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Abstract

Traffic accidents are a leading cause of unnatural human fatalities. Numerous researchers have investigated ways to predict traffic fatalities and interpret the
prediction results. However, they have been unable to balance prediction accuracy and interpretability, and they usually lack emphasis on fatal accidents
due to the small sample size of fatalities in the dataset. To address these issues, this paper proposes a framework for traffic accident severity prediction with
four steps. First, the traffic accident dataset, which includes features related to people (demographics), vehicles, roads, the environment, and accidents, is
constructed and preprocessed. Then, the CatBoost algorithm is employed to classify traffic accident severity (fatal/non-fatal). Five other algorithms -
LightGBM, XGBoost, a gradient boosting decision tree, an artificial neural network, and multinomial logit - are employed for comparison. Next, various
evaluation metrics are used to comprehensively evaluate the prediction results. Finally, the Shapley additive explanation (SHAP) algorithm is used to
interpret the effects of the factors that contribute to fatal traffic accidents. The results show that CatBoost significantly outperforms the other five
algorithms, with precision, recall, and F1-score values of 0.912, 0.942, and 0.927, respectively. Moreover, the SHAP algorithm intuitively shows the
relationship between fatal accidents and contributing factors. Specifically, the presence of high-grade roadways, bad weather, substandard vehicles, and
large trucks significantly increases the probability of traffic accident deaths. The proposed framework is efficient for traffic fatality prediction and

interpretation and thus can provide theoretical guidance for transportation infrastructure planning, driver training, and traffic law formulation.
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Introduction

According to the World Health Organization (WHO), nearly 1.3
million people die and 50 million are injured in preventable traffic
crashes globally each year, and traffic accidents are the leading
cause of death for children and young peoplel'l. WHO also reported
that the number of traffic accident casualties in China in 2019 was
estimated at 250,272, ranking first in the world. Two important
issues related to traffic safety are accident frequency and accident
severity; this paper focuses on the latter. Traffic accident severity is
subject to various factors that are related to demographics (age and
gender), vehicles (mode of travel, vehicle type, and vehicle condi-
tion), roadways (road class and road type), the environment
(weather and lighting conditions), and accidents (accident time,
cause, and type), etc. Therefore, the ability to predict traffic fatalities
accurately and analyze their causes in detail is critical to reducing
the severity of traffic accidents.

Numerous studies have been conducted to predict the risk or
severity of traffic accidents, with the prediction results interpreted
using statistical models!Z. Due to the unobserved heterogeneity in
traffic accident data (such as driver traits, accident-specific attri-
butes, etc.) and the fact that accident severity is an ordinal variable,
random parameter and ordered discrete choice models, as well as
their variants, have been shown to have a wide range of applica-
bility. Such models include the random-parameter ordered logit
modelB], hierarchical Bayesian random-intercept logit model™,
random-parameter logit models with unobserved heterogeneity in
means and variances!>®, random-parameter generalized ordered
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probit model with heterogeneity in means!’], correlated random-
parameter bivariate tobit model®, binary scobit model®, random-
thresholds random-parameters hierarchical ordered probit
model'%, conditional autoregressive Poisson-lognormal modell'"],
etc. Considering that no-injury accidents may be subject to two
underlying injury severity levels, Fountas & Anastasopoulos!'Z
proposed a zero-inflated hierarchical ordered probit model with
correlated disturbances to explore contributing factors and their
effects on single-vehicle accident severity. Ahmed et al.l®! collected
multi-year segment-specific freeway crash data before and after a
speed limit increase, selected various explanatory variables such as
road traffic flow characteristics, geometric characteristics, and road
surface, and investigated the impacts of the speed limit increase
on injury and non-injury crash rates using a correlated random-
parameter bivariate tobit model. Munira et al.l''l proposed a multi-
variate spatial (conditional autoregressive) Poisson-lognormal
model to explore the effects of contributing factors, which included
traffic characteristics, roadway geometry, built environment charac-
teristics, and pedestrian exposure volume on pedestrian crash se-
verity (fatal injuries, disabling injuries, and non-disabling injuries)
at signalized intersections in the Austin, Texas (USA) area.
Traditional statistical models for traffic accident data have simple
structures, require less computation, and are easy to interpret.
However, their learning capabilities are weak, leading to lower
prediction accuracy. For example, Iranitalab & Khattak!'3! showed
that a multinomial model was the weakest in a comparison of four
statistical and machine learning methods for accident severity
prediction. In recent years, machine learning algorithms for traffic
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accident prediction and causal analysis have gained increasing
attention, offering the advantage of capturing the association
between accident severity and contributing factors more efficiently
and accurately than statistical models, thereby significantly improv-
ing prediction accuracy. Common machine learning algorithms
include Bayesian networks!'¥, support vector machines!’?, artificial
neural networks (ANNs), and deep neural networks!'617], etc. Traffic
accident data generally include numerous categorical features, and
thus, an association rule algorithm is an appropriate choice. Cail'8
collected traffic accident data from a city in northern China from
January to September 2018, mined multi-dimensional rules using an
improved association rule algorithm, and revealed the interaction
effects of different features as well as their influence on accident
type and severity. With an increased focus on efficient algorithm
performance in large-scale machine learning methods, boosted
learning is a method that has developed rapidly and offers the
benefits of fast training and superior performance. Numerous
researchers have applied boosting algorithms for traffic accident
severity prediction and causal analysis. Commonly used algorithms
include gradient boosting decision tree (GBDT)!'920], XGBoost[2'],
LightGBMI2), etc.

