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Abstract
Traffic accidents are a leading cause of unnatural human fatalities. Numerous researchers have investigated ways to predict traffic fatalities and interpret the

prediction results. However, they have been unable to balance prediction accuracy and interpretability, and they usually lack emphasis on fatal accidents

due to the small sample size of fatalities in the dataset. To address these issues, this paper proposes a framework for traffic accident severity prediction with

four steps. First, the traffic accident dataset, which includes features related to people (demographics), vehicles, roads, the environment, and accidents, is

constructed  and  preprocessed.  Then,  the  CatBoost  algorithm  is  employed  to  classify  traffic  accident  severity  (fatal/non-fatal).  Five  other  algorithms -

LightGBM,  XGBoost,  a  gradient  boosting  decision  tree,  an  artificial  neural  network,  and  multinomial  logit - are  employed  for  comparison.  Next,  various

evaluation  metrics  are  used  to  comprehensively  evaluate  the  prediction  results.  Finally,  the  Shapley  additive  explanation  (SHAP)  algorithm  is  used  to

interpret  the  effects  of  the  factors  that  contribute  to  fatal  traffic  accidents.  The  results  show  that  CatBoost  significantly  outperforms  the  other  five

algorithms,  with  precision,  recall,  and  F1-score  values  of  0.912,  0.942,  and  0.927,  respectively.  Moreover,  the  SHAP  algorithm  intuitively  shows  the

relationship between fatal accidents and contributing factors. Specifically, the presence of high-grade roadways, bad weather, substandard vehicles, and

large  trucks  significantly  increases  the  probability  of  traffic  accident  deaths.  The  proposed  framework  is  efficient  for  traffic  fatality  prediction  and

interpretation and thus can provide theoretical guidance for transportation infrastructure planning, driver training, and traffic law formulation.
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 Introduction

According  to  the  World  Health  Organization  (WHO),  nearly  1.3
million  people  die  and  50  million  are  injured  in  preventable  traffic
crashes  globally  each  year,  and  traffic  accidents  are  the  leading
cause of death for children and young people[1]. WHO also reported
that  the  number  of  traffic  accident  casualties  in  China  in  2019  was
estimated  at  250,272,  ranking  first  in  the  world.  Two  important
issues  related  to  traffic  safety  are  accident  frequency  and  accident
severity;  this  paper focuses on the latter.  Traffic  accident severity is
subject to various factors that are related to demographics (age and
gender),  vehicles  (mode  of  travel,  vehicle  type,  and  vehicle  condi-
tion),  roadways  (road  class  and  road  type),  the  environment
(weather  and  lighting  conditions),  and  accidents  (accident  time,
cause, and type), etc. Therefore, the ability to predict traffic fatalities
accurately  and  analyze  their  causes  in  detail  is  critical  to  reducing
the severity of traffic accidents.

Numerous  studies  have  been  conducted  to  predict  the  risk  or
severity  of  traffic  accidents,  with  the  prediction  results  interpreted
using  statistical  models[2].  Due  to  the  unobserved  heterogeneity  in
traffic  accident  data  (such  as  driver  traits,  accident-specific  attri-
butes, etc.) and the fact that accident severity is an ordinal variable,
random  parameter  and  ordered  discrete  choice  models,  as  well  as
their  variants,  have  been  shown  to  have  a  wide  range  of  applica-
bility.  Such  models  include  the  random-parameter  ordered  logit
model[3],  hierarchical  Bayesian  random-intercept  logit  model[4],
random-parameter  logit  models  with  unobserved  heterogeneity  in
means  and  variances[5,6],  random-parameter  generalized  ordered

probit  model  with  heterogeneity  in  means[7],  correlated  random-
parameter  bivariate  tobit  model[8],  binary  scobit  model[9],  random-
thresholds  random-parameters  hierarchical  ordered  probit
model[10],  conditional  autoregressive  Poisson-lognormal  model[11],
etc.  Considering  that  no-injury  accidents  may  be  subject  to  two
underlying  injury  severity  levels,  Fountas  &  Anastasopoulos[12]

proposed  a  zero-inflated  hierarchical  ordered  probit  model  with
correlated  disturbances  to  explore  contributing  factors  and  their
effects  on single-vehicle  accident  severity.  Ahmed et  al.[8] collected
multi-year  segment-specific  freeway  crash  data  before  and  after  a
speed limit  increase,  selected various explanatory variables such as
road traffic  flow characteristics,  geometric  characteristics,  and road
surface,  and  investigated  the  impacts  of  the  speed  limit  increase
on  injury  and  non-injury  crash  rates  using  a  correlated  random-
parameter  bivariate tobit  model.  Munira et  al.[11] proposed a multi-
variate  spatial  (conditional  autoregressive)  Poisson-lognormal
model to explore the effects of contributing factors, which included
traffic characteristics, roadway geometry, built environment charac-
teristics,  and  pedestrian  exposure  volume  on  pedestrian  crash  se-
verity  (fatal  injuries,  disabling  injuries,  and  non-disabling  injuries)
at signalized intersections in the Austin, Texas (USA) area.

