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Abstract
Traffic  flow  prediction  is  an  important  component  of  intelligent  transportation  systems.  Recently,  unprecedented  data  availability  and  rapid

development of machine learning techniques have led to tremendous progress in this field. This article first introduces the research on traffic flow

prediction and the challenges it currently faces. It then proposes a classification method for literature, discussing and analyzing existing research

on  using  machine  learning  methods  to  address  traffic  flow  prediction  from  the  perspectives  of  the  prediction  preparation  process  and  the

construction of prediction models. The article also summarizes innovative modules in these models. Finally, we provide improvement strategies

for current baseline models and discuss the challenges and research directions in the field of traffic flow prediction in the future.
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 Introduction

In recent years, intelligent transportation systems have grad-
ually  developed,  involving  multiple  aspects  of  traffic  manage-
ment,  rail  transportation,  smart  highways,  and  operation
management,  providing many conveniences for  people's  daily
lives.  Short-term  traffic  flow  prediction,  as  a  prerequisite  for
real-time traffic signal control, traffic allocation, path guidance,
automatic  navigation,  and  determination  of  residential  travel
connection  schemes  in  intelligent  transportation  systems,  is
currently  a  research  hotspot  in  the  transportation  field[1].  The
goal  of  traffic  flow  prediction  is  to  estimate  the  future  traffic
conditions  of  the  traffic  network  based  on  historical  observa-
tions.  According to  the prediction time span,  traffic  prediction
can  be  divided  into  short-term  prediction  and  long-term
prediction. As shown in Fig. 1, traffic flow prediction has signifi-
cant application value in reducing road congestion, optimizing
vehicle  dispatch[2],  formulating  traffic  control  measures[3],
reducing environmental pollution, and so on.

Short-term traffic flow prediction research poses certain cha-
llenges.  On  the  one  hand,  due  to  the  randomness  and  uncer-
tainty of traffic flow changes, the shorter the prediction period,
the more difficult  the prediction becomes.  On the other hand,
traffic flow has a complex temporal and spatial  dependence[4].
For  example,  regarding  the  traffic  flow  on  road  A,  in  terms  of
temporal  dynamics,  sudden accidents or  rush hour periods on
the road can form an unstable traffic flow time series. In terms
of spatial correlation, as shown in Fig. 2, the traffic flow of adja-
cent  upstream  and  downstream  roads b/c in  the  same  direc-
tion  as  the  target  prediction  section a will  exhibit  stronger
correlation  with a because  of  their  closer  Euclidean  distance,
whereas the traffic  flow on the opposing road d with a  similar
Euclidean  distance  to a may  exhibit  weaker  correlation.  More-
over,  a  region  in  the  road  network  is  usually  spatially  depen-
dent  on  another  region  through  various  non-Euclidean

relationships,  such as  spatial  adjacency,  point-of-interest  (POI),
and  semantic  information.  Therefore,  how  to  model  these
dependency relationships remains a challenge.

With the development of Intelligent Transportation Systems
(ITS) related technologies, traffic information collection devices
and  transmission  technologies  are  becoming  increasingly
mature.  Devices  such  as  loop  detectors  and  vehicle  GPS  can
acquire  vast  amounts  of  real-time  traffic  data.  Therefore,  the
focus  of  traffic  flow  prediction  has  shifted  from  knowledge-
driven  to  data-driven  approaches[5].  Therefore,  this  article  will
provide  an  overview  of  research  on  machine  learning-based
traffic flow prediction.

In  this  study,  the  literature  search  was  conducted  using  the
Web of Science core database. The search scope was from 2000
to  2023,  and  the  keywords  used  in  the  search  included  traffic
prediction,  traffic  flow  prediction,  machine  learning  and  deep
learning.  We  proposed  a  novel  classification  method  for  the
literature. Firstly, the research process of traffic flow prediction
was  divided  into  the  prediction  preparation  process  and  the
model  establishment  process.  In  the  prediction  preparation
process,  the literature was categorized and summarized based
on data types and road network topologies. Next, in the model
establishment  process,  the  literature  was  classified  and
discussed  based  on  whether  spatial  dependencies  were
modeled.  Additionally,  we  provided  a  summary  of  innovative
external  modules  that  have  improved  prediction  accuracy.
Finally, we presented improvement strategies for current base-
line  models  and  discussed  the  challenges  and  research  direc-
tions in the field of traffic flow prediction in the future.

