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Abstract
Phosphogypsum  (PG)  is  a  typical  solid  waste  formed  during  wet-process  phosphoric  acid

production,  and  it  retains  a  significant  amount  of  residual  phosphorus  (P).  Bioextraction  of

phosphorus (BEP) applies microorganisms to dissolve P from phosphate minerals. This study

aimed to evaluate the influence of gypsum (CaSO4) on the BEP efficiency of PG by Aspergillus
niger. After 6 d incubation with the addition of HPG (high dose of PG, 1.0 g), the biomass and

respiration of A. niger reached 0.85 g and 8,937 μg C/kg/h, respectively. Meanwhile, the BEP

efficiency  of A.  niger reached  ~40%  after  15  d  of  incubation,  compared  with  ~10%  in  the

treatment without the fungus. Given the amount consumed by A. niger, the efficiency should

be  significantly  higher.  Moreover,  nanoscale  secondary  ion  mass  spectrometry  (NanoSIMS)

imaging showed that P was absorbed by A. niger cells to meet their nutritional requirements.

Simulation  from  Geochemist's® Workbench  (GWB)  revealed  that  PO4
3− tended  to  combine

with Ca2+ and mineralize into hydroxylapatite as pH increased. However, oxalic acid secreted

by A.  niger would  combine  with  the  abundant  Ca2+ in  PG  to  produce  CaC2O4,  thereby

reducing the fixation of  P  by  free  Ca2+.  Furthermore,  the  SO4
2− from PG participated in  the

biosynthesis of sulfur-containing amino acids within the fungal cells. This study revealed the

potential of BEP by A. niger for the treatment of solid waste PG.
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Highlights
•  Oxalic acid secreted by A. niger would preferentially combine with Ca2+ in PG to produce CaC2O4.

•  The formation of CaC2O4 reduced the reabsorption of P by Ca2+.

•  SO4
2− from PG participated in the biosynthesis of sulfur-containing amino acids within the A. niger cells.

•  High bioactivity of A. niger promoted further bioextraction of P from PG.

•  The BESP efficiency is over 40% after 15 d of incubation.
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Graphical abstract

 
 Introduction

Phosphogypsum  (PG)  is  a  solid  waste  residue  generated  from  the
treatment  of  phosphate  rock  with  sulfuric  acid  during  phosphoric
acid production. Its primary component is  gypsum (CaSO4·2H2O). The
fluorides,  radionuclides,  and  heavy  metals  present  in  PG  pose  a  risk
of  environmental  pollution[1].  Now,  PG  is  causing  environmental  risk
globally.  Approximately  300  million  tons  of  PG  are  produced  world-
wide  annually[2,3],  of  which  58%  are  dumped[4].  In  addition,  only  14%
PG  are  currently  reused.  It  is  worth  noting  that  over  3  billion  tons  of
additional PG stacks have been built globally, which will cause resource
waste[5,6]. PG contains approximately 1% P (mainly as the form of inso-
luble  phosphate)[6−9].  Extraction  of  residual  P  can  mitigate  potential
nonpoint-source pollution from the PG yard[10]. Meanwhile, it facilitates
the utilization of residual P for agricultural purposes[11,12].

Bioextraction  refers  to  the  process  of  dissolving,  recovering,  or
extracting  valuable  substances  from  raw  materials  by  using  orga-
nisms (primarily microorganisms, such as bacteria and fungi) or their
metabolic  products  (such  as  organic  acids  and  enzymes)[13].  Bio-
extraction  aims  to  achieve  optimal  energy  utilization  through
biotechnology[13,14]. This technology is considered as more environ-
mentally friendly than chemical technology[15].  Bioextraction of sul-
fur  and  iron  from  waterlogged  archeological  wood  by Thiobacillus
denitrificans has been successfully performed. Bioextraction showed
higher  Fe  extraction  efficiency  (65.1%)  than  chemical  extraction
(6.6%) of archaeological oak wood[16]. Similarly, iron-oxidizing bacte-
ria  and  sulfur-oxidizing  bacteria  have  been  effectively  employed
in  microbial-mediated  copper  bioextraction[17,18].  This  strategy  has
been widely implemented for copper recovery from mining wastes
and  low-grade  ores[19].  In  the  field  of  agriculture,  traditional  phos-
phate  fertilizers  pose  environmental  concerns,  including  eutrophi-
cation  of  adjacent  water  bodies  due  to  low  utilization  rates,  soil
acidification  resulting  from  the  application  of  high-concentration
phosphate fertilizers, and the depletion of phosphate rock resources
driven by phosphate fertilizer production[20]. With respect to chemi-
cal  phosphate  fertilizers,  fertilizers  with  the  addition  of  functional
microorganisms  offer  advantages  such  as  pollution-free  operation,
high nutrient utilization efficiency, and alignment with the appeal of
sustainable development[21].

