been undertaken
to augment the utility of this agro-industrial biomass by isolating
bioactive constituents to value-add it.

The BCG economy, which stands for Bio-Circular-Green economy,
refers to a sustainable model integrating waste recycling, resource
efficiency, and environmental conservation. To mitigate depen-
dence on synthetic inputs and optimize productivity, the bio-
economy component prioritizes the implementation of climate-
resilient coffee varieties, bio-based insect control methods, and
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organic fertilizers. For instance, coffee residue, which is abundant in
nutrients and organic matter, can be turned into organic fertilizers
through composting or fermentation. This process reduces the
necessity for synthetic alternatives, and enhances soil health®10,
Furthermore, extracts from coffee husks have shown potential as
bio-pesticides against coffee pests, offering a natural and sustain-
able pest control solution['"], The circular economy aspect promotes
the efficient utilization of agricultural waste, such as coffee pulp
and spent grounds, which can be repurposed for bioenergy produc-
tion, composting, biocontrol, and bioplastics. For example, coffee
pulp can be anaerobically digested to produce biogas, a renewable
energy source, reducing reliance on fossil fuelsl'2. By creating the
BCG economy model, the coffee industry can improve its resilience
against climate change, stabilize farmers' incomes, and promote
sustainable land management. This integrated approach ensures
the long-term viability of coffee farming while reducing its ecologi-
cal footprint and fostering economic sustainability for future
generations. This review comprehensively examines biorefinery
approaches for the sustainable valorization of coffee biomass within
a BCG economy framework. It delineates various biorefinery types
and processes applicable to coffee pulp, explores diverse industrial
applications of extracted compounds, and analyzes BCG
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implementation in coffee production. By elucidating future research
and industrial directions, this review aims to compile the necessary
information for researchers, industry professionals, and policymak-
ers with knowledge to foster a sustainable, economically viable
coffee industry, minimizing environmental impact, and maximizing
resource utilization.

Biorefinery process for value-adding
components from agro-biomass

In agriculture, a substantial volume of by-products are typically
generated, especially during harvesting and post-harvest proce-
dures. These by-products encompass carbohydrates, fats, lignin,
proteins, and, to a lesser extent, various other substances like dyes,
vitamins, and flavors. Any organic matter that is available on a
renewable or recurring basis, with the exception of old-growth
timber, is considered biomass. These materials encompass dedi-
cated trees, agricultural residues, energy crops, wood, animal refuse,
aquatic plants, and other sources!'314., Previously regarded simply
as biomass, these by-products are now seen as important sources
for extracting value-added compounds and producing biofuels.
A biorefinery combines multiple processes for converting biomass
into a variety of valuable outputs, such as chemicals, biofuels,
materials, and energy. Unlike traditional refineries, which rely on
fossil fuels, the modern biorefineries tap into the potential of bio-
logical resources, prioritizing sustainability, and environmental
friendlinessU'>l. The concept of the novel biorefinery and biorefining
encompasses various definitions, often shaped by specific contexts.
The International Energy Agency!'® describes biorefining as the
environmentally conscious and enduring conversion of biomass
into a diverse array of commercially viable products and energy
sourcesl’®l, The National Renewable Energy Laboratory (NREL)
defines a biorefinery as an integrated facility utilizing various bio-
mass conversion processes and equipment to generate fuels, power,
and chemicals from agricultural, forestry, and waste feedstocks!'7.
However, a recent concept has emerged, highlighting the utiliza-
tion of biomass as a raw material to create a diverse range of value-
added products through sophisticated processing techniques.
Subsequently, a more comprehensive definition has been proposed,
defining the term 'biorefinery' as a facility that uses physical, chemi-
cal, or biological processes to convert biological materials from vari-
ous natural sources such as plants, animals, and fungi into usable
products or materials for other products!'8l,