 Machine learning overview

ITS  provides  a  large  amount  of  high-quality  traffic  data  for
data-driven  traffic  flow  prediction[6].  As  shown  in Fig.  3,
machine learning and deep learning are considered subsets of
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artificial  intelligence  (AI)  and  have  grown  exponentially  in  the
past few years. These methods have performed well in predict-
ing  traffic  flow.  This  section  presents  the  theoretical  back-
ground  of  machine  learning  and  deep  learning  for  traffic  flow
prediction.

 Machine learning
Machine  learning  (ML)  techniques  are  considered  statistical

models  used  for  classification  and  prediction  based  on
provided  data.  Machine  learning  is  a  field  of  artificial  intelli-
gence  that  focuses  on  developing  predictive  algorithms  and
aims to fairly discover the intrinsic rules in large datasets rather
than  designing  models  specifically  for  a  particular  task[7,8].  ML
models  can  be  classified  into  three  categories  based  on  the
learning  technique  they  use:  supervised  learning,  unsuper-
vised learning, and reinforcement learning. The main methods
contained within each category are shown in Table 1.

 Deep learning
Around  a  decade  ago,  Deep  learning  (DL)  emerged  as  an

effective  machine  learning  technique  and  has  shown  good
performance in multiple application domains. The core idea of
deep learning methods is  to use Deep Neural  Networks (DNN)

to  learn  abstract  features  extracted  from  data.  These  algo-
rithms do not require providing pre-created features manually,
as they automatically learn complex features[27].

Deep Learning Architectures (DLAs) usually consist of nonlin-
ear  modules  that  transform  low-level  feature  representations
into higher and more abstract representations[28]. With enough
of  these  transformations,  the  model  can  learn  complex  func-
tions and structures. For example, in classification tasks, impor-
tant  features  are  typically  preserved  from  higher-level  repre-
sentations  while  suppressing  irrelevant  variations.  In  contrast
to  traditional  methods,  the  key  advantage  of  deep  learning  is
that  the  feature  selection  process  is  automatically  done  by  a
universal learning process without human intervention. With its
specifiable  depth  of  hierarchical  learning,  deep  learning
performs well  in discovering high-dimensional data structures.
Figure 4 illustrates the comparison between a traditional neural
network and a DLA, where the difference lies in the number of
hidden  layers.  Simple  neural  networks  usually  have  only  one
hidden  layer  and  require  a  feature  selection  process.  Deep
learning  neural  networks  have  two  or  more  hidden  layers,
allowing  for  optimal  feature  selection  and  model  adjustment
during  the  learning  process[29].  Currently,  deep  learning  archi-
tectures mainly include Recurrent Neural Network (RNN), Long-
Short  Term  Memory  Network  (LSTM),  Convolutional  Neural
Network  (CNN),  Graph  Convolutional  Neural  Network  (GCN),
Stacked Auto-Encoders (SAEs), Deep Belief Network (DBN), etc.

Deep  learning  is  a  subset  of  machine  learning,  so  we  will
focus  on  reviewing  and  discussing  research  that  utilizes
machine  learning  and  deep  learning  to  address  traffic  flow
prediction problems in the following sections.

 Traffic flow prediction preparation

In  this  section,  we  categorized  existing  research  from  two
aspects: the types of data used in the study and the topology of
the road network. We discussed their characteristics separately.

 Data type
We  categorize  the  input  data  for  traffic  flow  prediction

models  in  current  research  into  three  types:  fixed  detection
data, mobile detection data, and multi-source fusion data.

 Fixed detection data
Fixed  detection  data  mainly  includes  loop  detection  data,

geomagnetic detection data, and microwave detection data[30].
Their principles and characteristics are shown in Table 2.

Fixed  detection  data  is  collected  by  various  corresponding
fixed detectors, with most detectors collecting data every 30 s,
which is then aggregated into data samples with a 5-min cycle.

Table 1.    Main methods of machine learning.