Bioextraction  of  P  (BEP)  refers  to  the  use  of  phosphate-solubiliz-
ing  microorganisms  (PSM)  to  convert  P  from  an  unavailable  to
an  available  form[22,23].  Phosphate-solubilizing  fungi  (PSF)  secrete  a
wider  range of  organic  acids  (e.g.,  oxalic,  citric,  and gluconic  acids)
at  higher  production  levels[24,25].  In  addition,  most  PSF  remain
active  under  extreme  drought  or  high-metal-concentration
environments[26,27]. The excessive Ca2+ from PG can inhibit P dissolu-
tion by reducing its availability[28].  Organic acids secreted by micro-
organisms can substantially  dissolve  P[29−31],  presumably  by  chelat-
ing  Ca2+.  Meanwhile,  the  abundant  SO4

2− from  PG  serves  as  an  S
source, providing the S element for biosynthesis within PSM cells[32].
The BEP approach is cost-effective and sustainable[33−36].

Aspergillus niger (A. niger) is one of the highly efficient PSF[37,38]. It
is  a  filamentous  fungus  whose  hyphae  can  enter  gaps  between
mineral  particles  to  facilitate  nutrient  uptake[39]. A.  niger itself
requires  P  for  the  synthesis  of  essential  biomolecules  such  as  ATP
and  cell  wall  phospholipids[40]. A.  niger mainly  secretes  oxalic  acid
and  citric  acid  to  dissolve  insoluble  phosphate[41,42].  The  secretion
abundance of oxalic acid and citric acid depends on the bioactivity
of A.  niger during  incubation,  which  determines  the  efficiency  of
BEP[37,43].

This study aimed to evaluate the influence of gypsum on the BEP
efficiency  of  PG by A.  niger.  The secondary  minerals  formed during
incubation,  the  morphology  of  the  fungal-mineral  interaction,  and
the elemental distribution within fungal structures were studied.

 Materials and methods

 Preparation of PG and A. niger
The  PG  used  in  this  experiment  was  collected  from  Fuquan  City,
Guizhou  Province,  China.  PG  was  analyzed  using  a  wavelength-
dispersive X-ray fluorescence spectrometer (XRF).

A. niger (Accession No. M 2023240) was obtained from the China
Center  for  Type  Culture  Collection  (CCTCC).  The  information  on
A.  niger in  this  experiment  can  be  found  in  our  previous  study[44].
Before  inoculation,  the  fungal  spore  suspension  was  thawed  at
28  °C.  The  activation  of A.  niger was  performed  using  Potato
Dextrose Agar (PDA) medium.
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 A. niger incubation
The  modified  Pikovskaya  Inorganic  Phosphorus  (PVK)  medium
employed  in  this  study  was  formulated  without  any  P  source,  while
retaining  the  addition  of  10.0  g  dextrose,  0.03  g  FeSO4·7H2O,  0.03  g
MgSO4·7H2O, 0.3 g NaCl, 0.3 g KCl, 0.5 g (NH4)2SO4, 0.03 g MnSO4·7H2O,
and 1,000 mL ultrapure water[45].