Machine learning achieves high prediction accuracy due to its
strong learning capability. However, as a black-box model, it lacks
interpretability, making it difficult to analyze the effects of contribut-
ing factors. Interpretable machine learning has addressed this prob-
lem effectively and is now widely applied to interpret traffic acci-
dent severity. Commonly used algorithms include permutation
feature importancel?3, partial dependency plots2425], local inter-
pretable model-agnostic explanation (LIME)!'426], and Shapley addi-
tive explanation (SHAP)[27.28], etc. The SHAP algorithm is applied the
most extensively due to its integration of global and local interpre-
tation, its solid theoretical foundation, and its rich functions. Yang
et al.l2% selected features related to population, road networks, and
land use, and employed the XGBoost algorithm to classify three
levels of crash severity of freight trucks, i.e., possible injury crash,
evident injury crash, and fatal injury crash and analyzed the correla-
tion between the features using the SHAP algorithm. Guo et al.3%
used the XGBoost algorithm to predict three types of accidents
involving elderly pedestrians, i.e., property damage, injury, and fatal,
with areas under the curve (AUCs) of 81%, 68%, and 74% respec-
tively, and then employed the SHAP algorithm to interpret the
impacts of the contributing factors. Kang & Khattak!'”) used deep
neural networks to predict crash severity and addressed inter-
pretability using SHAP values.

In summary, although numerous studies on the prediction and
interpretation of accident severity have been conducted, they have
five primary shortcomings. First, earlier studies have been unable to
balance prediction accuracy and interpretability. Specifically, statis-
tical models have good interpretability but offer relatively low
prediction accuracy, whereas studies that use machine learning
algorithms usually pursue only high accuracy and ignore the analy-
sis and interpretation. Both prediction accuracy and interpretability
are crucial. High accuracy ensures that the model effectively
captures the relationship between accident severity and influential
factors, while interpretability allows humans to understand the
learned rules. Second, traffic accident data usually contain many
categorical features, and algorithms such as LightGBM, XGBoost,
and ANN require manual preprocessing (e.g., one-hot encoding) for
these features, which may lead to information loss or increased
dimensionality. Therefore, they are not the most efficient or effec-
tive choices for this kind of data. Third, the number of fatal acci-
dents in a dataset is usually very small, so the findings for fatalities
often lack persuasiveness. Some studies have combined fatal
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accidents with injury accidents, which diminishes the emphasis on
fatalities. Fourth, many studies have focused on specific scenarios
(e.g., motorway), groups of people (e.g., elderly people), or modes of
transport (e.g., large vehicles), leading to a lack of generalizability.
Fifth, in some studies, each categorical feature contains relatively
few feature values to facilitate modeling and interpretation, which is
not conducive to obtaining high accuracy or comprehensive in-
depth analysis. For example, the categorical feature 'time' is usually
designated in terms of four seasons instead of each of the twelve
months, and 'vehicle type' usually includes pedestrians, non-motor
vehicles, and motor vehicles instead of bicycles, motorcycles, etc.

To address these shortcomings in the current literature, this paper
proposes a framework for traffic accident severity (fatal/non-fatal)
prediction and causal analysis based on CatBoost and SHAP.
CatBoost efficiently handles datasets with many categorical fea-
tures, making it well-suited for classification tasks. This framework
leverages CatBoost's strong learning capability to maximize predic-
tion accuracy and capture complex nonlinear relationships in acci-
dent severity. To enhance interpretability, SHAP was applied for a
detailed mechanism analysis. Four popular machine learning algo-
rithms and a statistical model for accident severity analysis, i.e.,
LightGBM, XGBoost, GBDT, ANN, and multinomial logit (MNL), were
employed for comparison to verify the effectiveness of CatBoost.
Also, official traffic accident data collected in a city in Jiangsu
Province, China, supports this research.