Traditional statistical models for traffic accident data have simple
structures,  require  less  computation,  and  are  easy  to  interpret.
However,  their  learning  capabilities  are  weak,  leading  to  lower
prediction  accuracy.  For  example,  Iranitalab  &  Khattak[13] showed
that a  multinomial  model  was the weakest  in a  comparison of  four
statistical  and  machine  learning  methods  for  accident  severity
prediction.  In  recent  years,  machine  learning  algorithms  for  traffic
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accident  prediction  and  causal  analysis  have  gained  increasing
attention,  offering  the  advantage  of  capturing  the  association
between accident severity and contributing factors more efficiently
and accurately than statistical models, thereby significantly improv-
ing  prediction  accuracy.  Common  machine  learning  algorithms
include  Bayesian  networks[14],  support  vector  machines[15],  artificial
neural networks (ANNs),  and deep neural networks[16,17],  etc.  Traffic
accident data generally include numerous categorical features,  and
thus,  an  association  rule  algorithm  is  an  appropriate  choice.  Cai[18]

collected  traffic  accident  data  from  a  city  in  northern  China  from
January to September 2018, mined multi-dimensional rules using an
improved  association  rule  algorithm,  and  revealed  the  interaction
effects  of  different  features  as  well  as  their  influence  on  accident
type  and  severity.  With  an  increased  focus  on  efficient  algorithm
performance  in  large-scale  machine  learning  methods,  boosted
learning  is  a  method  that  has  developed  rapidly  and  offers  the
benefits  of  fast  training  and  superior  performance.  Numerous
researchers  have  applied  boosting  algorithms  for  traffic  accident
severity  prediction and causal  analysis.  Commonly used algorithms
include  gradient  boosting  decision  tree  (GBDT)[19,20],  XGBoost[21],
LightGBM[22], etc.

Machine  learning  achieves  high  prediction  accuracy  due  to  its
strong  learning  capability.  However,  as  a  black-box  model,  it  lacks
interpretability, making it difficult to analyze the effects of contribut-
ing factors. Interpretable machine learning has addressed this prob-
lem  effectively  and  is  now  widely  applied  to  interpret  traffic  acci-
dent  severity.  Commonly  used  algorithms  include  permutation
feature  importance[23],  partial  dependency  plots[24,25],  local  inter-
pretable model-agnostic explanation (LIME)[14,26], and Shapley addi-
tive explanation (SHAP)[27,28], etc. The SHAP algorithm is applied the
most extensively due to its integration of global and local interpre-
tation,  its  solid  theoretical  foundation,  and  its  rich  functions.  Yang
et al.[29] selected features related to population, road networks, and
land  use,  and  employed  the  XGBoost  algorithm  to  classify  three
levels  of  crash  severity  of  freight  trucks,  i.e.,  possible  injury  crash,
evident injury crash, and fatal injury crash and analyzed the correla-
tion  between  the  features  using  the  SHAP  algorithm.  Guo  et  al.[30]

used  the  XGBoost  algorithm  to  predict  three  types  of  accidents
involving elderly pedestrians, i.e., property damage, injury, and fatal,
with  areas  under  the  curve  (AUCs)  of  81%,  68%,  and  74%  respec-
tively,  and  then  employed  the  SHAP  algorithm  to  interpret  the
impacts  of  the  contributing  factors.  Kang  &  Khattak[17] used  deep
neural  networks  to  predict  crash  severity  and  addressed  inter-
pretability using SHAP values.

In  summary,  although  numerous  studies  on  the  prediction  and
interpretation of accident severity have been conducted, they have
five primary shortcomings. First, earlier studies have been unable to
balance prediction accuracy and interpretability.  Specifically,  statis-
tical  models  have  good  interpretability  but  offer  relatively  low
prediction  accuracy,  whereas  studies  that  use  machine  learning
algorithms usually pursue only high accuracy and ignore the analy-
sis and interpretation. Both prediction accuracy and interpretability
are  crucial.  High  accuracy  ensures  that  the  model  effectively
captures  the  relationship  between accident  severity  and influential
factors,  while  interpretability  allows  humans  to  understand  the
learned  rules.  Second,  traffic  accident  data  usually  contain  many
categorical  features,  and  algorithms  such  as  LightGBM,  XGBoost,
and ANN require manual preprocessing (e.g., one-hot encoding) for
these  features,  which  may  lead  to  information  loss  or  increased
dimensionality.  Therefore,  they  are  not  the  most  efficient  or  effec-
tive  choices  for  this  kind  of  data.  Third,  the  number  of  fatal  acci-
dents in a dataset  is  usually  very small,  so the findings for  fatalities
often  lack  persuasiveness.  Some  studies  have  combined  fatal

accidents  with  injury  accidents,  which  diminishes  the  emphasis  on
fatalities.  Fourth,  many  studies  have  focused  on  specific  scenarios
(e.g., motorway), groups of people (e.g., elderly people), or modes of
transport  (e.g.,  large  vehicles),  leading  to  a  lack  of  generalizability.
Fifth,  in  some  studies,  each  categorical  feature  contains  relatively
few feature values to facilitate modeling and interpretation, which is
not  conducive  to  obtaining  high  accuracy  or  comprehensive  in-
depth analysis. For example, the categorical feature 'time' is usually
designated  in  terms  of  four  seasons  instead  of  each  of  the  twelve
months,  and 'vehicle  type'  usually  includes  pedestrians,  non-motor
vehicles, and motor vehicles instead of bicycles, motorcycles, etc.

To address these shortcomings in the current literature, this paper
proposes  a  framework  for  traffic  accident  severity  (fatal/non-fatal)
prediction  and  causal  analysis  based  on  CatBoost  and  SHAP.
CatBoost  efficiently  handles  datasets  with  many  categorical  fea-
tures,  making  it  well-suited  for  classification  tasks.  This  framework
leverages CatBoost's  strong learning capability to maximize predic-
tion  accuracy  and  capture  complex  nonlinear  relationships  in  acci-
dent  severity.  To  enhance  interpretability,  SHAP  was  applied  for  a
detailed  mechanism  analysis.  Four  popular  machine  learning  algo-
rithms  and  a  statistical  model  for  accident  severity  analysis,  i.e.,
LightGBM, XGBoost, GBDT, ANN, and multinomial logit (MNL), were
employed  for  comparison  to  verify  the  effectiveness  of  CatBoost.
Also,  official  traffic  accident  data  collected  in  a  city  in  Jiangsu
Province, China, supports this research.