Among industrial crops and beverage-related industries, bio-
refinery approaches have been explored for various feedstocks to
enhance sustainability and resource efficiency. For instance, in
Australia, sugarcane residues are currently being investigated for
their potential in sustainable aviation fuel production, demonstrat-
ing the capability of agricultural waste in bio-based industries['.
Similarly, sugarcane bagasse, a fibrous by-product generated after
juice extraction, has been extensively utilized in Brazil for bioethanol
production, methane generation, and thermal energy recovery,
further showcasing the efficiency of biorefinery processes in the
sugar industry29l, In the United States, switchgrass (Panicum virga-
tum), a perennial grass species, has been extensively investigated
as a feedstock for cellulosic ethanol production. It has been reported
to have a potential ethanol yield of up to 380 liters per tonne of
harvested biomass2'l. In Spain, olive stones, a by-product of olive oil
production, have been repurposed as an alternative energy source,
replacing fossil fuels in heating systems, domestic boilers, and
industrial machinery, thereby contributing to national decarboniza-
tion efforts?2l, The coffee industry generates significant amounts of
agricultural waste, has also been an important area of study for
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biorefinery applications, particularly in utilizing spent coffee
grounds (SCGs). SCGs contain lignocellulosic materials, lipids, and
bioactive compounds, making them an attractive feedstock for
multiple valorization pathways. A previous study has demonstrated
SCGs' potential for biofuel production, including biodiesel, bio-
ethanol, and biogas, with biodiesel yields reaching 80%-83%
through in-situ transesterification!23l. Additionally, SCGs have been
explored for their potential in producing biopolymers, antioxidants,
and bio composites, showcasing a comprehensive biorefinery
approach(3l. In another work, SCGs can be converted into multiple
value-added products, including D-mannose, coffee oil, manno-
oligosaccharides, and bioethanol which highlights the versatility of
these agricultural residues in a biorefinery setting?¥. Nowadays,
these advancements emphasize the feasibility of applying biorefin-
ery principles to the coffee industry, aligning with the broader goal
of optimizing biomass utilization through sustainable and efficient
processing technologies. The continued development of these
biorefinery approaches reinforces the need for integrating waste
valorization strategies into agricultural supply chains, ultimately
contributing to resource efficiency, and the reduction of environ-
mental impacts associated with biomass waste disposal.

By utilizing a combination of technologies and processes, the
biorefinery process aims to transform these abundant biological
materials into valuable products!25l. The focus of the concepts are on
the sustainable and effective use of the biomass. This involves using
the best available technologies for all stages, like burning, breaking
down, gas production, fermentation, and initial processing, within
the biorefinery setupl2°l,

The successful development of biorefineries necessitates the
incorporation of process engineering principles akin to those
applied in crude oil refining[?”l, Biorefinery processes can vary, and
the number of processes involved depends on the specific type of
biorefinery and the desired output, as shown in Fig. 1. Generally, the
biorefinery incorporates a variety of biomass conversion processes
to generate a variety of products, such as biochemicals, biofuels,
and other bioproducts!28l. By integrating biorefinery processes, the
coffee industry can enhance resource efficiency, mitigate environ-
mental impact, and contribute to a circular bioeconomy, aligning
with the BCG economic model. This approach not only addresses
waste management challenges but also fosters economic opportu-
nities by converting coffee pulp into high-value bio-based com-
modities, promoting sustainability across the entire coffee pro-
duction chainl29l, The process of biorefinery usually involves these
techniques.

Physical separations

The milling process plays a vital role in preparing biomass for
conversion into valuable products in a biorefinery. By choosing
the right milling method, and tailoring it to the specific feedstock
and desired product, biorefineries can optimize their efficiency and
profitability. Milling increases surface area, facilitating enzyme or
chemical interaction, improves accessibility to valuable compo-
nents like starch and cellulose, and reduces energy consumption in
subsequent processing steps. Various types of milling processes,
such as dry milling for grains, wet milling for wet feedstocks like
sugarcane, and cryogenic milling using liquid nitrogen, cater to
different feedstock characteristics. Choosing the right milling pro-
cess depends on factors like the type of feedstock, desired final
product, and the scale of operation. Large-scale biorefineries may
prioritize high-throughput systems, while smaller operations may
focus on cost-effectivenessi3031], Types of milling processes in the
biorefineries, including wet milling, dry milling, and cryogenic
milling. The wet milling process, which yields valuable co-products
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Fig. 1 Biorefinery process for the value adding components.

like fiber, germ, and gluten, involves pre-processing before ethanol
fermentation, making it more resource-intensive. In the conven-
tional dry milling process, the dried whole-crop material under-
goes grinding, cooking, liquefaction, saccharification of starch using
enzymes, yeast fermentation of sugars to ethanol, and subsequent
distillation and ethanol dehydration. Cryogenic milling is a special-
ized method which uses liquid nitrogen to freeze the feedstock
before grinding, which can preserve certain components and
improve product yield. The by-products from distillation, distillers’
dried grains (DDG) which are composed mainly of protein serve as
animal feed[32l, This process takes advantage of the inherent physi-
cal properties of the ore, such as size, shape, color or light absorp-
tion, density, magnetic susceptibility, and electrical conductivity. It is
widely utilized in the processing of industrial cropsi3.