The three primary salient contributions of this paper are as
follows. First, the accurate prediction of fatal traffic-related acci-
dents is achieved using an advanced boosting algorithm, i.e.,
CatBoost, which is designed for datasets that include many categori-
cal features. The prediction results indicate that CatBoost signifi-
cantly outperformed the other five widely used algorithms in terms
of accident severity analysis. Second, the effects of multiple traffic
fatality contributing factors that are related to people, vehicles,
road, environment, and accident characteristics are analyzed using
SHAP. This detailed analysis captures the four perspectives referred
to here as feature importance, total effect, main effect, and interac-
tion effect to provide a theoretical basis for traffic infrastructure
planning, driver safety training, and traffic law formulation. Third,
the official dataset used in this study includes a variety of scenarios,
road types, and drivers and passengers of different ages and has a
high fatality rate, which helps to ensure emphasis on fatal accidents
and the representativeness of the data.

Methodology

Proposed framework

This study proposes a practical framework for fatal traffic acci-
dent prediction and causal analysis based on interpretable machine
learning. The framework has the following four steps:

e Data preparation: A traffic accident dataset, which includes
people (demographic information), vehicle, road, environment, and
accident characteristics, is collected and preprocessed.

e Model construction: The CatBoost algorithm is employed to
classify fatal and non-fatal accidents. Five algorithms, LightGBM,
XGBoost, GBDT, ANN, and MNL, are employed for comparison
against CatBoost.

e Model evaluation: Various evaluation metrics, i.e., precision,
recall, F1-score, the receiver operating characteristic (ROC) curve,
and AUC, are used to evaluate the prediction results.

e Model interpretation: The SHAP algorithm is used to reveal the
distribution of the different contributing factors and their impacts
on fatal accidents from four perspectives: feature importance, total
effect, main effect, and interaction effect.
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Figure 1 shows the structure of the proposed framework, and
Fig. 2 shows the model structure of CatBoost and SHAP. The four
steps are discussed in detail in the paragraphs that follow the figure.

Data preparation

This study used official traffic accident data collected by the traf-
fic department of a city in Jiangsu Province, China, from 2016 to
2020. The city is located in the Yangtze River Delta region and has an
area of 10,030 square kilometers and a population of 4.55 million. Its
geographical landscape features a mix of urban districts, suburban
towns, and rural areas, contributing to a variety of road environ-
ments. The city's transportation infrastructure consists of arterial
roads, expressways, highways, and local streets, facilitating both
intra-city mobility and regional connectivity. Additionally, the city
experiences four distinct seasons, with occasional extreme weather
conditions such as heavy rainfall and fog, which can influence driv-
ing behavior and accident risk. The dataset utilized in this study is
derived from officially recorded traffic accident reports collected by
the local government. These reports are compiled through on-site
police investigations and contain detailed records of traffic inci-
dents. The dataset includes the following key components:

« Accident characteristics: Time, location, and severity classifica-
tion (fatal, injury, and property damage-only).

+ Road conditions: Type of roadway, lane configurations, traffic
control measures, and surface conditions.

+ Environmental factors: Weather conditions, lighting, and visibi-
lity at the time of the accident.

+ Vehicle and driver information: Type and number of vehicles
involved, driver demographics, license status, and recorded
violations.

« Contributing factors: Identified causes such as speeding, reck-
less driving, impaired driving, or pedestrian-related factors.

Step 1: Data preparation

Dataset construction Data preprocessing

¢ Crash information |:> * Feature selection
* People information * Feature value processing

Step 2: Model construction

Model
Input +  CatBoost
© Age + LightGBM Output
* Gender [Z» » XGBoost [~ ¢ Fatalcrash
*  Weather « GBDT ¢ Non-fatal crash
® e * ANN
« MNL

Step 3: Model evaluation

Metrics
e Precision ¢ ROC curve
* Recall « AUC
¢ F1-Score

Step 4: Model interpretation

SHAP
¢ Importance .
* Total effect .

Main effect
Interaction effect

Fig. 1
analysis.

Framework for fatal traffic accident prediction and causal
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The dataset contains a total of 7,579 traffic accidents and 17,777
pieces of demographic information and includes three accident
severity levels, namely, fatal, injury, and property damage. A total of
3,367 fatal accidents, 3,985 injury accidents, and 227 property
damage-only accidents are included in the dataset.

The data preprocessing process is as follows. First, the traffic acci-
dent data and demographic data were merged according to the
‘accident number'. Then, unnecessary features (‘accident number’,
'road number, etc.) and redundant features ('initial cause of acci-
dent’, etc.) were deleted. Next, to ensure the focus on fatal acci-
dents, 'property damage' accidents and 'injury' accidents were
combined into one class, i.e., non-fatal accidents. The machine
learning algorithms used in this paper have a strong nonlinear
mapping capability, whereby the rich feature values are conducive
to improving the prediction results, so the original feature values
were retained as much as possible and not merged. For example,
months were not merged into seasons, weeks were not converted
to weekdays and weekends, and the unit (h) used for 'accident time'
was retained. Finally, the preprocessed dataset contained 17,777
records and 28 categorical features. The feature 'accident severity'
(which includes fatal and non-fatal accidents) was employed as the
target, whereas the other 27 features were employed as input
features.