The  three  primary  salient  contributions  of  this  paper  are  as
follows.  First,  the  accurate  prediction  of  fatal  traffic-related  acci-
dents  is  achieved  using  an  advanced  boosting  algorithm,  i.e.,
CatBoost, which is designed for datasets that include many categori-
cal  features.  The  prediction  results  indicate  that  CatBoost  signifi-
cantly outperformed the other five widely used algorithms in terms
of  accident  severity  analysis.  Second,  the  effects  of  multiple  traffic
fatality  contributing  factors  that  are  related  to  people,  vehicles,
road,  environment,  and  accident  characteristics  are  analyzed  using
SHAP. This detailed analysis captures the four perspectives referred
to here as feature importance, total effect, main effect, and interac-
tion  effect  to  provide  a  theoretical  basis  for  traffic  infrastructure
planning,  driver  safety  training,  and  traffic  law  formulation.  Third,
the official dataset used in this study includes a variety of scenarios,
road types,  and drivers  and passengers  of  different  ages  and has  a
high fatality rate, which helps to ensure emphasis on fatal accidents
and the representativeness of the data.

 Methodology

 Proposed framework
This  study  proposes  a  practical  framework  for  fatal  traffic  acci-

dent prediction and causal analysis based on interpretable machine
learning. The framework has the following four steps:
● Data  preparation:  A  traffic  accident  dataset,  which  includes

people (demographic information), vehicle, road, environment, and
accident characteristics, is collected and preprocessed.
● Model  construction:  The  CatBoost  algorithm  is  employed  to

classify  fatal  and  non-fatal  accidents.  Five  algorithms,  LightGBM,
XGBoost,  GBDT,  ANN,  and  MNL,  are  employed  for  comparison
against CatBoost.
● Model  evaluation:  Various  evaluation  metrics,  i.e.,  precision,

recall,  F1-score,  the  receiver  operating  characteristic  (ROC)  curve,
and AUC, are used to evaluate the prediction results.
● Model interpretation: The SHAP algorithm is used to reveal the

distribution  of  the  different  contributing  factors  and  their  impacts
on fatal  accidents  from four  perspectives:  feature importance,  total
effect, main effect, and interaction effect.
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Figure  1 shows  the  structure  of  the  proposed  framework,  and
Fig.  2 shows  the  model  structure  of  CatBoost  and  SHAP.  The  four
steps are discussed in detail in the paragraphs that follow the figure.

 Data preparation
This study used official traffic accident data collected by the traf-

fic  department  of  a  city  in  Jiangsu  Province,  China,  from  2016  to
2020. The city is located in the Yangtze River Delta region and has an
area of 10,030 square kilometers and a population of 4.55 million. Its
geographical  landscape  features  a  mix  of  urban  districts,  suburban
towns,  and  rural  areas,  contributing  to  a  variety  of  road  environ-
ments.  The  city's  transportation  infrastructure  consists  of  arterial
roads,  expressways,  highways,  and  local  streets,  facilitating  both
intra-city  mobility  and  regional  connectivity.  Additionally,  the  city
experiences four distinct seasons, with occasional extreme weather
conditions such as heavy rainfall  and fog, which can influence driv-
ing  behavior  and  accident  risk.  The  dataset  utilized  in  this  study  is
derived from officially recorded traffic accident reports collected by
the  local  government.  These  reports  are  compiled  through  on-site
police  investigations  and  contain  detailed  records  of  traffic  inci-
dents. The dataset includes the following key components:

•  Accident  characteristics:  Time,  location,  and  severity  classifica-
tion (fatal, injury, and property damage-only).

•  Road  conditions:  Type  of  roadway,  lane  configurations,  traffic
control measures, and surface conditions.

•  Environmental  factors:  Weather  conditions,  lighting,  and  visibi-
lity at the time of the accident.

•  Vehicle  and  driver  information:  Type  and  number  of  vehicles
involved,  driver  demographics,  license  status,  and  recorded
violations.

•  Contributing  factors:  Identified  causes  such  as  speeding,  reck-
less driving, impaired driving, or pedestrian-related factors.

The dataset contains a total  of  7,579 traffic  accidents and 17,777
pieces  of  demographic  information  and  includes  three  accident
severity levels, namely, fatal, injury, and property damage. A total of
3,367  fatal  accidents,  3,985  injury  accidents,  and  227  property
damage-only accidents are included in the dataset.

The data preprocessing process is as follows. First, the traffic acci-
dent  data  and  demographic  data  were  merged  according  to  the
'accident  number'.  Then,  unnecessary  features  ('accident  number',
'road  number',  etc.)  and  redundant  features  ('initial  cause  of  acci-
dent',  etc.)  were  deleted.  Next,  to  ensure  the  focus  on  fatal  acci-
dents,  'property  damage'  accidents  and  'injury'  accidents  were
combined  into  one  class,  i.e.,  non-fatal  accidents.  The  machine
learning  algorithms  used  in  this  paper  have  a  strong  nonlinear
mapping capability,  whereby the rich  feature  values  are  conducive
to  improving  the  prediction  results,  so  the  original  feature  values
were  retained  as  much  as  possible  and  not  merged.  For  example,
months  were  not  merged  into  seasons,  weeks  were  not  converted
to weekdays and weekends, and the unit (h) used for 'accident time'
was  retained.  Finally,  the  preprocessed  dataset  contained  17,777
records  and  28  categorical  features.  The  feature  'accident  severity'
(which includes fatal and non-fatal accidents) was employed as the
target,  whereas  the  other  27  features  were  employed  as  input
features.