Enzymatic saccharification

Saccharification is the process of breaking down complex carbo-
hydrates into simple sugars, is not just about unlocking the energy
potential of biomass for biofuel production. While glucose, which
serves as the main outcome of the saccharification process, drives
the production of bioethanol, there are additional valuable compo-
nents concealed within the plant cell walls, such as oligosaccharides,
short-chain sugars with unique properties as prebiotics, dietary
fiber, or sweeteners. Recent studies have showcased the efficacy
of these techniques in recovering pharmaceutical ingredients.
Khatun et al.B¥ demonstrated the efficient recovery of fructo-
oligosaccharides from sweet potatoes using enzymatic saccharifi-
cation, while Messaoudi et al.B3! highlighted the valorization of
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sugarcane straw through saccharification, extracting valuable
aromatic compounds such as vanillin or ferulic acid from plant cell
walls. These aromatic compounds find applications in fragrances,
pharmaceuticals, and bio-based materials. In addition, Bajpail*¢!
emphasized the potential of sugarcane bagasse as a source for
mannitol production, through enzymatic saccharification and
fermentation. Sugar derivatives like mannitol or xylitol, resulting
from this process, possess desirable properties for use in food, phar-
maceuticals, and cosmetics.

Specific enzymes play an important role in this context. Envision
employing enzymes tailored to target specific sugar chains or
aromatic compoundsB7l, Consider the integration of saccharifica-
tion with additional extraction or purification methods, such as
filtration or chromatography, as analogous to various sections of an
orchestra collaborating harmoniously to enhance the precision and
isolation of targeted componentsi38l. Enzymatic saccharification is
pivotal in the coffee industry, facilitating the conversion of coffee
by-products, including husks, pulp, and spent coffee grounds (SCG),
into fermentable sugars via enzymatic hydrolysis. This process
significantly enhances the valorization of coffee biomass, enabl-
ing the production of bioethanol, organic acids, and bioplastics,
thereby contributing to a circular bioeconomyB°40l. Furthermore,
enzymatic hydrolysis improves the nutritional profile of coffee
residues, enhancing digestibility for animal feed applications!*'l. The
fermentable sugars obtained from coffee waste also function as
essential substrates for biodegradable polymers and bioplastics,
promoting sustainable material production(*2,
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Solvent extraction

Solvent extraction holds a vital role in biorefineries, serving as a
pivotal method for accessing valuable components beyond the
reach of straightforward enzymatic processes like saccharification.
Let's explore the intricacies of this procedure, unveiling its stages
and applications!*3-451, The process initiates with the selection and
preparation of the desired plant biomass. This may involve grinding,
chipping, or other methods to enhance solvent penetration. Specific
pre-treatment steps, such as soaking or washing, may be employed
for optimal extraction efficiency. Choosing an appropriate solvent is
critical for successful extraction, considering factors like selectivity,
sustainability, compatibility, cost, and recovery. Green solvents
derived from renewable sources are preferred for their environmen-
tal benefits.

The prepared biomass is introduced to the chosen solvent in a
suitable reactor, employing techniques like soaking, percolation, or
pressurized extraction to enhance efficiency. Post-extraction, sepa-
rating the solvent containing the desired component from the
biomass residue is essential. Common techniques include filtration,
evaporation, and crystallization, with additional purification steps if
higher purity is required. Solvent extraction is extensively applied
within the coffee industry for the recovery of valuable compounds
from coffee by-products, notably SCG and coffee husks. This tech-
nique facilitates the selective extraction of bioactive compounds,
including caffeine, polyphenols, lipids, and antioxidants, utilizing
organic solvents, which find applications in the food, pharmaceuti-
cal, and cosmetic sectors!“Sl. For instance, hexane and ethanol are
commonly employed to extract coffee oil from SCG, which can be
subsequently refined for biodiesel production or incorporated into
cosmetic formulations!#7],

Co-fermentation

Co-fermentation, a key strategy in biorefineries, enables the
simultaneous fermentation of various sugars in biomass, expanding
the potential for producing biofuels, chemicals, and food ingredi-
ents. This process involves a coordinated effort among different
microorganisms, each specialized in breaking down specific sugars
to contribute to the final product. Unlike traditional fermentation
strategies that mainly target glucose, co-fermentation utilizes a
diverse group of microorganisms, including bacteria like Lactobacil-
lus or Clostridium, and engineered yeast strains capable of ferment-
ing a broader range of sugars. The fermentation symphony unfolds
with pre-treatment processes breaking down complex carbohy-
drates, inoculation introducing the microorganism mixture, and
simultaneous fermentation where each microorganism focuses on
its preferred sugar. The result is the production of desired products,
such as ethanol for biofuels, organic acids for chemicals, or specific
food ingredients, depending on the chosen microorganisms and
fermentation conditions. Co-fermentation enhances biomass utiliza-
tion and overall product yield in biorefineriesi8l. Co-fermentation in
biorefineries brings advantages such as maximizing biomass use,
boosting product yields, and allowing for diverse product creation.
However, it also comes with challenges. Finding microorganisms
that work well together is crucial, and optimizing the fermentation
process is essential. Additionally, there may be extra costs and tech-
nical issues compared to traditional methods. Overall, while co-
fermentation offers great potential, overcoming these challenges is
important for successful implementation in biorefineries“9l,