Table 1 presents the data distribution. Some of the features and
values are intended specifically for use in this paper and are
explained further as follows. For the drivers' age, '(20, 307', for exam-
ple, means that a driver is older than 20 or 30 years old or younger.
'‘Overloaded' refers to transport trucks that are carrying or weigh
more than the maximum allowable load or passenger vehicles (cars,
buses, etc.) that are carrying more than the maximum allowable
number of passengers. 'Combination vehicle' (under 'Mode of trans-
port') refers to a combination of trucks, trailers, or semi-trailers that
transport freight. 'Pier' (under 'Median divider' and 'Roadside protec-
tion') refers to a line of spherical piers that have a concrete base.
Although 'Side-swipe' and 'Side collision' (both under 'Accident
type') may sound similar, a side-swipe typically leads to a much less
serious accident than a side collision. 'Side-swipe' refers to one vehi-
cle brushing against the side of another vehicle, usually causing only
paint damage and potentially knocking both vehicles slightly off
course. 'Side collision' refers to one vehicle crashing headlong into
the side of another vehicle. In this case, the two vehicles are roughly
perpendicular to each other, which causes a much greater impact
than a side-swipe, where the two vehicles are roughly parallel to
each other. 'Accident liability' refers to the responsibility of a party
or parties for an accident. For the road administrative class, in China,
roads are classified based on the official administrative classification
system established by the Ministry of Transport. The classification is
as follows:

+ National roads: Major highways forming the national trunk road
network primarily connecting provincial capitals and major cities.

* Provincial roads: Regional highways linking major cities within a
province and serving as key transportation routes at the provincial
level.

+ Country roads: Roads managed at the county level, mainly
connecting towns and villages to higher-level road networks.

» Township roads: Roads managed at the township level, facilitat-
ing local transportation within townships and linking villages.

+ Urban roads: Roads within city boundaries, including express-
ways, arterial roads, secondary roads, and local streets, primarily
serving intra-city traffic.

For the road type, road accesses refer to minor roads or entry-
ways that connect private properties or secondary roads to the main
road network. These include, but are not limited to, driveways,
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Fig.2 Model structure of CatBoost and SHAP.

access roads to industrial facilities, and minor roads leading to
residential or commercial buildings.

As shown, the dataset has rich features related to people (age,
gender, etc.), vehicle (mode of transport), road (administrative class
of the highway, road structure, etc.), environment (weather, visi-
bility, etc.), and accident (accident cause, accident type, etc.).

Model construction

In the proposed framework, LightGBM, XGBoost, GBDT, ANN, and
MNL are employed for comparison purposes against CatBoost. The
underlying principles of these algorithms have been described in
detail in numerous studies and thus are not repeated here.
However, CatBoost is discussed briefly.

CatBoost, an open-source machine learning algorithm developed
by the Russian company Yandex in 2017, is a high-performance
boosting algorithm framework with an oblivious decision tree as the
base predictor, which is good at handling categorical featuresB'l.
CatBoost uses the ordered TS (target statistics) algorithm to handle
the categorical features efficiently and uses the ordered boosting
algorithm to solve the problem of prediction shift. The ordered TS
and ordered boosting algorithms are discussed in detail in the
subsequent paragraphs.
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During the modeling process for machine learning, one-hot
encoding is typically used to process categorical features to make
the values of each feature equidistant from the origin. However,
such encoding can cause a curse of dimensionality for high-cardinal-
ity categorical features. Greedy TS is a standard solution that substi-
tutes the average target values over the training examples using the
same category for the corresponding feature value of a specific
sample and introduces a prior distribution term to reduce the noise
and impacts of the low-frequency categories on the overall data
distribution. However, this approach can cause target leakage. To
this end, CatBoost uses the ordered TS that generates a random per-
mutation, introduces the concept of a sequential order of samples,
and uses only the average target values of the samples that appear
before a specific sample during the training process; see Eq. (1).

) ijEDk 1(xj.=x;'c) yj+ab

ol

X =

foeDk 1(x“'f:x5(‘ +a )
Dy = {xj lo(j) < o (k) } , when training
Dy = D, when testing

where, xj( and %} are the values of the i-th feature of the k-th sample
before and after processing, respectively; D is the whole sample set;
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Table 1. Data description.
Feature Value Abbreviation of value
Age (0,201 /(20,301 / (30,401 / (40,501 / (50,601 / (60,70] / (70,) 0-20/20-30/30-40/40-50/50-60/60-70/> 70
Gender Female / Male -

Driving with license
Driving with seatbelt
Drunk driving
Fatigued driving
Speeding
Overloaded
Hit-and-run driving
Mode of transport

Road administrative class
Road type

Traffic control
Median divider
Roadside protection
Road condition
Road material

Road surface

Month

Day of week
Hour

Weather

Lighting conditions
Visibility

Accident cause

Accident type

True/ False

True / False / Unknown

True / False

True/ False

True / False

True / False

True/ False

Pedestrian / Bicycle / Electric bicycle / Motorcycle / Tricycle / Car / Bus / Small
truck / Large truck / Combination vehicle / Other