For strain activation, A. niger spores were inoculated onto Potato
Dextrose Agar (PDA) medium on a clean bench. The spore concen-
tration was formed by expanding incubation at 28 °C for 6 d. Then,
the  medium  surface  was  washed  with  sterile  water  on  a  clean
bench, and the spores were carefully scraped off with a sterile inocu-
lation  ring  to  obtain  a  spore  suspension.  Finally,  three  layers  of
sterile  gauze  were  used  to  filter  the  spore  suspensions  to  remove
broken mycelial fragments. Spore concentration was calculated with
a  blood  cell  counting  plate,  and  the  spore  suspension  was  diluted
to  107 cfu/mL  with  0.85%  sterile  saline.  For  the  incubation,  serum
bottles  (150  mL)  were  filled  with  50  mL  of  modified  PVK  medium.
One mL of A. niger spore suspension was inoculated into a medium
bottle  with  different  P  levels.  Five  experimental  treatments  were
established,  i.e.,  Control  (0.25  g  Ca3(PO4)2 as  P  source),  PFree  (no  P
source),  LPG  (0.1  g  PG  as  P  source),  MPG  (0.5  g  PG  as  P  source),
and  HPG  (1.0  g  PG  as  P  source).  Each  treatment  was  performed  in
triplicate.

A parallel experiment was set to investigate the BEP efficiency for
A. niger.  The incubation periods were set at 6, 10, and 15 d, respec-
tively.  For  these  three  incubation  periods,  six  treatments  were  set
up, i.e.,  6dPG, 6dPG + ANG, 10dPG, 10dPG + ANG, 15dPG, 15dPG +
ANG, respectively (ANG represents the treatment in which was ino-
culated A. niger). Each treatment consisted of 50 mL of modified PVK
medium and 1.0  g  PG.  The incubation conditions  were  identical  to
those in the above experiment. Each treatment was also performed
in triplicate.

 Sample preparation and chemical property
analysis
After  6  d  incubation,  the  serum  bottles  were  filled  with  high-purity
nitrogen  gas  (for  5  min)  using  a  nitrogen  evaporator  (JH-NK200-1B).
Then, the serum bottle was capped with a sealed stopper, and A. niger
was  incubated  again  for  0.5  h  (28  °C,  180  rpm).  Finally,  after  mixing
the  gas  in  the  serum  bottle  with  a  syringe,  10  mL  of  the  mixed  gas
was extracted for testing CO2 emissions. In addition, the medium was
filtered  by  using  a  0.22-μm  polyethersulfone  (PES)  membrane  filter.
Subsequently, pH values, total organic carbon (TOC), P concentrations,
acid  phosphatase  activity  (ACP),  and  oxalic  acid  concentration  of  the
filtrate were measured.

After  measuring  the  P  concentrations,  P  extraction  efficiencies
were calculated according to the following formula:

ηP =
CR

CT
×100%

where, ηP refers  to  the  efficiency  of  BEP  from  the  corresponding
treatment; the CR (mg/L) refers to the P concentration obtained by the
ICP-OES test in the filtrate of the corresponding treatment; the CT refers
to  the  total  P  concentration  of  the  corresponding  treatment,  which
is  the  P  concentration  obtained  by  assuming  that  all  P  in  the  system
is dissolved.

The  solid  phase  obtained  after  filtration  was  dried  in  an  oven  at
65  °C,  then  weighed  to  determine  the  biomass  of A.  niger.  After
drying,  the  solid  phase  was  determined  by  attenuated  total  reflec-
tion  infrared  spectroscopy  (ATR-IR).  Meanwhile,  another  round  of
the  same  incubation  experiment  was  performed.  The  filtered  solid
phase was placed in a 2.5% glutaraldehyde solution for 12 h (25 °C).
Then,  a  portion  of  the  solid  phase  from  the  HPG  treatment  was

embedded  in  resin  and  sectioned  into  200  nm-thick  slices  for
nanoscale  secondary  ion  mass  spectrometry  (NanoSIMS)  analysis.
The  remaining  solid  phase  was  dried  in  a  vacuum  freeze-dryer
(Genscience  Instrument  Pro-4055,  Nanjing,  China).  After  drying,  it
was  characterized  by  scanning  electron  microscopy-energy  disper-
sive spectroscopy (SEM-EDS).

 GWB modeling and data analyses
The Geochemist's® Workbench (GWB Version 12, USA) was applied to
simulate the mineralization of Fe and the formation of CaC2O4

[45].  The
concentrations of HPO4

2− and PO4
3− were based on ICP-OES data.