Bioethanol, an alternative fuel for engines, is generated via
the fermentation of sugars derived from hydrolyzed cellulosic
substances. To improve ethanol production efficiency, an advanced
fermentation method called Simultaneous Saccharification and
Co-fermentation (SSCF) is utilized®®?. This advanced method, near-
ing commercialization, focuses on continuous improvement for
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achieving high ethanol concentration, utilizing total sugars (hexose
+ pentose), reducing feedback inhibition, optimizing mass trans-
fer, and implementing one-pot conversion strategies. The study
analyzed key enhancement tactics, such as expediting saccharifica-
tion rates, genetically modifying bacteria for co-fermentation, opti-
mizing mass transfer via impeller design, and investigating the influ-
ence of conditional factors in the SSCF process. Co-fermentation
represents an innovative approach within the coffee industry
because this process is particularly advantageous for the produc-
tion of bioethanol, organic acids, and microbial bioplastics from
coffee pulp, husks, and SCGBE. By employing combined microbial
consortia, such as yeasts and bacteria, co-fermentation facilitates
more efficient sugar utilization, augments metabolite produc-
tion, and minimizes inhibitory by-products that may impede
fermentationl>'52], For instance, this approach supports the devel-
opment of functional food products, such as fermented coffee-
based beverages enriched with probioticsi®3l. By integrating co-
fermentation into comprehensive biorefinery processes, the
coffee industry can optimize waste valorization and improve
biotech efficiencyl5455],

Coffee

Coffee significance

Coffee (Coffea spp.), an internationally traded commaodity, plays a
vital role in the agricultural sectors of Africa, Asia, and the Americas,
with an annual production of over 10.5 million tonnes, rendering it
the second-largest commercial commodity after gasolinel®¢>7], The
tropical genus Coffea, belonging to the Rubiaceae family, primarily
originates from the highlands of Ethiopia and South Sudan. Within
the expansive genus Coffea, encompassing at least 125 species, two
species stand out for their economic significance in coffee produc-
tion namely C. arabica L. (Arabica coffee), and C. canephora (Robusta
coffee). Arabica coffee, a self-fertile tetraploid, exhibits notably low
genetic diversity, a factor that underscores its importance in the
global coffee industry!>8], commanding a premium price and contri-
buting approximately 60%-65% to the total coffee production(''l,
The coffee cherry, comprising skin, pulp, parchment, silver skin,
bean, and embryo, constitutes the fruit, and the tree's open branch-
ing system and self-fertilizing flowers contribute to its distinctive
reproductive biology9.

Coffee processing

Processing of coffee is a critical factor in determining its quality
and flavor within the complex realm of coffee. The intricate
sequence of procedures that culminate in the ultimate gustatory
encounter for coffee consumers comprises the following: harvest-
ing, de-pulping, fermentation, washing, drying, milling, sorting,
grading, roasting, grinding, and brewing(¢%, The foundation is estab-
lished by pruning, which is accomplished by selectively selecting
ripe cherries for collection. Fermentation decomposes mucilage,
while depulping removes the outer skin. In the context of coffee
beans, the flavor and quality are significantly impacted by the
processing techniques employed. These processes, which fall into
classifications such as 'fully washed', 'dry natural’, 'pulped natural’,
and 'wet hulled', aim to eliminate mucilage and regulate moisture
contentl®'l. Different techniques impart unique qualities to the
final product, ranging from the sun-drenched 'natural' method to
the water-associated 'pulped natural’, 'honey', and 'fully washed'
approaches as presented in Fig. 2. Further complicating the quality
discourse are the complex interrelationships among washing and
fermentation, mucilage, and bacterial dynamics. Every processing
technique significantly influences the flavor, acidity, and overall
profile of the coffee. For instance, the 'honey' method imparts a
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nuanced mucilage level, while the washed/fully washed-wet process
involves meticulous steps. The vast array of processing techniques
employed highlights the intrinsic connection that coffee connois-
seurs have with their sensory experience.

Coffee biomass

Despite its economic prominence, the coffee sector faces chal-
lenges associated with substantial biological losses during process-
ing, accounting for up to 40%-45% of the coffee fruit, including
pulp, parchment, silver skin, and spent coffee grounds as illustrated
in Fig. 31, Among the by-products generated in coffee process-
ing, coffee pulp emerges as a substantial biological waste, account-
ing for up to 29% of the total dried weight®2. Regrettably,
improper disposal practices pose environmental risks, water quality,
and jeopardize soill®l. However, specific places acknowledge the
inherent potential of coffee pulp as a valued asset. Innovative
techniques, such as its application as fertilizer or as an energy source
via direct burning, biogases, and feedstock, underscore the versatil-
ity of this waste materiall>7.6465l, Boasting a rich composition of
proteins, carbohydrates, fats, fibers, and antioxidants such as epicat-
echin, chlorogenic acid, phenolic compounds, and caffeinel66-68],
coffee pulp presents a promising avenue for sustainable resource
management.