National road / Provincial road / Country road / Township road / Urban road
Road segment / Intersection / Road access / Ramp / Bridge or tunnel / Elevated
road / Other

No control / Marking / Sign / Traffic light / Other

No divider / Greenbelt / Pier / Guardrail

No protection / Greenbelt / Pier / Guardrail / Other

Intact / Damaged

Asphalt / Cement / Other

Dry / Wet / Ponding / Icy / Other

January / February / March / April / May / June / July / August / September /
October / November / December

Monday / Tuesday / Wednesday / Thursday / Friday / Saturday / Sunday
0/1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/
21/22/23

Sunny / Cloudy / Rainy or snowy / Foggy / Other

Night without street lamp / Night with street lamp / Nightfall / Dawn / Daytime
<50 m/50-100 m/100-200 m /> 200 m

Pedestrian or non-motor vehicle violation / Distracted driving/ Natural disaster
/ Substandard vehicle / Driving in the wrong lane / Failure to give way
according to traffic rules / Traffic light or sign violation / Failure to maintain
safe distance / lllegal parking / lllegal overtaking or lane changing / Driving in
the opposite direction / Other

Overturned vehicle / Bumping into fixed object / Bumping into pedestrian(s) /

T/F

T/F/U

T/F

T/F

T/F

T/F

T/F

MOD1 /MOD2 / MOD3 / MOD4 / MOD5 / MOD6
/MOD7 / MOD8 / MOD9 / MOD10/MOD11
ADM1/ ADM2 / ADM3 / ADM4 / ADM5
RT1/RT2/RT3/RT4/RT5/RT6/RT7

TC1/TC2/TC3/TC4/TC5
c/c2/c3/c4
SP1/SP2/SP3/SP4/SP5
RC1/RC2
RM1/RM2/RM3
RS1/RS2/RS3/RS4/RS5

Jan/Feb/Mar/ Apr/May/Jun/Jul/Aug/
Sept / Oct/ Nov / Dec
Mon / Tue / Wed / Thur / Fri / Sat / Sun

W1/W2/W3/W4/W5
LC1/LC2/LC3/LC4/LC5
VIS1/VIS2/VIS3/ VIS4

AC1/AC2/AC3/AC4/AC5/AC6/ACT7 /AC8/
AC9/AC10/AC11/AC12

AF1/AF2/AF3/AF4/AF5/AF6/AF7/AF8

Side-swipe / Side collision / Rear-end collision / Head-on collision / Other

Accident liability

Accident severity Injury or property damage (non-fatal) / Fatal

Unknown / No liability / Secondary / Equal / Primary / Full

AL1/AL2/AL3/AL4/AL5/AL6
ASO/ AS1

Dy is the sample set used to calculate £%; ¢ is a random permutation;
1 is the indicator variable; y; is the target of the j-th sample, and a and
P are parameters and a common setting for P is the average target
value over the data set.

This concept is adopted again when constructing trees during the
boosting stage. A total of n trees is retained (n is the number of
samples), where only part of the samples is used for each tree. In
short, the CatBoost algorithm has excellent performance and
robustness and thus is well suited for regression and classification
tasks that have numerous categorical input features.

Model evaluation

Accident severity prediction is a typical classification problem, so
commonly used evaluation metrics, i.e., precision, recall, and F1-
score, are employed here. Equations (2)—(4) provide the calculations
for these metrics, respectively.

TP
Precision = ———— 2)
TP+FP
TP
Recall = ——— 3)
TP+FN
Fl-score = 2-Pre.cz:sion-Recall @)
Precision+ Recall

where, TP is true positive, FP is false positive, and FN is false negative.
To compare algorithm performance more intuitively, an ROC
curve is used. The horizontal coordinate of the ROC curve is the
false positive rate (FPR), defined in Eq. (5), whereas the vertical
coordinate is the true positive rate, namely, the recall, defined in
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Eqg. (3). The measurement variable AUC is the total area under the
ROC curve, with a larger area indicating better model performance.
FP
FPR= ———— &)
FP+TN
where, FPR is false positive rate, FP is false positive, and TN is true

negative.

Model interpretation

Following the accident severity prediction and performance eval-
uation, a popular interpretable machine learning algorithm, i.e., the
SHAP algorithm, was employed to explain and analyze the model
results. SHAP was proposed by Lundberg et al.l*?1in 2017 to explain
individual predictions based on game-theoretic optimal Shapley
values. SHAP offers both global and local interpretability, with
support for feature importance, interaction effects, and visualiza-
tion, especially for tree-based models. SHAP interprets the pre-
diction results of machine learning algorithms by calculating the
Shapley value of each feature value of each sample. A positive Sha-
pley value indicates that the feature value of a specific sample
increases the predicted probability, whereas a negative value indi-
cates a decrease in the probability. The Shapley value is calculated
as shown in Egs (6) and (7).