Machine learning category Main methods

Supervised learning Support vector machine(SVM)[9−11]

K-nearest neighbors(KNN)[12,13]

Logistic regression[9, 13]

Linear regression[12,13 ]

Decision trees[14−19]

Random forest[20−22]

Unsupervised learning K-means clustering[9,13 ]

Principal component analysis[9]

Latent dirichlet allocation[23]

Reinforcement learning Q-learning[24,25]

Monte Carlo tree search[26]

 
Fig. 1    Benefits of traffic flow prediction.

 
Fig. 2    Schematic diagram of spatial location distribution.

 
Fig.  3    Relationships  between  Artificial  learning  (AL),  Machine
learning (ML) and Deep learning (DL).
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As  the  most  widely  used  method  for  collecting  traffic  data,
fixed detectors play a crucial role in the development of ITS. In
well-known public  datasets  in  the transportation field,  such as
PeMS,  NGSIM, and the UK Highways Agency Traffic  Flow Data,
fixed  detectors  are  used  to  collect  data.  For  example,  Zhou  et
al.[31] used traffic flow data from the PeMS dataset as input for
their  prediction  model,  and  many  other  researchers[32−36] also
utilize the PeMS dataset to train their traffic volume prediction
models.

 Mobile detection data
Mobile  detection  data  usually  refers  to  data  collected  by

floating cars and connected vehicles[30]. Vehicles equipped with
GPS  positioning  devices  or  network  modules  can  record
detailed  information  such  as  the  vehicle's  geographic  coordi-
nates and instantaneous speed in real-time while driving on the
road.  If  the  vehicle's  driving  trajectory  is  first  converted  into
traffic  volume[37,38],  travel  time,  driving  speed[39],  and  other
parameters,  and  then  matched  to  the  map,  it  can  serve  as  a
basis  for  subsequent  research,  as  shown  in Fig.  5.  Unlike  fixed
detection data, mobile detection data covers a wider and more
continuous range of vehicle driving trajectories, and is typically
used  for  studies  that  consider  road  network  or  long-range
dependencies.

 Multi-source fusion data
With  the  development  of  traffic  data  collection  technology,

people have collected more and more useful data through vari-
ous  methods.  At  the  same  time,  different  data  sources  have
their  own  applicability.  Therefore,  research  on  using  multi-
source  data[40,41] as  model  inputs  has  begun  to  emerge.  The
process  of  multi-source  data  fusion  is  shown  in Fig.  6.  Lu  et
al.[42] input  microwave,  geomagnetic,  floating  car,  and  video
detection  data  separately  into  the  prediction  model,  calculate
the  weight  of  each  individual  source  data  model's  prediction
result  based on the prediction error  separately,  and finally  use
weighted  fusion  to  obtain  the  prediction  result.  The  results
showed that the accuracy of the prediction model constructed
with multi-source data was higher than that of the single data

source prediction model.  Xiang et al.[43] innovatively proposed
a  method  of  using  fusion  data  from  surrounding  building
sensors  to  predict  traffic  volume.  Many  scholars  comprehen-
sively  consider  the  extent  to  which  data  affects  the  research
being  conducted,  and  choose  different  data  sources  to  fuse,
such  as  taxi  data  and  detector  data  fusion[44,45],  sensor  speed
data  and  map  and  traffic  platform  data  fusion[46],  etc.  Experi-
mental  results  have  proven  that  inputting  multi-source  data
into  the  model  can  improve  the  prediction  accuracy  of  the
model.  Due  to  the  ability  of  multi-source  data  fusion  to  fully
utilize  the  advantages  of  different  data  types,  and  combining
the  accurate  characteristics  of  fixed  detection  data  with  the
characteristics of full-time and space coverage of mobile detec-
tion  data,  the  use  of  multi-source  data  as  model  inputs  can
effectively improve the prediction accuracy of the model.

 Road topology
The  two  main  types  of  road  topology  structures  that  have

emerged in current research are grid structure and graph struc-
ture.

 Grid structure
Figure  7 provides  an  example  of  dividing  the  road  network

into a grid structure. The regular grid structure is convenient for
convolutional  neural  networks  to  slide  on  layers  to  extract
features.  Therefore,  many  studies[37,47] process  the  transporta-
tion  network  into  uniformly  sized  grids  to  achieve  spatial
dependency modeling. Ma et al.[39] used GPS trajectory data to
match the data onto a map. After modeling the traffic network
as  a  grid  of  images,  they  employed  CNN  for  spatial  feature
learning.  Yao  et  al.[38] divided  New  York  City  (USA)  into  grids,
with  each  grid  representing  a  region.  They  defined  the  initial
traffic volume of a region as the number of times that vehicles
departed from or arrived at the region within a fixed time inter-
val.  They  then  utilized  local  CNN  and  LSTM  to  process  spatio-
temporal information for traffic flow prediction.