Value-added components from coffee pulp

Efforts have been invested in valorizing coffee pulp biomass
due to its abundance and cost-effectiveness. Studies emphasize
the recovery of bioactive components, showcasing the potential

5. Sillver skin 3. Pectin layer

2. Pulp 7. Center cut

(mesocarp)

4. Parchment
1. Outer skin

(exocarp)

Fig.3 Coffee biomass composition.
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for creating biodegradable composites!®®-711. By-products from
coffee processing constitute more than 50% of the dry weight of the
coffee fruitl]; there exists a substantial opportunity to transform this
perceived 'waste' into valuable bioactives. Coffee pulp, abundant in
polysaccharides such as pectin, cellulose, and hemicellulose which
presents potential for various applications in the food and cosmet-
ics industries“’l. The inclusion of phenolic components, including
chlorogenic acid, epicatechin, and caffeine, amplifies its worth©6-68l,
Fueled by environmental challenges and the quest for sustain-
able alternatives, interest has surged in utilizing coffee pulp for
creating biodegradable composites and extracting bioactive
componentsl66-711,

Recent studies have spotlighted coffee cherry pulp as a source of
antioxidants, colorants, and phenolic chemicals, prompting explo-
ration in pharmaceuticals and cosmetics’2. Moreover, the water-
soluble lignocellulosic fraction derived from coffee waste has poten-
tial applications in bioethanol productionl’374l, Coffee pulp has
found utility in diverse food products, from coffee pulp juice to
cascara and kombucha cascaral’?l. Numerous studies on value-
added components extracted from coffee pulp exist, including
Sommano et al., who investigated a sequential maceration tech-
nique utilizing organic solvents, effectively obtaining valuable com-
ponents from coffee pulp that constituted around 13% of the entire
extract. This fraction, predominantly composed of fat-soluble chemi-
cals, was acquired using dichloromethane and ethanol extraction.
Coffee pulp analysis revealed a significant polysaccharide content
(approximately 60%), present in both soluble and insoluble forms.
Pectin extraction commenced with HCI/KCl and ammonium oxalate
buffers. The acidic pH (2.0) of the HCI/KCI buffer facilitated pectin
solubilization by disrupting ionic and hydrogen bonds, while sub-
sequent ammonium oxalate treatment enhanced extraction via
calcium ion complexation. Cellulose was identified as the primary
component, comprising up to 40% of the pulp. Bleaching with
H,0, and NaBH, was employed to remove lignin and residues, yield-
ing a white composite and aiming for improved extraction effi-
ciency. A separate study utilizing alkali treatment and distilled
water bleaching extracted cellulose microfibrils as a highly hydrated
white gel (approximately 20% concentration)%l. The observed vari-
ability in the visual properties of these cellulosic materials suggests
a requirement for more detailed characterization, as shown in Fig. 4.
These initiatives seamlessly align with the broader bio-circular

Page5of11



Circular
Agricultural Systems

Coffee bean
Hexane 100%
——l
" 3-day fnaceration
I

Coffee pulp

Fat and fat-soluble components

Soluble sugar
fraction

4

2

Bacterial cellulose (BC)

1
e I
1
1
1

Fig.4 Coffee biomass value added recovery processing.

economic goal, highlighting the comprehensive usage of biomass
resources in environmentally friendly and economically successful
ways. The transformative journey from coffee waste to valuable
resources stands as a testament to the industry's commitment to
sustainability and innovation.

Proximal composition of coffee pulp

Coffee pulp, an often-overlooked by-product of coffee process-
ing, holds a wealth of nutritional components that contribute to its
proximal composition. This fleshy residue, extracted from the coffee
cherry during the initial stages of production, undergoes dynamic
variations influenced by factors like the coffee varieties (e.g.,
Arabica, Robusta), agricultural practices (e.g., fertilization, soil type),
and processing techniques (e.g., wet, dry)’7l. Understanding the
nutritional makeup of coffee pulp is essential not only for its pro-
spective applications but also for promoting sustainable practices in
the coffee business.