S!'(p—1S|-1)!
sy = Y B as v -valsy  (©)

Sl p}

vl (§) = [ f,e+  xp)dPrgs ~ Ex(FX)) ()

Page 219 of 226



Digital Transportation
and Safety

where, ¢;(val) is the Shapley value of the j-th feature of a specific
sample; p is the number of features; S is the subset of features used in
the modeling process; £ is the fitted function; x is the vector of the
feature values of the instance to be explained; X is the whole sample
set; and val(S U {j}) — val(S) is the marginal effect of the j-th feature.

The absolute Shapley value indicates the degree of influence of
the feature value of a specific sample on the predicted probability.
Therefore, the feature importance can be measured using the aver-
age absolute Shapley value; see Eq. (8).

1
=5 Zl 7| @®)

where, N is the number of samples, and /; is the importance of the j-th
feature.

SHAP can also be used to explore the interaction effect between
two features via the Shapley interaction index. The underlying prin-
ciple of the index is that the individual effects of two features can be
subtracted from their combined effect to obtain their pure interac-
tion effect, as expressed in Egs (9) and (10).

S|'(p—1S|-2)!
$ij= %51‘/(5)7(1' #J) )
SCl P} P

5;i(8) = S Ul N~ fS ViD= A VN +AS)  (10)
where, ¢; ; is the Shapley interaction index value of the i-th and j-th
features.

Results and discussion

Model training and prediction results

The dataset was divided into a training set, validation set, and test
set with a ratio of 6:2:2, respectively. The hyper-parameters of the
CatBoost, LightGBM, XGBoost, GBDT, ANN, and MNL algorithms
were selected using a grid search and five-fold cross-validation.
Table 2 shows the results of the parameter selection.

Table 3 and Fig. 3 show the prediction performance for all six
compared algorithms in terms of the test set. As shown in Table 3,
the precision, recall, and F1-score values for CatBoost are all above
0.9, which is significantly higher than those of the other five algo-
rithms. Figure 3 shows that the ROC curve for CatBoost is closer to
the upper left than that of the other algorithms, also indicating

Table 2. Parameter selection for each compared algorithm.

Fatal traffic accident prediction and causality

CatBoost's better prediction performance. CatBoost integrates a
practical categorical feature processing module into the training
process, which makes it more suitable than the other algorithms for
prediction tasks that have a large number of categorical features. In
addition, the base predictor in CatBoost is an oblivious tree with the
same splitting criterion across an entire level, which offers the bene-
fits of being balanced and less prone to overfitting compared to the
other five algorithms. By contrast, LightGBM does not process cate-
gorical features as efficiently as Catboost. XGBoost and GBDT do not
have the capability to handle categorical features automatically, so
these features must be handled manually using a one-hot encoder.
In addition, MNL assumes linear relationships and independence of
irrelevant alternatives, which can limit its ability to capture complex
patterns. ANN is more flexible but requires large datasets and exten-
sive tuning to achieve optimal performance. As a result, both
models exhibited unsatisfactory performance in this analysis.

Importance and total effects

Figure 4a, b, respectively, shows the importance of each feature
and the total effect of the factors that contribute to fatal accidents.
Figure 4a measures the feature importance by the average absolute
Shapley value. In Fig. 4b, the vertical coordinate indicates the differ-
ent features, and the horizontal coordinate indicates the Shapley
value of each feature value of each sample. The positive values indi-
cate a greater probability of a fatal accident, whereas the negative
values indicate less probability. The color of the dots represents the
magnitude of the feature values, corresponding to the color bar on
the right. Figure 4 shows that the road administrative class, accident
cause, and accident type are the most important features, and their
influence on the probability of fatal accidents has significant linear
characteristics. The temporal features, i.e.,, month, day of week, and
hour, are also important factors, but their influence is more complex
than the others. With regard to demographic features, older ages
generally increase the probability of fatalities. Also, male drivers
have a greater probability of death than females because male
drivers typically can be over-confident in their driving skills, are less
attentive, have lower levels of risk perception, and are more likely
to perform risky driving behaviorsi3l. Therefore, safety training,
especially for male drivers, should be strengthened.