 
Fig. 4    Difference between simple neural network and deep learning neural network.

Table 2.    Fixed detection data.

Type Detection
data type

Characteristic

Loop
detection data

Traffic flow
Speed
Occupancy

High detection accuracy but
detection accuracy decreases in
traffic congestion

Geomagnetic
detection data

Traffic flow
Speed
Occupancy

Unable to detect stationary and
slow-moving vehicles

Microwave
detection data

Traffic flow
Speed
Occupancy
Density
Queue

Detection errors may occur when
large vehicles obstruct the
reflection waves of small vehicles

 
Fig. 5    Track data is matched to the map.
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 Graph structure
Since  roads  are  continuous  in  real  life  and  transportation

networks are not regular Euclidean structures, there is a down-
side  to  dividing  the  road  network  into  a  grid  structure,  which
destroys  the  underlying  structure  of  the  transportation
network.  Therefore,  another  topology  structure  of  transporta-
tion networks − graph structure[32] was developed, as shown in
Fig. 8.

The  general  graphical  representation  of  a  transportation
network is typically referred to as follows:

G = (V,E,A)

The graphical representation of a transportation network can
be  classified  into  weighted  graphs[48−50] and  unweighted
graphs[51,52], directed graphs[53−55], and undirected graphs[33]. V
represents  the  nodes  in  the  graph  structure,  which  can  be
detectors[56,57],  road  segments[58,59],  or  intersections[48,49].  Each
node can contain one or multiple types of feature information,
such as traffic  volume[54],  traffic  speed[34],  etc. E represents the
edges  that  connect  the  nodes. A is  the  adjacency  matrix  that
contains the topological information of the traffic network. In a
basic adjacency matrix,  the elements are either 0 or 1. A value
of 1 indicates a connection between two nodes,  while 0 signi-
fies  no connectivity  between them.  Additionally,  the elements
in  the  adjacency  matrix  can  also  represent  the  distance
between nodes[54,57].

Convolutional  operations[32,60,61] can  extract  high-dimen-
sional features of the entire graph using the graph structure of

the  transportation  network.  Subsequent  researchers  have
made  many  improvements,  such  as  adding  attention  struc-
tures  in  ASTGCN[33],  modeling  transportation  networks  into
directed  graphs  and  adding  diffusion  processes  in  DCRNN[62],
and using dynamic graph convolution in DGCN[34]. Many exper-
imental  results[36,63,64] have  shown  that  the  graph  structure
topology improves the model prediction accuracy.

 Traffic flow prediction model

In  this  section,  we  summarize  and  analyze  existing  traffic
volume  prediction  models  or  frameworks  from  three  perspec-
tives: temporal modeling, spatial modeling, and other external
modules.

 Temporal dependency modeling
Early  traffic  flow  prediction  was  often  modeled  as  a  time

series regression problem, such as in Formula 1. Therefore, vari-
ous time series analysis methods have been applied to the field
of traffic flow prediction.

t̃ = (si, jsi+1, j · · · sn−1, jsn, j)T (1)

The historical average model calculates the average of histor-
ical data over the entire time period and directly uses the aver-
age  value  as  the  prediction.  Therefore,  the  historical  average
method has a simple calculation, but it has low prediction accu-
racy  and  is  easily  affected  by  data  outliers[65].  Auto-Regressive
Integrated  Moving  Average  (ARIMA)  is  a  commonly  used  time
series analysis model that has been successfully applied in traf-
fic flow prediction. As research progresses, various variations of

 
Fig. 6    Multi-source data fusion process.

 
Fig. 7    Grid structure of traffic network.

 
Fig. 8    Graph structure of traffic network.
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ARIMA have also appeared in the field of traffic flow prediction.
For example, Seasonal ARIMA[66] is used to capture the period-
icity  of  traffic  flow;  ARIMA  combined  with  historical  average
values[67] better simulates traffic behavior during peak periods.
Other time series traffic  prediction methods include KNN, SVR,
etc.  However,  time  series  models  usually  rely  on  the  assump-
tion of stationarity, which often contradicts the real-world traf-
fic  data.  In  order  to  simulate  non-linear  time  dependence,
neural  network-based  methods  have  been  applied  to  traffic
prediction.