 Instrumentation
PG  was  analyzed  by  XRF  (Thermo  Fisher  ARL  Perform'  X  4200).  The
effective diameter  of  the XRF analysis  was 25 mm. CO2 was measured
by gas chromatography (GC) (Agilent 7890). The pH values of the filtrate
were measured using a Mettler pH meter (Pro-ISM-IP67). The TOC of the
filtrate  was  measured  using  a  total  organic  carbon  and  nitrogen
analyzer  (Multi  N/C3100).  Concentrations  of  P  were  measured  by  ICP-
OES (Optima 8000).  Acid phosphatase (ACP) activity  of  the filtrate was
measured with an acid phosphatase kit (Cominbio, Suzhou, China).

Concentrations  of  oxalic  acid  were  measured  by  HPLC  (Agilent
1200). The chromatographic column was SB-Aq (4.6 mm × 250 mm).
The  mobile  phase  consisted  of  0.25%  KH2PO4 buffer  (pH  2.80)  and
methanol;  the  volume  ratio  was  99:1,  the  flow  rate  was  1  mL/min,
the sample size was 20 μL, the column temperature was 30 °C, and
the detection wavelength was 210 nm.

The  infrared  spectra  were  acquired  using  a  Nicolet  iS5  FTIR
spectrometer  (ThermoFisher  Scientific  Inc.).  Data  collection  was
performed  using  OMNIC  software  (Thermo  Fisher  Scientific  Inc.,
Madison,  USA)  with  the  following  parameters:  spectral  range  of
500–2,000  cm−1,  16  cumulative  scans,  and  4  cm−1 spectral  resolu-
tion for each sample.

Elemental mapping was conducted using a NanoSIMS 50 analyti-
cal  system  (Cameca,  Courbevoie,  France).  The  hyphal  pellets  of A.
niger were  sectioned  into  semi-thin  slices  of  200  nm.  Then,  they
were  mounted  on  10  mm-diameter  silicon  wafers.  The  microbial
section specimens were continuously bombarded with a cesium ion
(Cs+)  beam, inducing sputtering of secondary ions from the surface
layers.  After  energy-based  sorting  in  the  electrostatic  sector,  these
liberated ions were separated in a mass spectrometer based on their
charge-to-mass ratios. The imaging protocol employed a dwell time
of 1–3 ms/pixel and an image resolution of 512 × 512 pixels. Finally,
the  spatial  mass  distribution  maps  of 12C14N− (characterizing  nitro-
gen), 31P− and 32S− were produced.

SEM  imaging  was  conducted  using  a  Carl  Zeiss  Supra  55  system
operated  at  5–15  kV  accelerating  voltage.  Before  imaging,  all
samples  were  gold-sputtered  for  5  min  to  minimize  surface  charg-
ing and enhance image quality.  The semi-quantitative analysis  was
performed  using  an  Oxford  Aztec  X-Max  150  energy-dispersive
spectrometer (EDS) with a collection time of 90 s.

 Results

 TOC and biomass of A. niger - PG system
The  TOC  in  Control  treatment  was  1.74  g/L  (Fig.  1a).  In  contrast,  the
PFree  treatment  showed  a  significantly  higher  TOC  concentration  of
4.11  g/L  (Fig.  1a).  The  addition  of  PG  at  a  low  level  (LPG  treatment)
resulted  in  a  lower  concentration  of  2.96  g/L,  which  was  still  higher
than  that  of  Control  treatment  (Fig.  1a).  Moreover,  the  TOC
concentrations  of  the  MPG  and  HPG  treatments  were  significantly
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lower  than  that  of  Control  treatment,  being  0.38  and  0.36  g/L,
respectively (Fig. 1a).

In  the  Control  treatment,  biomass  was  0.30  g.  The  biomass  of
PFree treatment was as low as 0.05 g (Fig. 1a). In the LPG treatment,
biomass  was  0.13  g,  which  was  significantly  less  than  that  of  the
Control  treatment  (Fig.  1a).  In  the  MPG  treatment,  biomass
increased  to  0.43  g  (Fig.  1a).  In  the  HPG  treatment,  the  biomass
reached 0.85 g (Fig. 1a). Moreover, the biomass of A. niger increased
with  the  reduction  of  TOC  concentration,  which  showed  a  signifi-
cant negative correlation (Fig. 1b).