Table  1 presents  the  data  distribution.  Some of  the  features  and
values  are  intended  specifically  for  use  in  this  paper  and  are
explained further as follows. For the drivers' age, '(20, 30]', for exam-
ple, means that a driver is older than 20 or 30 years old or younger.
'Overloaded'  refers  to  transport  trucks  that  are  carrying  or  weigh
more than the maximum allowable load or passenger vehicles (cars,
buses,  etc.)  that  are  carrying  more  than  the  maximum  allowable
number of passengers. 'Combination vehicle' (under 'Mode of trans-
port')  refers to a combination of trucks, trailers,  or semi-trailers that
transport freight. 'Pier' (under 'Median divider' and 'Roadside protec-
tion')  refers  to  a  line  of  spherical  piers  that  have  a  concrete  base.
Although  'Side-swipe'  and  'Side  collision'  (both  under  'Accident
type') may sound similar, a side-swipe typically leads to a much less
serious accident than a side collision. 'Side-swipe' refers to one vehi-
cle brushing against the side of another vehicle, usually causing only
paint  damage  and  potentially  knocking  both  vehicles  slightly  off
course.  'Side  collision'  refers  to  one  vehicle  crashing  headlong  into
the side of another vehicle. In this case, the two vehicles are roughly
perpendicular  to  each  other,  which  causes  a  much  greater  impact
than  a  side-swipe,  where  the  two  vehicles  are  roughly  parallel  to
each  other.  'Accident  liability'  refers  to  the  responsibility  of  a  party
or parties for an accident. For the road administrative class, in China,
roads are classified based on the official administrative classification
system established by the Ministry of Transport. The classification is
as follows:

• National roads: Major highways forming the national trunk road
network primarily connecting provincial capitals and major cities.

• Provincial roads: Regional highways linking major cities within a
province  and serving as  key  transportation routes  at  the  provincial
level.

•  Country  roads:  Roads  managed  at  the  county  level,  mainly
connecting towns and villages to higher-level road networks.

• Township roads: Roads managed at the township level, facilitat-
ing local transportation within townships and linking villages.

•  Urban  roads:  Roads  within  city  boundaries,  including  express-
ways,  arterial  roads,  secondary  roads,  and  local  streets,  primarily
serving intra-city traffic.

For  the  road  type,  road  accesses  refer  to  minor  roads  or  entry-
ways that connect private properties or secondary roads to the main
road  network.  These  include,  but  are  not  limited  to,  driveways,

 

Fig.  1    Framework  for  fatal  traffic  accident  prediction  and  causal
analysis.
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access  roads  to  industrial  facilities,  and  minor  roads  leading  to
residential or commercial buildings.

As  shown,  the  dataset  has  rich  features  related  to  people  (age,
gender, etc.), vehicle (mode of transport), road (administrative class
of  the  highway,  road  structure,  etc.),  environment  (weather,  visi-
bility, etc.), and accident (accident cause, accident type, etc.).

 Model construction
In the proposed framework, LightGBM, XGBoost, GBDT, ANN, and

MNL are employed for  comparison purposes against  CatBoost.  The
underlying  principles  of  these  algorithms  have  been  described  in
detail  in  numerous  studies  and  thus  are  not  repeated  here.
However, CatBoost is discussed briefly.

CatBoost, an open-source machine learning algorithm developed
by  the  Russian  company  Yandex  in  2017,  is  a  high-performance
boosting algorithm framework with an oblivious decision tree as the
base  predictor,  which  is  good  at  handling  categorical  features[31].
CatBoost uses the ordered TS (target statistics) algorithm to handle
the  categorical  features  efficiently  and  uses  the  ordered  boosting
algorithm  to  solve  the  problem  of  prediction  shift.  The  ordered  TS
and  ordered  boosting  algorithms  are  discussed  in  detail  in  the
subsequent paragraphs.

During  the  modeling  process  for  machine  learning,  one-hot
encoding  is  typically  used  to  process  categorical  features  to  make
the  values  of  each  feature  equidistant  from  the  origin.  However,
such encoding can cause a curse of dimensionality for high-cardinal-
ity categorical features. Greedy TS is a standard solution that substi-
tutes the average target values over the training examples using the
same  category  for  the  corresponding  feature  value  of  a  specific
sample and introduces a prior distribution term to reduce the noise
and  impacts  of  the  low-frequency  categories  on  the  overall  data
distribution.  However,  this  approach  can  cause  target  leakage.  To
this end, CatBoost uses the ordered TS that generates a random per-
mutation,  introduces the concept of  a  sequential  order  of  samples,
and uses only the average target values of the samples that appear
before a specific sample during the training process; see Eq. (1).

x̂i
k =

∑
x j∈Dk

1{xi
j=xi

k}
· y j+aP∑

x j∈Dk
1{xi

j=xi
k}
+a

,

Dk =
{
x j |σ( j) < σ(k)

}
, when training

Dk = D, when testing

(1)

xi
k

x̂i
kwhere,  and  are the values of the i-th feature of the k-th sample

before  and  after  processing,  respectively; D is  the  whole  sample  set;

 

Fig. 2    Model structure of CatBoost and SHAP.
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x̂i
k σDk is the sample set used to calculate ;  is a random permutation;

1 is the indicator variable; yj is the target of the j-th sample, and a and
P are  parameters  and  a  common  setting  for P is  the  average  target
value over the data set.

This concept is adopted again when constructing trees during the
boosting  stage.  A  total  of n trees  is  retained  (n is  the  number  of
samples),  where  only  part  of  the  samples  is  used  for  each  tree.  In
short,  the  CatBoost  algorithm  has  excellent  performance  and
robustness  and  thus  is  well  suited  for  regression  and  classification
tasks that have numerous categorical input features.