As  a  powerful  neural  network  model  with  memory  function
in time series analysis, Recurrent Neural Network (RNN) uses the
previous output as the input for the next stage and repeatedly
cycles  in  the  hidden  layer,  making  the  model  output  more
comprehensive[68]. The main structure of RNN is shown in Fig. 9.

Because  RNN  has  the  problem  of  gradient  disappearance
when dealing with long-term time series data, Long Short-Term
Memory (LSTM) is  proposed as a variation of RNN. LSTM intro-
duces  gate  structures,  selectively  forgetting  the  input  of  the
previous  node  through  a  forget  gate,  and  keeping  important
features for  transmission to the next node.  The main structure
of LSTM is shown in Fig. 10.

Zhao  et  al.[69] used  LSTM  for  traffic  flow  prediction  and
compared their proposed LSTM network with other deep learn-
ing  methods  such  as  RNN  and  SAE.  The  experimental  results
show that the performance of the LSTM network is better than
other methods and is better than RNN in dealing with long time
series  problems.  Zhou  et  al.  used  the  Euclidean  distance  to

figure the spatial  correlation between traffic  networks and the
gated  recurrent  neural  network  obtains  the  temporal  depen-
dency  of  traffic  volume,  then  they  proved  that  the  model  can
better  fit  the  trend  of  traffic  flow  changes  compared  to
LSTM[31]. From the comprehensive research status, LSTM plays a
pivotal  role  in  traffic  flow  prediction  research  without  consi-
dering spatial modeling. Various optimization models and vari-
ants of the LSTM network[70] have been continuously proposed,
such  as  Bi-LSTM[71],  GRU[72],  etc.,  and  have  achieved  good
results in time series prediction.

In  2018,  Bai  et  al.  emphasized  that  Temporal  Convolutional
Networks  (TCN)  can  effectively  handle  sequence  modeling
tasks, and its performance even surpasses other models[73]. The
structure diagram of TCN is shown in Fig. 11. Due to the paral-
lel  computing  advantage  of  TCN[74] ,  many  studies  on
traffic  flow  prediction  have  started  adopting  TCN  to  extract
temporal correlations[75−77].

With  the  attention  mechanism[78] being  used  in  the  field  of
traffic flow prediction[33, 79], using Transformer to establish time
dependence[80,81] has  become  a  hot  spot  in  the  field  of  traffic
flow prediction. As shown in Fig. 12, the Transformer structure
contains  multiple  self-attention mechanisms,  so  it  can capture
the correlation coefficients of multiple dimensional features of
the  original  data  and  obtain  more  accurate  prediction  struc-
ture.  Tedjopurnomo et  al.  proposed a new Transformer model
with  time  and  date  embeddings[82],  which  avoids  the  issues
associated  with  using  recurrent  neural  networks  and  effec-
tively  captures  medium  to  long-term  traffic  patterns,  improv-
ing the accuracy of medium to long-term traffic prediction.

The  above  discussion  is  about  modeling  traffic  time  series,
but traffic flow also shows complex spatial correlations. In order
to further improve the prediction accuracy, people have begun
to consider the spatial dependence between traffic flows.

 Spatial correlation modeling
In  order  to  capture  the  spatial  dependence  between  traffic

time series, many scholars first extended the existing multivari-
ate  time  series  processing  methods.  These  mainly  include
spatio-temporal HMM[83], spatio-temporal ARIMA[84], and so on.
With  the  rise  of  deep  learning,  Convolutional  Neural  Network
(CNN) has entered the public's  view due to its  excellent ability
to  extract  high-dimensional  features,  and  the  spatial  depen-
dence modeling of traffic flow has also taken an important step
forward.

The basic CNN structure is shown in Fig.  13.  CNN completes
the feature extraction process through convolutional layers and
pooling  layers.  In  the  convolutional  layer,  a  specific  'receptive
field'  is  used  to  mine  local  area  features,  and  pooling  layer  is
used  to  screen  the  mined  features.  The  clever  combination  of
the  two  appears  alternately  several  times,  achieving  data

 
Fig. 9    Structure of RNN.