 Bioactivity of A. niger
The CO2 emission rate  of  the  Control  treatment  was  4,710 μg C/kg/h

(Fig.  1c).  In  contrast,  the  respiration  intensity  of  PFree  treatment  was

the  lowest,  i.e.,  470 μg  C/kg/h  (Fig.  1c).  In  the  LPG  treatment,  the

respiration  intensity  was  7,750 μg  C/kg/h,  which  was  significantly

more than the Control  treatment (Fig.  1c).  In  the MPG treatment,  the

respiration intensity was 4,273 μg C/kg/h, which showed no significant

difference  from  Control  treatment.  In  the  HPG  treatment,  the  respi-

ration  intensity  reached  8,937 μg  C/kg/h  (Fig.  1c).  The  respiration

 

Fig.  1  Incubation effect  of A.  niger.  (a)  Biomass,  and TOC content of  filtrate after  six  days of  incubation under different  treatments.  (b)  The correlation
between TOC values  and the  reciprocal  of  biomass.  (c)  CO2 emission rates  of  the  system.  (d) Concentrations  of  oxalic  acid  secreted by A.  niger.  (e)  pH
values of the filtrate after incubation for six days. (f)  acid phosphatase activity of filtrate after incubation for six days. (The lowercase letter labels in the
figure  indicate  significant  differences  among  different  treatments.  If  two  treatments  contained  the  same  lowercase  letter,  there  was  no  significant
difference between them; otherwise, there was a significant difference).
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intensity  of  the above A.  niger treated with P  source was significantly
stronger than that of PFree treatment (Fig. 1c).

The  oxalic  acid  concentration  in  the  Control  treatment  was
recorded  as  2,362  mg/L  (Fig.  1d).  When  no  P  source  was  added
during incubation, the PFree treatment showed a significantly lower
oxalic  acid  concentration  of  63  mg/L  (Fig.  1d),  which  indicated  the
limited oxalic acid secretion of A. niger under P restriction. The oxalic
acid  concentrations  in  LPG,  MPG,  and  HPG  treatments  were  21,  8,
and 38 mg/L,  respectively  (Fig.  1d).  The solubility  of  CaSO4·2H2O in
pure  water  (0.264  g/100  g  water,  room  temperature)  is  approxi-
mately  100  times  that  of  Ca3(PO4)2 (0.0025  g/100  g  water,  room
temperature, from ChemBK). Therefore, the incubation system of A.
niger with PG resulted in the generation of more CaC2O4 compared
with  the  system  of A.  niger with  Ca3(PO4)2.  In  the  HPLC  test,  the
filtrate did not contain CaC2O4, resulting in extremely low oxalic acid
concentrations measured after treatment with PG added.

In  the  Control  treatment,  the  pH  value  was  1.8  (Fig.  1e).  The  pH
value in the PFree treatment was 3.0 (Fig.  1e).  The pH value signifi-
cantly  increased  from  2.4  in  the  LPG  treatment  to  3.0  in  the  MPG
treatment,  and then increased dramatically to 4.0 in the HPG treat-
ment  (Fig.  1e).  The  pH  values  from  PG  treatments  were  all  higher
than those in the Control treatment (Fig. 1e).

In  HPG  treatment,  the  acid  phosphatase  activity  of  the  filtrate
reached 0.17 μmol/min/mL, which was significantly higher than that
of  LPG  and  MPG  treatments  (Fig.  1f).  There  was  no  significant

difference  in  acid  phosphatase  activity  among  other  treatments
except for HPG treatment (Fig. 1f).

 BEP efficiency
The P content in PG was as low as 0.81% according to XRF results.  In
the Control treatment, the BEP efficiency from Ca3(PO4)2 by A. niger was
42.78% (Fig. 2c).  In LPG, MPG, and HPG treatments, the BEP efficiency
from  PG  by A.  niger decreased  dramatically  to  10%  level  (8%–12%)
(Fig.  2c).  This  suggested  the  abundance  of  added  PG  showed  no
significant difference of BEP efficiency.

The  incubation  time,  however,  showed  evident  changes  in  BEP
efficiency.  The  BEP  efficiency  significantly  increased  from  15.75%
(6dPG  +  ANG  treatment)  to  30.84%  (10dPG  +  ANG  treatment).
Finally,  it  was  elevated  to  37.81%  for  the  15dPG  +  ANG  treatment
(Fig.  2d).  Without A.  niger,  the P  dissolution efficiencies  maintained
at  10%,  i.e.,  9% for  6dPG treatment,  11% for  10dPG treatment,  and
12%  for  the  15dPG  treatment  (Fig.  2d).  The  role  of A.  niger in  the
process of P dissolution in PG was significant.