 Model evaluation
Accident severity prediction is a typical classification problem, so

commonly  used  evaluation  metrics,  i.e.,  precision,  recall,  and  F1-
score, are employed here. Equations (2)−(4) provide the calculations
for these metrics, respectively.

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

F1-score =
2 ·Precision ·Recall
Precision+Recall

(4)

where, TP is true positive, FP is false positive, and FN is false negative.
To  compare  algorithm  performance  more  intuitively,  an  ROC

curve  is  used.  The  horizontal  coordinate  of  the  ROC  curve  is  the
false  positive  rate  (FPR),  defined  in  Eq.  (5),  whereas  the  vertical
coordinate  is  the  true  positive  rate,  namely,  the  recall,  defined  in

Eq.  (3).  The  measurement  variable  AUC  is  the  total  area  under  the
ROC curve, with a larger area indicating better model performance.

FPR =
FP

FP+T N
(5)

where,  FPR  is  false  positive  rate,  FP  is  false  positive,  and  TN  is  true
negative.

 Model interpretation
Following the accident severity prediction and performance eval-

uation, a popular interpretable machine learning algorithm, i.e., the
SHAP  algorithm,  was  employed  to  explain  and  analyze  the  model
results. SHAP was proposed by Lundberg et al.[32] in 2017 to explain
individual  predictions  based  on  game-theoretic  optimal  Shapley
values.  SHAP  offers  both  global  and  local  interpretability,  with
support  for  feature  importance,  interaction  effects,  and  visualiza-
tion,  especially  for  tree-based  models.  SHAP  interprets  the  pre-
diction  results  of  machine  learning  algorithms  by  calculating  the
Shapley value of each feature value of each sample. A positive Sha-
pley  value  indicates  that  the  feature  value  of  a  specific  sample
increases  the  predicted  probability,  whereas  a  negative  value  indi-
cates  a  decrease  in  the probability.  The Shapley  value is  calculated
as shown in Eqs (6) and (7).

ϕ j(val) =
∑

S⊆{1,··· ,p}\{ j}

|S |!(p− |S | −1)!
p!

(val(S ∪{ j})− val(S )) (6)

valx(S ) =
w

f̂ (x1, · · · , xp)dPx<S −EX( f̂ (X)) (7)

 

Table 1.    Data description.

Feature Value Abbreviation of value

Age (0,20] / (20,30] / (30,40] / (40,50] / (50,60] / (60,70] / (70, ) 0-20 / 20-30 / 30-40 / 40-50 / 50-60 / 60-70 / > 70
Gender Female / Male −
Driving with license True / False T / F
Driving with seatbelt True / False / Unknown T / F / U
Drunk driving True / False T / F
Fatigued driving True / False T / F
Speeding True / False T / F
Overloaded True / False T / F
Hit-and-run driving True / False T / F
Mode of transport Pedestrian / Bicycle / Electric bicycle / Motorcycle / Tricycle / Car / Bus / Small

truck / Large truck / Combination vehicle / Other
MOD1 / MOD2 / MOD3 / MOD4 / MOD5 / MOD6
/ MOD7 / MOD8 / MOD9 / MOD10 / MOD11

Road administrative class National road / Provincial road / Country road / Township road / Urban road ADM1 / ADM2 / ADM3 / ADM4 / ADM5
Road type Road segment / Intersection / Road access / Ramp / Bridge or tunnel / Elevated

road / Other
RT1 / RT2 / RT3 / RT4 / RT5 / RT6 / RT7

Traffic control No control / Marking / Sign / Traffic light / Other TC1 / TC2 / TC3 / TC4 / TC5
Median divider No divider / Greenbelt / Pier / Guardrail CI1 / CI2 / CI3 / CI4
Roadside protection No protection / Greenbelt / Pier / Guardrail / Other SP1 / SP2 / SP3 / SP4 / SP5
Road condition Intact / Damaged RC1 / RC2
Road material Asphalt / Cement / Other RM1 / RM2 / RM3
Road surface Dry / Wet / Ponding / Icy / Other RS1 / RS2 / RS3 / RS4 / RS5
Month January / February / March / April / May / June / July / August / September /

October / November / December
Jan / Feb / Mar / Apr / May / Jun / Jul / Aug /
Sept / Oct / Nov / Dec

Day of week Monday / Tuesday / Wednesday / Thursday / Friday / Saturday / Sunday Mon / Tue / Wed / Thur / Fri / Sat / Sun
Hour 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11 / 12 / 13 / 14 / 15 / 16 / 17 / 18 / 19 / 20 /

21 / 22 / 23
−

Weather Sunny / Cloudy / Rainy or snowy / Foggy / Other W1 / W2 / W3 / W4 / W5
Lighting conditions Night without street lamp / Night with street lamp / Nightfall / Dawn / Daytime LC1 / LC2 / LC3 / LC4 / LC5
Visibility < 50 m / 50−100 m / 100−200 m / > 200 m VIS1 / VIS2 / VIS3 / VIS4
Accident cause Pedestrian or non-motor vehicle violation / Distracted driving/ Natural disaster

/ Substandard vehicle / Driving in the wrong lane / Failure to give way
according to traffic rules / Traffic light or sign violation / Failure to maintain
safe distance / Illegal parking / Illegal overtaking or lane changing / Driving in
the opposite direction / Other

AC1 / AC2 / AC3 / AC4 / AC5 / AC6 / AC7 / AC8 /
AC9 / AC10 / AC11 / AC12

Accident type Overturned vehicle / Bumping into fixed object / Bumping into pedestrian(s) /
Side-swipe / Side collision / Rear-end collision / Head-on collision / Other

AF1 / AF2 / AF3 / AF4 / AF5 / AF6 / AF7 / AF8

Accident liability Unknown / No liability / Secondary / Equal / Primary / Full AL1 / AL2 / AL3 / AL4 / AL5 / AL6
Accident severity Injury or property damage (non-fatal) / Fatal AS0 / AS1
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ϕ j(val)

f̂

val(S ∪{ j})− val(S )

where,  is  the  Shapley  value  of  the j-th  feature  of  a  specific
sample; p is the number of features; S is the subset of features used in
the  modeling  process;  is  the  fitted  function; x is  the  vector  of  the
feature values of  the instance to be explained; X is  the whole sample
set; and  is the marginal effect of the j-th feature.