 
Fig. 10    Structure of LSTM.
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Hidden Layer
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Fig. 11    Structure of TCN.
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feature extraction for each local area. In order to model spatial
dependence,  some researchers[37−39] divide the traffic  network
into grids and model it as a 2D matrix,  and use CNN to extract
spatial features. Although this method extracts spatial features,
it ignores the underlying structure of the traffic network.

Because transportation networks are non-Euclidean in struc-
ture  in  reality,  the  modeling  method  of  dividing  the  network
into  grids  for  convolutional  operations  using  CNNs  to  some
extent destroys the structural information of the transportation
network.  However,  the  Graph  Convolutional  Neural  Network
(GCN)[32] solves this issue.  The basic structure of GCN is shown
in Fig.  14.  Unlike  CNN,  GCN  is  a  method  that  directly  propa-
gates  node  features  on  graph  data.  It  aggregates  the  feature
information of  neighboring nodes and performs feature trans-
formation to transfer the information in the graph structure to
the  feature  representation  of  the  nodes.  Specifically,  graph
convolution  utilizes  the  feature  aggregation  of  neighboring
nodes,  introduces  non-linearity  through  linear  transformation
and  activation  functions,  and  updates  the  feature  representa-
tion  of  the  nodes.  Through  multiple  iterations,  the  graph
convolutional  model  can  learn  spatial  dependencies  between
nodes and extract richer and more meaningful node represen-
tations[85]. After the spread of graph neural networks to various
domains, Yu et al.[32] proposed a new deep learning framework,
the  Spatio-Temporal  Graph  Convolutional  Network  (STGCN),
which does not use conventional  CNNs and RNNs,  but instead
represents  the  transportation  network  with  a  graph  structure

and  establishes  a  model  with  complete  convolutional  struc-
tures.  This  reduces  the  number  of  model  parameters  and
increases  training  speed.  Meanwhile,  it  also  solves  the  limita-
tion of traditional convolutional neural networks, which require
Euclidean  structures  for  convolutional  operations,  and  better
extracts spatial features.

After  the  theoretical  proposal  of  modeling  transportation
networks  with  graph  structures,  GCN  has  made  remarkable
achievements  in  the  field  of  traffic  flow  prediction[86,87].  Not
only has it improved the accuracy of traditional road traffic flow
prediction[44,80,81], but it has also appeared in multiple research
fields  such  as  bicycle  flow  prediction[60] and  subway  flow
prediction[61].  Based  on  this,  Guo  et  al.[33] proposed  a  Spatio-
Temporal  Graph  Convolutional  Network  (ASTGCN)  model
based  on  the  attention  mechanism.  This  model  models  the
dependencies  of  traffic  flow on a daily  and weekly  basis  using
GCN  with  an  added  attention  mechanism  to  more  effectively

 
Fig. 12    Structure of Transformer.

 
Fig. 13    Structure of CNN.
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capture  the  dynamic  correlations  in  traffic  data.  Diao  et  al.[34]

proposed  a  Dynamic  Graph  Convolutional  Neural  Network
(DGCNN)  for  traffic  prediction  and  designed  a  dynamic  Lapla-
cian  matrix  to  track  the  spatial  dependencies  between  traffic
data dynamically.

In  the  field  of  graph  neural  networks,  apart  from  Graph
Convolutional Neural Networks (GCN), there are other networks
that can model spatial  dependencies,  such as Graph Attention
Networks[88] (GAT), Graph Convolutional Recurrent Networks[89]

(GCRN),  Graph  Autoencoders[90] (GAE),  and  Graph  Generative
Adversarial  Networks  (Graph  GANs).  Currently,  their  applica-
tion in the field of traffic prediction is relatively limited, but they
can be considered as future research directions.

Due  to  the  enormous  advantages  of  graph  structures  in
preserving  transportation  network  features,  GCN  will  be  the
best choice for future spatial dependency modeling.

 External modules
With  the  development  of  relevant  theories,  an  increasing

number  of  researchers  have  not  only  modeled  traditional
spatio-temporal dependencies but also added various auxiliary
modules to the entire prediction model to further improve the
accuracy  of  traffic  flow  prediction.  For  example,  attention
mechanisms[4,33,79,91],  residual  connections[47,92,93],  and  other
modules  were  incorporated.  In  this  section,  we  will  focus  on
discussing some innovative modules.