 Functional groups analysis of ATR-IR
In  the  ATR-IR  spectra  (Fig.  3),  the  absorption  band  at  596  cm−1 was
characteristic  of  phosphate  P-O  vibrational  modes[46].  This  peak  dis-
played  maximal  intensity  in  MPG  and  HPG  treatments  (Fig.  3).  The
absorption band at 780 cm−1 was attributed to P-O vibration based on

 

Fig.  2  Effect  of  bioextraction  of  P. (a)  and  (c)  concentrations  of  water-soluble  P  and  P  bioextraction  efficiency  by A.  niger after  six  days  of  incubation.
(b)  and (d)  concentrations of  water-soluble P and P extraction efficiency after  six,  10,  and 15 d of  incubation,  respectively  (the P involved in the figure
pertained  solely  to  P  presented  in  the  solution,  excluding  P  in  fungal  pellets).  In  (a)  and  (c),  the  lowercase  letter  labels  indicate  significant  differences
among different  treatments.  If  two treatments  had the  same lowercase  letter,  there  was  no significant  difference;  otherwise,  there  was  a  considerable
difference. In (b) and (d), the capital letter labels indicate whether there was a substantial difference between the treatments PG only or PG and A. niger at
the  same  incubation  time.  The  lowercase  letters  indicate  significant  differences  among  incubation  times  within  each  treatment  (PG  only  or  PG  and
A. niger). The method for determining substantial differences was consistent with the above.
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HPO4
2−. This peak was prominent in both Control and LPG treatments

(but  with  higher  intensity  in  the  Control  treatment)  (Fig.  3).  The
absorption  band  at  1,012  cm−1 was  assigned  to  C–O  and  C–C  vibra-
tions  from  microbial  polysaccharides[47,48],  which  was  prominent  in
PFree treatment  (Fig.  3).  The 1,027 cm−1 band represented ν1 and ν3
P-O  vibration  of  PO4

3− (Fig.  3)[49,50].  Compared  with  the  Control  treat-
ment, the intensity of this peak was significantly enhanced in the LPG
treatments  (Fig.  3).  At  1,104  cm−1,  the  spectrum  exhibited  a  mixed
vibrational mode resulting from the combination of P-O (for PO4

3−) and
S-O  (for  SO4

2−)[51].  The  intensity  distribution  of  this  peak  was  similar
to  that  of  the  596  cm−1 peak  (Fig.  3).  As  the  mass  of  PG  increased,
there  was  more  SO4

2− in  the  system,  and  the  intensity  of  this  peak

got  stronger  (Fig.  3).  The  absorption  band  at  1,315  cm−1 represented
symmetric  stretching  vibrations  of  C-O  from  C2O4

2− while  that  at
1,616 cm−1 represented  the  asymmetric  stretching  vibrations  from
HC2O4

−[52].  Both  peaks  were  characteristic  of  oxalic  acid  (Fig.  3).  The
1,683  cm−1 peak  represented  the  C=O  stretching  vibration  (Fig.  3)[53].
The  intensity  of  the  three  peaks  above  in  the  spectra  of  Control  and
LPG  treatments  was  higher  than  that  in  MPG  and  HPG  treatments
(Fig.  3).  When  the  mass  of  PG  reached  0.5  g,  the  peaks  of  oxalic  acid
functional  groups  were  masked  by  the  peak  of  S-O  vibration  in  PG
(Fig. 3).

 NanoSIMS, SEM-EDS, and GWB analysis
Signals  from  the  CN  element  in  the  NanoSIMS  images  were  used  to
locate  areas  of  biological  composition (Fig.  4a, d).  The signal  of  the P
element further highlighted the cellular structure of A. niger (Fig. 4b, e),
which  was  highly  coincident  with  that  of  the  CN  element.  P  maps
indicated that most of the P in PG was within A. niger cells for fungus
growth during incubation (Fig. 4b, e)[44]. Meanwhile, enrichment of the
P element was observed in specific A. niger cells (Fig. 4b, e), indicating
cell division. In addition, the signal of the S element displayed the basal
sulfur  distribution,  which  can  mainly  be  ascribed  to  sulfur-containing
proteins.  S  maps  indicated  that  the  abundant  SO4

2− in  PG  could  be
absorbed by A. niger for the synthesis of cellular proteins (Fig. 4e, f).