Algorithms Parameters Parameter range Optimal parameters
CatBoost Learning rate /, 1,€{0.1,0.2,0.3,0.5} [,=0.1
Number of estimators N, N, € {300, 500, 1,000, 2,000} N, =500
Depth of each tree d de{9,10,11,12} d=10
LightGBM Learning rate /, I, €{0.01,0.05,0.1,0.2} [,=0.1
Number of estimators N, N, € {300, 500, 1,000, 2,000} N, = 1,000
Maximum depth of each tree d d € {10, 20, oo} d= oo
Maximum tree leaves of each tree m/ ml € {10, 31, 100, 200} ml =100
XGBoost Learning rate /, 1,€{0.1,0.2,0.3, 0.5} [,=0.1
Number of estimators N, N, € {200, 300, 500, 1,000} N, =500
maximum depth of each tree d d € {6,20,30,50} d=30
Minimum decreasing value of loss function gamma gamma € {0, 0.1, 0.2, 0.3} gamma = 0.1
GBDT Learning rate /, I, €{0.01,0.05,0.1,0.2} 1,=0.1
Number of estimators N, N, € {200, 300, 500, 1,000} N, =500
Maximum depth of each tree d de€{3,10,30,50} d=30
ANN Number of hidden layer units N,,;; N,nic € {64, 128, 256, 512} N i =256
Learning rate /, I, €{1074,1073,107% =103
MNL Penalty p p € {none, 12} p=1I2
Inverse of regularization strength C ce{0.1,1,10, 100} c=10
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Table 3. Metrics for each compared algorithm.

Algorithms Precision Recall F1-score
CatBoost 0.912 0.942 0.927
LightGBM 0.826 0.872 0.848
XGBoost 0.820 0.847 0.833
GBDT 0.808 0.852 0.829
ANN 0.727 0.817 0.769
MNL 0.596 0.651 0.622
10 o s sas s s s s ssssEsssEEsEEEssEEESEEEEEE S SRR SRR s e s s -
0.8
2
<
5 0.6
=
g ) CatBoost (AUC = 0.966)
2 041 e LightGBM (AUC = 0.934)
= ot —— XGBoost (AUC = 0.925)
/,/ —— GBDT (AUC = 0.923)
0.2 - —— ANN (AUC = 0.883)
—— MNL (AUC = 0.739)
—== Random guessing
004 ¥ Perfect performance
0.0 02 0.4 0.6 08 10

False positive rate

Fig. 3  Receiver operating characteristic curve for each compared

algorithm.
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Main effects

Figure 5 shows the main effects of each of the contributing
factors for fatal traffic accidents. The left-hand graphs, i.e., (a), (c), (e),
and (g), show the number, average target value, and predicted fatal-
ity probability of the samples of each feature value. As shown, the
average target value and predicted fatality probability overlap
entirely, indicating desirable prediction results. The right-hand
figures, i.e., (b), (d), (f), and (h), show the distribution of the Shapley
values for each feature value.

Figure 53, b indicates that the road segment and intersection are
the most common road types with the highest frequency of traffic
accidents, and elevated roads correlate with the highest fatality
probability. Road access correlates with the lowest probability, with
most samples having negative Shapley values. The reason for this
outcome may be that drivers usually drive at a lower speed at the
entry or exit of the road segment and are usually more cautious at a
road access, thus leading to lower accident severity levels.

Figure 5¢, d illustrates that most accidents occur in the morning
and evening peak periods as a result of the large traffic volume and
complex traffic environment during these periods. The period from
2:00 a.m. to 5:00 a.m. has the highest fatality probability, which is a
finding that is generally consistent with previous studies3435,
Specifically, people who work night shifts feel sleepy from 2:00 a.m.
to 5:00 a.m. Their alertness and hazard perception are significantly
compromised during this window, thereby increasing the risk and
severity of accidents when driving homel3¢l. Low visibility at night is
another important cause of greater crash risk[37,

High
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Fig.4 Contributing factors for fatal accidents: (a) feature importance, and (b) total effect.
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As shown in Fig. 5e and f, the probability of fatalities increases
with increasing severity of the weather. Specifically, rain, snow, and
fog can severely affect road conditions and driver visibility!38l.
EdwardsB9 found that, in rainy or foggy weather, although drivers
tend to drive more slowly, the lower speed is not sufficient to
compensate for the increased risk of accidents caused by extreme
weather and poor visibility.

Figure 5g, h shows that distracted driving is the most common
cause of traffic accidents. Most of the Shapley values are positive,
indicating an increase in the overall probability of fatalities. There-
fore, distracted driving needs to be detected in real time and feed-
back given to drivers to help minimize distracted driving behavior.
The government and business community can facilitate the devel-
opment of advanced driver assistance systems to achieve this goal.
In addition, substandard vehicles significantly increase the proba-
bility of fatalities compared to other causes, which is a finding that
is consistent with previous findings“%41, although at least one
study has suggested that drivers who drive substandard vehicles
tend to be more cautious*?, The government should formulate
relevant laws and regulations to strictly regulate and monitor
substandard vehicles.

Interaction effects

Figure 6 illustrates the interaction effects of the contributing
factors on fatal accidents. The magnitude of the secondary variable
values is indicated by the color bar on the right, whereby the inter-
action effect of any two features on the prediction results can be
visualized intuitively.