 Causal module[64]

An  increasing  number  of  traffic  prediction  models  have
started  to  overly  focus  on  spatio-temporal  correlations  while
neglecting other factors that contribute to observed outcomes.
Moreover,  the  influence  of  spatio-temporal  correlations  is
considered  unstable  under  different  conditions[94].  Random
contextual conditions in historical observation data can lead to
erroneous correlations between data and features[95], causing a
decline in model performance. To accurately capture the corre-
lations  between  observed  outcomes  and  influencing  factors,
Deng et al.  proposed a spatio-temporal neural structure called
causal models from a causal relationship perspective[64]. Specifi-
cally,  they  first  constructed  a  causal  graph  to  describe  traffic
prediction and further analyzed the causal relationships among
input  data,  contextual  conditions,  spatio-temporal  states,  and
prediction outcomes. They then applied the backdoor criterion

to eliminate confounding factors during the feature extraction
process.  Finally,  they  introduced  a  counterfactual  representa-
tion inference module to extrapolate the spatio-temporal states
from factual scenarios to counterfactual scenarios in the future.
Experimental  results  demonstrated  that  the  model  exhibits
superior performance and robust anti-interference capabilities.

 Weather module[91]

Weather,  as  one  of  the  significant  factors  influencing  traffic
flow[96,97] , has received considerable attention from researchers
and  has  been  integrated  into  prediction  models[98−101].  Yao  et
al.  developed  a  hybrid  deep  learning  model  called  DLW-
Net[102],  which  focuses  on  adverse  weather  conditions.  The
model  utilizes  LSTM  to  capture  the  variations  in  both  traffic
flow and weather data.  Li  et al.[103] and Shabarek et al.[104] also
proposed  deep  learning  models  for  traffic  flow  prediction
under  adverse  weather  conditions.  Experimental  results  have
shown  that  considering  weather  factors  in  prediction  models
improves the accuracy to some extent.

However,  Zhang et  al.  pointed out  that  many existing  stud-
ies  on  traffic  flow  prediction  considering  weather  factors  only
use specific weather conditions as input features, resulting in a
lack  of  generalizability  to  accurately  predict  traffic  under  vari-
ous  adverse  weather  conditions[91].  To  address  this  issue,  they
developed a  Deep Hybrid  Attention (DHA)  model  that  consid-
ers  light  rain,  moderate  rain,  heavy  rain,  light  fog,  haze,  fog,
moderate  wind,  and  strong  wind.  In  the  DHA  model,  the
weather  module  is  constructed  using  a  ConvLSTM  network
with an added attention mechanism, allowing it to capture the
spatio-temporal patterns of weather data. According to experi-
mental  results,  the  DHA  model  achieves  satisfactory  perfor-
mance under adverse weather conditions.

 Delay module[63]

The  spatial  dependency  between  each  location  in  a  traffic
system is  highly dynamic rather than static,  as  it  changes over
time  due  to  travel  patterns  and  unexpected  events.  On  one
hand, due to the division of urban functionalities, two locations
that  are  far  apart  may  exhibit  almost  identical  traffic  patterns
due  to  their  similar  functions.  This  implies  that  spatial  depen-
dency can be long-distance in certain cases.  However,  existing
Graph Neural  Network  (GNN)  models  suffer  from oversmooth-
ing  issues,  making  it  difficult  to  capture  long-distance  spatial
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Fig. 14    Structure of GCN.
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correlations.  On  the  other  hand,  the  impact  of  unexpected
events on the spatial dependency of the traffic system is unde-
niable.  When  a  traffic  accident  occurs  at  a  location,  it  takes
several  minutes  (delay)  to  affect  the  traffic  conditions  of  adja-
cent  locations.  This  characteristic  is  often  overlooked  in  GNN
models.

To  address  these  issues,  Jiang  et  al.  proposed  a  PDFormer
model[63] based  on  a  spatio-temporal  self-attention  mecha-
nism.  It  mainly  consists  of  a  spatial  self-attention  module  that
models  local  geographic  neighborhoods  and  global  semantic
neighborhoods, as well as a traffic delay-aware feature transfor-
mation module  that  models  the  time delay  in  spatial  informa-
tion propagation. The PDFormer model achieves high accuracy,
computational efficiency, and interpretability.