The  contents  of  Ca  and  Fe  in  the  PG  were  32.19  and  0.49  wt%,
respectively, based on XRF analysis. The solid phases obtained from
LPG, MPG, and HPG treatments were observed by SEM (Fig. 5). SEM
image and EDS result confirmed the formation of CaC2O4, which was
tightly interacted by hyphae of A. niger (Fig. 5a). During incubation,
oxalic acid secreted by A. niger interacted with the CaSO4 adsorbed
by  its  hyphae  (Fig.  5b).  Then,  the  C2O4

2− ionized  from  oxalic  acid
replaced  the  SO4

2− in  CaSO4,  resulting  in  the  formation  of  CaC2O4

(Fig.  5a).  Meanwhile,  as  the  P  in  PG  slowly  dissolved  into  the  solu-
tion, Fe in the solution was mineralized to strengite (Fig. 5c, d).

 

Fig. 3  ATR-IR spectra of the filtered solid phase after incubation for six
days.

 

Fig. 4  NanoSIMS images of High PG treatment after 6 days of incubation. (a) and (d) CN element distribution. (b) and (e) P element distribution. (c) and (f)
S element distribution. (a)−(c) were from the same region, while figures (d)−(f) were from another region. The scale bar of all the figures was 10 μm.
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GWB  simulation  revealed  that  with  the  increase  of  pH,  PO4
3−

tended  to  combine  with  Ca2+ and  then  mineralized  into  hydro-
xylapatite  (Fig.  6b).  Meanwhile,  the  abundance  of  Ca2+ and  C2O4

2−

in the solution induced substantial precipitation of CaC2O4 (Fig. 6).

 Discussion

The residual  P  in  PG is  the portion that  remained unextracted during
sulfuric acid leaching. This makes re-extraction of P usually difficult and
of  low-efficiency.  The  secretion  of  oxalic  acid  has  been  reported  to
promote  P  release  from  insoluble  phosphates  with  high  efficiency.
The BEP efficiency in this  study confirmed that biogenic oxalic  acid is
fully  capable  of  dissolving  the  residual  P  within  PG  (see Fig.  2).
Moreover, as a typical filamentous fungi, A. niger can capture and wrap
dispersed  PG  particles  in  the  medium  through  its  hyphal  network
during the incubation process (see Fig. 5b)[54]. Then, fungal hyphae can
extend  the  distribution  of  oxalic  acid  on  PG  particles[55].  These  two
pathways  together  would  provide  a  favorable  microenvironment  for
PG  dissolution.  In  agriculture,  the  hyphal  network  of A.  niger can
extend  into  various  soil  micropores  and  regions  inaccessible  to  plant
root  systems,  thereby  expanding  the  scope  of  P  solubilization  in  the
soil system[56,57].

The BEP efficiency of PG by A.  niger reached as high as ~40% for
the 15dPG + ANG treatment (see Fig. 2d), which was comparable to
its  BEP  efficiency  from  pure  Ca3(PO4)2 (see Fig.  2c).  This  result  was
attributed to the sustainability  provided by A.  niger during the BEP
process. In addition, the extraction efficiency of PG could be further
improved by extending the incubation time of A. niger. A portion of
the extracted P in solution was utilized for the growth of A. niger and
participated  in  biological  metabolic  processes  (see Fig.  4b, e)[56].

Microorganisms require  P  uptake for  the synthesis  of  essential  bio-
molecules such as ATP and cell wall phospholipids[40, 58]. The release
of  P  from  PG  promised  the  fungal  metabolism.  Meanwhile,  the
fungal metabolism ensured the sustainability of the BEP process[59].
Moreover,  the  P  in  the  biomass  of  these  fungal  cells  can  be  easily
applied as fertilizer or in the biochemical industry[60].