The  absolute  Shapley  value  indicates  the  degree  of  influence  of
the feature value of  a  specific  sample on the predicted probability.
Therefore, the feature importance can be measured using the aver-
age absolute Shapley value; see Eq. (8).

I j =
1
N

N∑
i=1

∣∣∣∣ϕ(i)
j

∣∣∣∣ (8)

where, N is the number of samples, and Ij is the importance of the j-th
feature.

SHAP can also be used to explore the interaction effect between
two features via the Shapley interaction index. The underlying prin-
ciple of the index is that the individual effects of two features can be
subtracted from their  combined effect  to obtain their  pure interac-
tion effect, as expressed in Eqs (9) and (10).

ϕi, j =
∑

S⊆{1,··· ,p}\{i, j}

|S |!(p− |S | −2)!
2(p−1)!

δi j(S ), (i , j) (9)

δi j(S ) = f̂x(S ∪{i, j})− f̂x(S ∪{i})− f̂x(S ∪{ j})+ f̂x(S ) (10)

ϕi, jwhere,  is  the  Shapley  interaction  index  value  of  the i-th  and j-th
features.

 Results and discussion

 Model training and prediction results
The dataset was divided into a training set, validation set, and test

set  with  a  ratio  of  6:2:2,  respectively.  The  hyper-parameters  of  the
CatBoost,  LightGBM,  XGBoost,  GBDT,  ANN,  and  MNL  algorithms
were  selected  using  a  grid  search  and  five-fold  cross-validation.
Table 2 shows the results of the parameter selection.

Table  3 and Fig.  3 show  the  prediction  performance  for  all  six
compared algorithms in  terms of  the test  set.  As  shown in Table 3,
the precision,  recall,  and F1-score values for  CatBoost  are all  above
0.9,  which  is  significantly  higher  than  those  of  the  other  five  algo-
rithms. Figure 3 shows that  the ROC curve for  CatBoost  is  closer  to
the  upper  left  than  that  of  the  other  algorithms,  also  indicating

CatBoost's  better  prediction  performance.  CatBoost  integrates  a
practical  categorical  feature  processing  module  into  the  training
process, which makes it more suitable than the other algorithms for
prediction tasks that have a large number of categorical features. In
addition, the base predictor in CatBoost is an oblivious tree with the
same splitting criterion across an entire level, which offers the bene-
fits of being balanced and less prone to overfitting compared to the
other five algorithms. By contrast, LightGBM does not process cate-
gorical features as efficiently as Catboost. XGBoost and GBDT do not
have the capability  to handle categorical  features automatically,  so
these features must be handled manually using a one-hot encoder.
In addition, MNL assumes linear relationships and independence of
irrelevant alternatives, which can limit its ability to capture complex
patterns. ANN is more flexible but requires large datasets and exten-
sive  tuning  to  achieve  optimal  performance.  As  a  result,  both
models exhibited unsatisfactory performance in this analysis.

 Importance and total effects
Figure  4a, b,  respectively,  shows  the  importance  of  each  feature

and the total effect of the factors that contribute to fatal accidents.
Figure 4a measures the feature importance by the average absolute
Shapley value. In Fig. 4b, the vertical coordinate indicates the differ-
ent  features,  and  the  horizontal  coordinate  indicates  the  Shapley
value of each feature value of each sample. The positive values indi-
cate  a  greater  probability  of  a  fatal  accident,  whereas  the  negative
values indicate less probability. The color of the dots represents the
magnitude of the feature values, corresponding to the color bar on
the right. Figure 4 shows that the road administrative class, accident
cause, and accident type are the most important features, and their
influence on the probability  of  fatal  accidents  has  significant  linear
characteristics. The temporal features, i.e.,  month, day of week, and
hour, are also important factors, but their influence is more complex
than  the  others.  With  regard  to  demographic  features,  older  ages
generally  increase  the  probability  of  fatalities.  Also,  male  drivers
have  a  greater  probability  of  death  than  females  because  male
drivers typically can be over-confident in their driving skills, are less
attentive,  have  lower  levels  of  risk  perception,  and  are  more  likely
to  perform  risky  driving  behaviors[33].  Therefore,  safety  training,
especially for male drivers, should be strengthened.

 

Table 2.    Parameter selection for each compared algorithm.

Algorithms Parameters Parameter range Optimal parameters

CatBoost Learning rate lr ∈lr  {0.1, 0.2, 0.3, 0.5} lr = 0.1

Number of estimators Ne ∈Ne  {300, 500, 1,000, 2,000} Ne = 500

Depth of each tree d ∈d  {9, 10, 11, 12} d = 10
LightGBM Learning rate lr ∈lr  {0.01, 0.05, 0.1, 0.2} lr = 0.1

Number of estimators Ne ∈Ne  {300, 500, 1,000, 2,000} Ne = 1,000

Maximum depth of each tree d ∈ ∞d  {10, 20, } ∞d = 
Maximum tree leaves of each tree ml ∈ml  { 10, 31, 100, 200} ml = 100

XGBoost Learning rate lr ∈lr  {0.1, 0.2, 0.3, 0.5} lr = 0.1

Number of estimators Ne ∈Ne  {200, 300, 500, 1,000} Ne = 500

maximum depth of each tree d ∈d  { 6, 20, 30, 50} d = 30
Minimum decreasing value of loss function gamma ∈gamma  {0, 0.1, 0.2, 0.3} gamma = 0.1