 Future directions and challenges

Although scholars have conducted extensive research in the
field  of  traffic  flow  prediction,  there  is  still  a  lot  of  work  to  be
done  in  this  area.  We  present  in Table  3 the  current  perfor-
mance  of  baseline  models  on  public  datasets  and  potential
optimization  methods  that  can  be  considered  in  the  future.
Furthermore, we discuss and analyze the future research direc-
tions in traffic flow prediction.

 Traffic flow prediction in extreme conditions
So far, the prediction of traffic flow under normal conditions

has  been  well  developed,  but  it  is  also  worth  exploring  the
issue  of  predicting  traffic  flow  under  extreme  environments.
For example, during holiday peak periods or after accidents, or
in certain specific regions during the rainy season or prolonged
icy conditions on the road during extreme weather.

 Long-term dependency modeling
Traffic  flow  usually  exhibits  a  very  long-term  time  depen-

dence,  and the  current  traffic  situation may be  strongly  corre-
lated with a day, a week, or even several months ago. However,
the  most  popular  non-linear  time  correlation  modeling
method,  RNN  and  its  various  variants,  are  difficult  to  model
long-term  dependent  correlations.  In  addition,  RNN  is  difficult
to parallelize, so the training time cost is relatively high. There-
fore,  future research can focus on modeling long-term nonlin-
ear time dependencies.

 Consider external spatial factors
We have seen that  some scholars  have begun to  pay atten-

tion  to  external  factors  such  as  weather[54] and  geographical
information[105] on  the  impact  of  traffic  flow,  but  the  complex
dependencies  between  traffic  flow  and  external  factors  also
include  various  aspects  such  as  road  characteristics,  traffic
demand,  road  planning,  vehicle  delay,  flow  control  strategies,
etc.

 Multi-source data fusion
As we discussed earlier, researchers have explored the use of

multi-source  data  fusion as  model  input,  and some have used
cross-domain data[43,46,106] to  predict  traffic  flow.  However,  the
heterogeneity  of  multi-source  data  poses  a  significant  chal-
lenge  for  data  fusion,  and  it  may  be  necessary  to  adjust  the
data  from  three  aspects:  data  structure,  data  parameters,  and
data distribution.

 Model running efficiency
As the accuracy of the model improves, the model structure

becomes more complex and multiple algorithms are combined,
which  incurs  a  higher  time  cost.  To  meet  the  requirements  of
real-time  prediction  tasks,  it  is  also  important  to  focus  on  the
efficiency  of  the  model  and  reduce  the  time  cost  of  model
operation.

 Model evaluation metrics
Common  evaluation  metrics  for  traffic  flow  prediction

include  Mean  Absolute  Error  (MAE),  Root  Mean  Square  Error
(RMSE), and Mean Absolute Percentage Error (MAPE), which are
calculated  by  averaging  all  predicted  points  in  the  model.
However, not all prediction points have the same level of error
when evaluating performance.  Generally,  the greater the stan-
dard  deviation,  the  more  difficult  it  is  to  predict  traffic  flow  at
that  location.  For  example,  busy  intersections  during  peak
hours may have larger prediction errors, while roads in the early
hours may have higher accuracy with smaller errors. Therefore,
evaluating metrics that assign weights to difficult and easy-to-
predict  points  and  then  calculating  the  final  error  value  can
more accurately describe the performance of the model.

 Model generalization capabilities
Most prediction models are trained and tested only on data

from  specific  road  segments,  which  may  result  in  reduced
model  performance  when  predicting  traffic  flow  on  certain
road  segments.  Therefore,  how  to  effectively  improve  the
generalization ability of the model is also a continuous concern
for the future.

 Dynamic spatial dependencies for multi-step
forecasting

Most  current  prediction  models  assume  that  the  spatial
dependencies  are  fixed.  However,  in  a  real-world  traffic
network, spatial dependencies are dynamic with different time-
steps,  which  are  based  on  many  other  factors,  such  as  acci-
dents, weather conditions, and rush and non-rush hours. There-
fore, an investigation on how to develop models for capturing
the  dynamical  spatial  dependencies  to  improve  performance
across multi-step predictions is required.
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