At its core, coffee pulp is characterized by a high moisture
content, typically around 80%[7879), setting it apart as the succulent
counterpart to the coffee bean. Carbohydrates dominate its compo-
sition (~60%), dominated by dietary fiber (15%-25%) and sugars
(~7%), contributing to energy intake and gut health[6980811, The
protein level may reach 9%; the inclusion of this macronutrient
enhances the nutritional diversity of the pulpl’'l. Additionally, the
lipid content is notably low, primarily consisting of healthier unsatu-
rated fatsl''l. Rich in minerals such as potassium, phosphorus,
calcium, and magnesium, coffee pulp embodies a complex matrix
of nutrients(82.,

Coffee pulp polysaccharides

Coffee pulp polysaccharides, comprising a diverse group of
complex carbohydrates, are integral components found in the pulp
of coffee cherries. The structural makeup of these polysaccharides,
including cellulose, hemicellulose, and pectin, exhibits variation
influenced by elements such as coffee cultivar, environmental
conditions, and processing techniques!®3l. Notably, the potential
health benefits associated with coffee pulp polysaccharides are
noteworthy, with certain components, like dietary fiber, contribut-
ing to digestive health, and supporting the proliferation of benefi-
cial gut bacterial®, Beyond health implications, coffee pulp polysac-
charides are of interest in biotechnological applications, prompting
exploration into their extraction for the development of bioactive
compounds with pharmaceutical, cosmetic, and food industry appli-
cations. For instance, in the study of Sommano et al.l’9), the cellu-
lose extracted from coffee pulp is hereafter referred to as coffee
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pulp cellulose (CPC). This abbreviation is employed to distinguish it
from cellulose derived from other lignocellulosic sources, and to
emphasize its unique origin from coffee pulp biomass. CPC was
successfully extracted from Arabica coffee pulp produced during
wet processing, demonstrating potential industrial applications. The
process involved sequential extraction steps and resulted in struc-
turally damaged CPC with lignin and hemicellulose presence.
Hydrogels were produced using CPC, alginate, and pectin, showing
varying swelling and durability based on CPC concentration. Impor-
tantly, all hydrogel formulations demonstrated no toxicity towards
HaCaT cells (human keratinocyte cells), indicating potential use in
wound healing applications.

Coffee pulp polyphenols

Coffee pulp polyphenols constitute a group of naturally occur-
ring compounds with antioxidant properties that are inherent in the
pulp of coffee cherries. These plant-derived micronutrients, includ-
ing chlorogenic acids, flavonoids, and other phenolic compounds,
contribute to the antioxidant richness of the coffee cherry©3l
The composition of coffee pulp polyphenols varies depending
on factors such as coffee variety, cherry ripeness, and processing
methods!8485], Beyond the well-established presence of polyphe-
nols in coffee beans, attention is increasingly directed towards the
polyphenols in coffee pulp for their antifungal applications!'!86:87],

The antioxidant properties of coffee pulp polyphenols play a
crucial role in neutralizing free radicals, suggesting potential health-
promoting effects!':6367, Moreover, coffee pulp, as a byproduct
of coffee processing, offers an avenue for sustainable practices.
Extracting polyphenols from coffee pulp not only adds value to the
byproduct but also aligns with efforts to reduce waste and foster a
circular economy in the coffee industry!11.62.88],

Specialized extraction techniques, including solvent extraction,
chromatography, and other separation methods, are employed to
obtain high-quality polyphenol extracts from coffee pulp!848589,
Researchers are actively exploring the optimization of these extrac-
tion processes for various applications. Coffee pulp polyphenols
hold promise for diverse uses, ranging from enhancing the nutri-
tional content of functional foods to the development of dietary
supplements and pharmaceuticals(®,

Applications

Coffee pulp constitutes 40% to 50% of the coffee berry's weight,
and is the primary by-product from coffee processing. Currently
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treated as waste in much of the industry, it poses significant envi-
ronmental challenges, impacting flora and fauna, water and soil, and
causing issues for nearby communities due to odor and insect prolif-
eration. This review examines the diverse applications of coffee pulp
in agriculture, medical, food and nutrition, and biotechnology. In
agriculture, it can serve as organic fertilizer, contribute to biological
plant pathogen control, and function as feed for various animals. In
biotechnology, coffee pulp finds application in cultivating edible
fungi, producing enzymes, and serving as a substrate for micro-
organisms involved in caffeine degradation and natural fungicide
production. While many applications have been proposed and stud-
ied, emerging uses include utilizing pulp bioactive compounds for
food supplements, enhancing dietary fiber content in consumables,
and producing environmentally friendly biobased containers and
biopackaging as alternatives to plastics. The sample of applications
are illustrated in Table 1.