Figure 6a shows that traffic fatalities are significantly more likely
to occur on high-grade roads than on low-grade roads. High-grade
roads usually have higher speed limits, which pose a greater threat
to motor vehicles and pedestrians!*3l. Guardrails on urban roads
decrease the probability of fatalities, indicating that improving
safety facilities on urban roads is conducive to reducing traffic acci-
dent severity. Counterintuitively, guardrails in the median or at the
roadside on national and provincial roads increase the probability of
fatalities, probably because guardrails on high-grade roads may give
some drivers a false sense of security such that they feel their safety
is guaranteed. Drivers may relax their vigilance accordingly, which
compromises the driver's hazard perception and caution to some
extent. Figure 6b illustrates that different types of roadside protec-
tion have a similar effect as a median divider on accident fatalities.

Figure 6c illustrates that the road segment feature on high-grade
roads increases the probability of fatalities, which is consistent with
the results shown in Fig. 6a and b. Figure 6d indicates that buses,
trucks, and combination vehicles significantly increase the probabil-
ity of fatal traffic accidents, whereas electric bicycles and motorcy-
cles decrease the probability. Pedestrians have a high fatality rate
and low level of accident liability, indicating that pedestrians
involved in a collision are almost always victims and are especially
vulnerable when walking on or along roadways. Specifically, com-
pared to trucks, buses, cars, etc., pedestrians are more fragile, move
much slower, and do not have inherent devices (such as lighting
systems, cameras, advanced driver assistance systems, etc.) to help
them obtain information about their surroundings accurately and
effectively®4. Moreover, electric bicycles and motorcycles that are
fully responsible for the cause of an accident increase the likelihood
of fatal accidents, indicating that these modes of transport need to
be given more attention and protection than other modes. Interest-
ingly, cars correlate with a decrease in the likelihood of fatalities
when car drivers have full accident liability.

Figure 6e shows that most combination vehicles travel on
national roads and significantly increase the accident severity level

Xie et al. Digital Transportation and Safety 2025, 4(4): 215-226
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compared to other modes of transport, which is a finding that is
consistent with that of a previous study®sl. Interestingly, buses on
high-grade roads increase the probability of fatal accidents, and
large trucks on low-grade roads also increase the probability.

Figure 6f shows that side collisions account for the most signifi-
cant proportion of accident types. Additionally, an electric bicycle
overturning or hitting a fixed object increases the probability of a
fatality.

Figure 69 indicates that overturning and bumping into pedestri-
ans increase the probability of fatalities overall. Common sense also
suggests that rear-end collisions and hitting pedestrians on high-
grade roads will lead to higher fatality rates. Specifically, with higher
speed limits on high-grade roads, a rear-end collision has a power-
ful impact, and pedestrians tend to be injured more severely
accordingly!®l. Therefore, conspicuous traffic signs are necessary on
high-grade roads to remind drivers continuously to keep a safe
distance and watch out for pedestrians.

Figure 6h shows that people aged 20 years and younger, and 60
years and older are more vulnerable than people in other age
groups and, therefore, have a higher probability of being killed in
traffic accidents, which is a finding that is consistent with a previous
study’). The highest proportion of those who drive trucks and
combination vehicles is associated with people aged 30 to 40, and
the fatality rate in this age group is higher than for small and light
vehicles (bicycles, electric bicycles, motorcycles, tricycles, and cars).
The reasons for this finding probably include that this age group is
more confident in their driving skills, and large vehicles (trucks and
combination vehicles) pose a greater threat to roadway safety,
resulting in a higher fatality rate.

Conclusions

This paper proposes a novel framework for predicting and analyz-
ing traffic accident severity that balances accuracy and interpre-
tability. The framework uses traffic accident data collected by the
traffic department of a city in Jiangsu Province, China, from 2016
to 2020.

A total of 28 categorical features related to people, vehicles,
roads, the environment, and accident characteristics were used to
build a classification model with CatBoost and interpret the results
using SHAP.

CatBoost was compared with five widely used algorithms, includ-
ing LightGBM, XGBoost, GBDT, ANN, and MNL. The results show
that CatBoost outperformed the other models, achieving a preci-
sion of 0.912, recall of 0.942, and F1-score of 0.927. This confirms
its advantage in handling categorical data for accident severity
prediction.

SHAP analysis indicated that road administrative class, accident
cause, and accident type were the most influential features.
Elevated roads, crashes occurring between 2:00 and 5:00 a.m., and
substandard vehicles significantly increased the risk of fatal acci-
dents. These findings provide useful insights for identifying high-risk
conditions and guiding safety improvements.

In terms of practical application, the government can refer to
these results when formulating traffic safety policies, such as enforc-
ing stricter controls on substandard vehicles, supporting the devel-
opment of driver distraction warning systems, and installing
guardrails and warning signs on high-grade roads.

Future research will integrate multi-source data (e.g., vehicle kine-
matics, driving videos, and accident scene images), apply deep
learning methods for improved accuracy, and compare different
interpretable machine learning approaches to enhance the depth of
causal analysis.
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