GBDT Learning rate lr ∈lr  {0.01, 0.05, 0.1, 0.2} lr = 0.1

Number of estimators Ne ∈Ne  {200, 300, 500, 1,000} Ne = 500

Maximum depth of each tree d ∈d  { 3, 10, 30, 50} d = 30
ANN Number of hidden layer units Nunit ∈Nunit  {64, 128, 256, 512} Nunit = 256

Learning rate lr ∈lr  {10−4, 10−3, 10−2} lr = 10−3

MNL Penalty p ∈p  {none, l2} p = l2
Inverse of regularization strength C ∈C  {0.1, 1, 10, 100} C = 10
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 Main effects
Figure  5 shows  the  main  effects  of  each  of  the  contributing

factors for fatal traffic accidents. The left-hand graphs, i.e., (a), (c), (e),
and (g), show the number, average target value, and predicted fatal-
ity  probability  of  the  samples  of  each  feature  value.  As  shown,  the
average  target  value  and  predicted  fatality  probability  overlap
entirely,  indicating  desirable  prediction  results.  The  right-hand
figures, i.e., (b), (d), (f), and (h), show the distribution of the Shapley
values for each feature value.

Figure 5a, b indicates that the road segment and intersection are
the  most  common road types  with  the  highest  frequency  of  traffic
accidents,  and  elevated  roads  correlate  with  the  highest  fatality
probability. Road access correlates with the lowest probability, with
most  samples  having  negative  Shapley  values.  The  reason  for  this
outcome  may  be  that  drivers  usually  drive  at  a  lower  speed  at  the
entry or exit of the road segment and are usually more cautious at a
road access, thus leading to lower accident severity levels.

Figure  5c, d illustrates  that  most  accidents  occur  in  the  morning
and evening peak periods as a result of the large traffic volume and
complex traffic environment during these periods. The period from
2:00 a.m. to 5:00 a.m. has the highest fatality probability, which is a
finding  that  is  generally  consistent  with  previous  studies[34,35].
Specifically, people who work night shifts feel sleepy from 2:00 a.m.
to  5:00  a.m.  Their  alertness  and  hazard  perception  are  significantly
compromised  during  this  window,  thereby  increasing  the  risk  and
severity of accidents when driving home[36]. Low visibility at night is
another important cause of greater crash risk[37].

 

Table 3.    Metrics for each compared algorithm.

Algorithms Precision Recall F1-score

CatBoost 0.912 0.942 0.927
LightGBM 0.826 0.872 0.848
XGBoost 0.820 0.847 0.833
GBDT 0.808 0.852 0.829
ANN 0.727 0.817 0.769
MNL 0.596 0.651 0.622

 

Fig.  3    Receiver  operating  characteristic  curve  for  each  compared
algorithm.

 

a b

Fig. 4    Contributing factors for fatal accidents: (a) feature importance, and (b) total effect.
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Fig. 5    Feature values and main effects of contributing factors for fatal accidents: (a) road type (feature value), (b) road type (main effect), (c) hour (feature
value), (d) hour (main effect), (e) weather (feature value), (f) weather (main effect), (g) accident cause (feature value), and (h) accident cause (main effect).
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As  shown  in Fig.  5e and f,  the  probability  of  fatalities  increases
with increasing severity of the weather. Specifically, rain, snow, and
fog  can  severely  affect  road  conditions  and  driver  visibility[38].
Edwards[39] found  that,  in  rainy  or  foggy  weather,  although  drivers
tend  to  drive  more  slowly,  the  lower  speed  is  not  sufficient  to
compensate  for  the  increased  risk  of  accidents  caused  by  extreme
weather and poor visibility.

Figure  5g, h shows  that  distracted  driving  is  the  most  common
cause  of  traffic  accidents.  Most  of  the  Shapley  values  are  positive,
indicating  an  increase  in  the  overall  probability  of  fatalities.  There-
fore,  distracted driving needs to be detected in real  time and feed-
back  given to  drivers  to  help  minimize  distracted driving behavior.
The  government  and  business  community  can  facilitate  the  devel-
opment of advanced driver assistance systems to achieve this goal.
In  addition,  substandard  vehicles  significantly  increase  the  proba-
bility of  fatalities compared to other causes,  which is  a finding that
is  consistent  with  previous  findings[40,41],  although  at  least  one
study  has  suggested  that  drivers  who  drive  substandard  vehicles
tend  to  be  more  cautious[42].  The  government  should  formulate
relevant  laws  and  regulations  to  strictly  regulate  and  monitor
substandard vehicles.

 Interaction effects
Figure  6 illustrates  the  interaction  effects  of  the  contributing

factors on fatal accidents. The magnitude of the secondary variable
values is indicated by the color bar on the right, whereby the inter-
action  effect  of  any  two  features  on  the  prediction  results  can  be
visualized intuitively.

Figure  6a shows  that  traffic  fatalities  are  significantly  more  likely
to occur on high-grade roads than on low-grade roads.  High-grade
roads usually have higher speed limits,  which pose a greater threat
to  motor  vehicles  and  pedestrians[43].  Guardrails  on  urban  roads
decrease  the  probability  of  fatalities,  indicating  that  improving
safety facilities on urban roads is conducive to reducing traffic acci-
dent severity.  Counterintuitively,  guardrails  in the median or  at  the
roadside on national and provincial roads increase the probability of
fatalities, probably because guardrails on high-grade roads may give
some drivers a false sense of security such that they feel their safety
is  guaranteed.  Drivers  may  relax  their  vigilance  accordingly,  which
compromises  the  driver's  hazard  perception  and  caution  to  some
extent. Figure 6b illustrates  that  different  types of  roadside protec-
tion have a similar effect as a median divider on accident fatalities.