Food, medical, and pharmaceutical production
Instances of capitalizing on the advantages inherent in value-
added constituents derived from coffee pulp for applications in
food, medical, and pharmaceutical industries, encompassing chloro-
genic acid, protocatechuic acid, gallic acid, rutin, and dietary fiber.
These components serve as integral elements in the beverages,
dedicated to elevating fresh for consumers’2. Moreover, Antho-
cyanin (Cyanidin-3-rutinoside) was utilized as a food colorant, and it
has been found to have significant potential as an economic source
of natural pigments®. Furthermore, pectin from coffee pulp was
used as anantibacterial film, and the results show that the pectin
film, composed of coffee pectin combined with commercial apple
pectin, shows antimicrobial action against Staphylococcus aureus
TISTR 1466[°11. Pectin-microcrystalline cellulose, chlorogenic acid,
and cellulose from coffee pulp were utilized in the creation of
biofilms, serving as edible films for food packaging, antimicrobial,
and antioxidant-enhanced food packaging, as well as applications in
the biomedical and pharmaceutical sectors. The outcomes were
deemed satisfactory, with biopolymer films derived from combina-
tions of microcrystalline cellulose and coffee pectin exhibiting a
sleek surface, high clarity, and notable tensile strength. Additionally,
these films showcased antimicrobial attributes and antioxidant
properties, making them suitable for the manufacturing of food
packaging and versatile enough for applications in biomedical and
pharmaceutical fields76°2931. A widely favored beverage infusion is
Cascara tea, crafted from the husks of coffee cherries, prominent
in the beverage industry. Notably, it contains polyphenols,
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characterized by their antioxidative attributes and their role in regu-
lating various physiological functions to uphold normalcy within the
body®¥, and the cascara tea was analyzed for sensory evaluation
and shelf-life stability for microbiological and physicochemical prop-
erties.

Bioethanol production

In the study conducted by Menezes et al.’¥, the utilization of
coffee pulp for bioethanol production was investigated using the
reducing sugar refining process, identified as the most effective
extraction method. The results demonstrated that coffee pulp
extract, when combined with sugarcane juice or molasses, the result
shown that the yield approximately 70 g/L in batch fermentations
conducted at 30 °C for 24 h.

Dye/chemical production

The utilization of coffee pulp in the chemical production industry
involves extracting cellulose to produce cellulose microfibrils
(CMFs). Adsorption studies indicated that equilibrium was reached
within 90 min. Kinetic data exhibited a strong fit to the pseudo-
second-order model, while the Freundlich isotherm model accu-
rately described the adsorption behavior. This research demon-
strates a potential approach to valorize coffee pulp waste, a readily
available, cost-effective, and renewable byproduct of the coffee
processing industry, rich in cellulose. Consequently, the extracted
cellulose microfibrils (CMFs) present a promising avenue for the
development of sustainable and economically viable bio-sourced
materials, contributing to the future progress of cellulose utilization
in advanced applications(®3l.

Feeding of animals

The animal feed production industry has incorporated value-
added components derived from coffee pulp, such as extracted
sugars, into various applications, including aquaculture feed. A feed-
ing trial conducted on Oreochromis aureus fingerlings assessed the
efficacy of bacteria-treated coffee pulp (BT-CoP) in their diets. The
study concluded that O. aureus fingerlings can tolerate the inclusion
of small quantities of BT-CoP without exhibiting negative impacts
on growth performance and feed utilization parameters. Notably,
diets containing coffee pulp did not compromise fish survival
(100%), and any observed reduction in tilapia performance is likely
attributable to the elevated fiber content present in the coffee
pulp-based dietsl®¢l, The applicable uses of value adding compo-
nents from the coffee pulp are listed as in Table 1.

Table 1. Biorefinery applications of the value adding components from the coffee pulp.
Industry Product Major compounds Purpose of application Ref.
Food, medical, and Beverage Chlorogenic acid Bioactive enrichment [72]
pharmaceutical production Protocatechuic acid, gallic acid
Rutin
Dietary fiber
Food colorant Anthocyanin Significant potential as an economic source of natural [90,97]
(cyanidin-3-rutinoside) pigments
Antibacterial film Pectin Antibacterial film for biomedical and pharmaceutical fields [91]
Biofilm Pectin-microcrystalline cellulose  Edible film for food packaging [92]
Chlorogenic acid Antimicrobial and antioxidant food packaging [93]
Cellulose Biomedical and pharmaceutical fields [76,98]
Cascara tea Polyphenols Bioactive enrichment [94]
Bioethanol production Ethanol Sugar Sugar utilisation and using less water during the [74]
fermentation process
Dye/chemical production Novel highly hydrated Cellulose Dyes removal from industrial wastewater [95]
cellulose microfibrils
Feeding of animals Fish diets Sugar Effectiveness of bacteria treated-coffee pulp in fish diets [96]
Various substrates Lignocellulosic Bio-circular approach for sustainability [99]
Sangta et al. Circular Agricultural Systems 2025, 5: €016 Page7of 11
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Bio-circular economy scenario for coffee
production