Traditional  chemical  extraction  methods  (e.g.,  sulfuric  acid  leach-
ing)  indiscriminately  dissolve  more  Ca,  Fe,  Si,  and  other  minor
elements than BEP[61]. However, dissolved Ca tends to recombine with
P  and  re-mineralize  into  hydroxylapatite  (see Fig.  6b).  Similarly,  Fe3+

demonstrates  a  distinct  propensity  to  mineralize  with  PO4
3− into

strengite (see Figs 5c, d, and 6).  Both mineralization pathways would
significantly reduce the efficiency of P extraction. The dissolution of Si
results in the formation of silica gel, which physically hinders contact
between  sulfuric  acid  and  PG,  thereby  indirectly  impairing  P  extrac-
tion efficiency[62,63]. This can explain why chemical P extraction meth-
ods  inevitably  retain  ~1%  residual  P  in  PG  globally.  Conversely,  BEP
exhibits  highly  selective  P  recovery,  particularly  at  low  P  concentra-
tions.  Additionally,  the  microorganisms  specifically  target  P  while
minimizing the co-solubility of impurities[64].

The  release  of  P  from  PG  and  the  metabolism  of A.  niger may
have  formed  a  positive  feedback  loop.  Primarily,  the  acidity  of  PG
would create a favorable environment for the incubation of A. niger.
With  the  PG  addition,  the  biomass  and  bioactivity  of A.  niger were
enhanced  (see Fig.  1a).  Then, A.  niger would  continuously  secrete
oxalic  acid  during  incubation.  The  H+ ionized  from  oxalic  acid
provided  a  more  favorable  microenvironment  for  P  dissolution.
Meanwhile,  C2O4

2− mineralized  with  Ca2+ to  form  CaC2O4,  thereby
reducing  the  reabsorption  of  dissolved  P  by  free  Ca2+  [42].  Subse-
quently, the solubilization of P would be enhanced. In addition, the

 

Fig. 5  SEM and EDS images of minerals formed during incubation. (a) Calcium oxalate from Low PG treatment. (b) Gypsum particles adsorbed by A. niger
hyphae from High PG treatment. (c) and (d) Strengite from Moderate PG treatment.
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released P  would  be  absorbed by A.  niger cells  to  meet  their  nutri-
tional  requirements  (see Fig.  4e)[58].  The  abundant  SO4

2− in  PG
would maintain the positive feedback loop of the BEP process. SO4

2−

was  absorbed  by A.  niger through  the  sulfate  transporter,  then
reduced  to  SO3

2− or  S2− via  the  sulfate  assimilation  pathway,  ulti-
mately  synthesizing  into  sulfur-containing  amino  acids  such  as
cysteine[32].  PG also contained other nutrients required by microor-
ganisms,  such  as  K  (0.8%)  and  Mg  (0.3%),  which  may  be  essential
during  incubation[65].  Such  a  positive  feedback  loop  would  ensure
the sustainability of fungal growth and the BEP process.

After bioextraction, the P in the solution existed as PO4
3−, which is

available  to  plants.  Although  the  P  content  in  PG  is  relatively  low,
it  is  readily  soluble  due  to  prior  acidulation  with  sulfuric  acid.  For
plants, the main issue is the low utilization rate of P[54,66]. The biosys-
tem composed of A. niger and PG can be utilized for the production
of  highly  efficient  microbial  phosphate  fertilizers.  The  hyphae  of
A.  niger can  build  a  bridge  between  available  P  and  the  plant  root
system,  thereby maximizing the  utilization efficiency  of  P[23].  When
such  a  biosystem  is  applied  to  the  soil,  plants  will  absorb  the  P
released by the fungal hyphae through their root systems[67]. Mean-
while,  the  plant  roots  and  fungi  will  also  form  a  positive  feedback
regulation. The plant root system secretes organic matters (such as
phosphatases  and  amino  acid  derivatives)  to  stimulate A.  niger to
grow  more  vigorously[68],  thereby  secreting  more  organic  acids  to
release insoluble P[69].

 Conclusions

The  presence  of  PSF A.  niger significantly  increased  the  release
efficiency of P from PG. The efficiency of BEP increased with increasing
incubation time. There might be a positive feedback loop between the
incubation  of A.  niger and  the  recovery  of  P  from  PG.  BEP  of A.  niger
provides  a  broad  prospect  for  the  treatment  of  substantial  PG  waste
and the improvement of the shortage of soil available P in agricultural
fields.
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