Figure 6c illustrates that the road segment feature on high-grade
roads increases the probability of fatalities, which is consistent with
the  results  shown  in Fig.  6a and b. Figure  6d indicates  that  buses,
trucks, and combination vehicles significantly increase the probabil-
ity  of  fatal  traffic  accidents,  whereas  electric  bicycles  and  motorcy-
cles  decrease  the  probability.  Pedestrians  have  a  high  fatality  rate
and  low  level  of  accident  liability,  indicating  that  pedestrians
involved  in  a  collision  are  almost  always  victims  and  are  especially
vulnerable  when  walking  on  or  along  roadways.  Specifically,  com-
pared to trucks, buses, cars, etc., pedestrians are more fragile, move
much  slower,  and  do  not  have  inherent  devices  (such  as  lighting
systems,  cameras,  advanced driver  assistance systems,  etc.)  to  help
them  obtain  information  about  their  surroundings  accurately  and
effectively[44].  Moreover,  electric  bicycles  and  motorcycles  that  are
fully responsible for the cause of an accident increase the likelihood
of fatal accidents,  indicating that these modes of transport need to
be given more attention and protection than other modes. Interest-
ingly,  cars  correlate  with  a  decrease  in  the  likelihood  of  fatalities
when car drivers have full accident liability.

Figure  6e shows  that  most  combination  vehicles  travel  on
national  roads  and significantly  increase  the accident  severity  level

compared  to  other  modes  of  transport,  which  is  a  finding  that  is
consistent  with  that  of  a  previous  study[45].  Interestingly,  buses  on
high-grade  roads  increase  the  probability  of  fatal  accidents,  and
large trucks on low-grade roads also increase the probability.

Figure  6f shows  that  side  collisions  account  for  the  most  signifi-
cant  proportion  of  accident  types.  Additionally,  an  electric  bicycle
overturning  or  hitting  a  fixed  object  increases  the  probability  of  a
fatality.

Figure 6g indicates that  overturning and bumping into pedestri-
ans increase the probability of fatalities overall. Common sense also
suggests  that  rear-end  collisions  and  hitting  pedestrians  on  high-
grade roads will lead to higher fatality rates. Specifically, with higher
speed limits  on high-grade roads,  a  rear-end collision has a power-
ful  impact,  and  pedestrians  tend  to  be  injured  more  severely
accordingly[46]. Therefore, conspicuous traffic signs are necessary on
high-grade  roads  to  remind  drivers  continuously  to  keep  a  safe
distance and watch out for pedestrians.

Figure 6h shows that people aged 20 years and younger,  and 60
years  and  older  are  more  vulnerable  than  people  in  other  age
groups  and,  therefore,  have  a  higher  probability  of  being  killed  in
traffic accidents, which is a finding that is consistent with a previous
study[47].  The  highest  proportion  of  those  who  drive  trucks  and
combination vehicles  is  associated with  people  aged 30 to  40,  and
the fatality  rate  in  this  age group is  higher  than for  small  and light
vehicles  (bicycles,  electric  bicycles,  motorcycles,  tricycles,  and cars).
The reasons for this finding probably include that this age group is
more confident in their driving skills,  and large vehicles (trucks and
combination  vehicles)  pose  a  greater  threat  to  roadway  safety,
resulting in a higher fatality rate.

 Conclusions

This paper proposes a novel framework for predicting and analyz-
ing  traffic  accident  severity  that  balances  accuracy  and  interpre-
tability.  The  framework  uses  traffic  accident  data  collected  by  the
traffic  department  of  a  city  in  Jiangsu  Province,  China,  from  2016
to 2020.

A  total  of  28  categorical  features  related  to  people,  vehicles,
roads,  the  environment,  and  accident  characteristics  were  used  to
build  a  classification model  with  CatBoost  and interpret  the results
using SHAP.

CatBoost was compared with five widely used algorithms, includ-
ing  LightGBM,  XGBoost,  GBDT,  ANN,  and  MNL.  The  results  show
that  CatBoost  outperformed  the  other  models,  achieving  a  preci-
sion  of  0.912,  recall  of  0.942,  and  F1-score  of  0.927.  This  confirms
its  advantage  in  handling  categorical  data  for  accident  severity
prediction.

SHAP  analysis  indicated  that  road  administrative  class,  accident
cause,  and  accident  type  were  the  most  influential  features.
Elevated  roads,  crashes  occurring  between  2:00  and  5:00  a.m.,  and
substandard  vehicles  significantly  increased  the  risk  of  fatal  acci-
dents. These findings provide useful insights for identifying high-risk
conditions and guiding safety improvements.

In  terms  of  practical  application,  the  government  can  refer  to
these results when formulating traffic safety policies, such as enforc-
ing stricter controls on substandard vehicles,  supporting the devel-
opment  of  driver  distraction  warning  systems,  and  installing
guardrails and warning signs on high-grade roads.

Future research will integrate multi-source data (e.g., vehicle kine-
matics,  driving  videos,  and  accident  scene  images),  apply  deep
learning  methods  for  improved  accuracy,  and  compare  different
interpretable machine learning approaches to enhance the depth of
causal analysis.
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Fig.  6    Interaction  effects  of  contributing  factors  for  fatal  accidents:  (a)  road  administrative  class  vs  median  divider,  (b)  road  administrative  class  vs
roadside  protection,  (c)  road type vs  road administrative  class,  (d)  mode of  transport  vs  accident  liability,  (e)  mode of  transport  vs  road administrative
level, (f) mode of travel vs accident type, (g) accident type vs road administrative class, and (h) driver age vs mode of transport.
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