In alignment with the BCG policy, there has been continuous
development in biorefining processes aimed at recovering unused
biomasses generated during food industrial processing. Biorefiner-
ies were characterized by the principles of green chemistry and
clean technologies, and play a pivotal role in elevating the value of
residual biomass. This is achieved by fostering the production of
biofuels and bioproducts with high added value, thereby contribut-
ing significantly to the advancement of the bio-economy!100.101],
Historically, biorefining processes predominantly focused on biofu-
els, particularly bioethanol and biobutanol, primarily driven by the
escalating prices of crude oil. However, the contemporary approach
to biorefining endeavors encompasses the extraction of natural
products. Unlike the initial emphasis on fuels, the current objectives
extend to various downstream industries. Biomass from processing,
characterized by a substantial volume, has attracted attention in this
regard('92l, Consequently, there is a growing interest in utilizing
green technology, biorefining, and circular economy principles to
reclaim valuable bioproducts.

A diverse range of biomass sources is abundant in secondary
metabolites and structural biopolymers, which can be extracted and
converted into high-value compounds, including pectin, pectic
oligosaccharides, phenolic compounds, carotenoids, and dietary
fiber. These compounds have widespread applications across
the medical, pharmaceutical, food, nutraceutical, and cosmetics
sectors. Beyond the generation of economic value from biomass,
the principles of the circular economy, underpinned by 'zero
waste' technologies, promote a positive environmental impact
by prioritizing the reuse, recycling, and recovery of these
by-products!’®l, The concept of zero waste revolves around mini-
mizing waste by eliminating systems that generate waste, align-
ing society with zero waste technologies. This entails adopting
second-generation biorefinery methods and ensuring the broad
distribution of consumer goods obtained through clean processing.
Following the integration of these products into society, the encour-
agement of reusing, recycling, and recovering valuable compo-
nents is facilitated using advanced recovery technologies. This
comprehensive approach not only supports environmental sus-
tainability but also brings about overall economic advantages
by promoting collaboration between producers and consu-
mers, thereby contributing to the enhancement of biological
diversityl104.105],

Future direction for industry and research

The future of the coffee industry relies on the advancement of
biorefinery strategies that align with sustainability goals and circu-
lar economy principles. As global demand for eco-friendly products
and renewable resources increases, further research is needed to
optimize the conversion of coffee pulp into high-value bio-based
commodities!'%l. One promising direction is the development of
advanced enzymatic and microbial technologies to improve the effi-
ciency of biochemical conversion processes, such as enzymatic
hydrolysis and fermentation3%107], Research on genetically engi-
neered microorganisms could enhance bioethanol production and
organic acid synthesis, making the coffee biorefinery process more
cost-effectivel6,

Another key area is the expansion of bio-based materials
derived from coffee residues, such as bioplastics, biochar, and
composite materials for packaging and industrial applica-
tions. The amalgamation of nanotechnology and green chemistry
methodologies may result in the creation of superior biomaterials
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characterized by improved durability and biodegradability[108.1091,
Furthermore, solvent-free extraction methods and green process-
ing technologies, such as supercritical fluid extraction, should be
explored to maximize the recovery of bioactive compounds from
coffee waste while minimizing environmental impact!''.119],

Future research should also address policy frameworks and
economic incentives to support the commercialization of coffee-
based bioproducts. Collaboration between academia, industry, and
policymakers is essential to create scalable and economically viable
solutions that promote resource efficiency and sustainable innova-
tion in the coffee sector!''"], By integrating emerging technologies,
circular economy models, and policy-driven strategies, the coffee
industry can transition towards a more resilient, low-waste, and
economically sustainable future.

Conclusions

This study highlights the role of biorefinery approaches in foster-
ing sustainability within the coffee industry, aligning with circular
economy principles. Adopting biochemical, thermochemical, and
physicochemical conversion processes can significantly enhance
waste management and resource efficiency. Furthermore, integrat-
ing renewable energy systems and waste-to-energy technologies
in coffee biorefineries can contribute to reducing environmental
impacts and enhancing energy sustainability within the industry.
The development of green extraction techniques and advanced
processes offers promising prospects for improving biochemical
recovery while minimizing chemical usage and waste generation.
Additionally, the adoption of circular economy principles, supported
by policy frameworks and industry collaboration, will be crucial for
scaling up biorefinery operations and ensuring long-term sustain-
ability. Future research should concentrate on optimizing biopro-
cessing processes, enhancing process efficiency, and creating
creative applications for coffee-derived bioproducts. variables
such as coffee cultivar. Strengthening interdisciplinary cooperation
between researchers, industry stakeholders, and policymakers will
be essential for accelerating technological advancements and facili-
tating commercialization. By embracing biorefinery innovations and
circular economy models, the coffee industry can transition towards
a low-waste, resource-efficient, and environmentally responsible
future, ultimately contributing to a more sustainable global bioe-
conomy.
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