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Abstract
As  a  crucial  component  for  maintaining  ecological  security  and  human  health,  aquatic

ecosystems  are  facing  risks  from  intensified  human  activities.  Aquatic  risk  assessment

requires a comprehensive understanding of geographic distribution, exposure, and effects of

diverse pollutants. In the era of big data, utilizing available environmental data to its fullest

extent  is  expected  to  facilitate  efficient  regional  risk  assessment,  and  support  informed

decision-making  in  risk  management.  However,  it  faces  a  significant  challenge  in  data

integration,  as  environmental  data  are  scattered  across  heterogeneous  texts  from  diverse

corpora,  such  as  scientific  research  literature,  monitoring  reports,  and  policy  documents.

Natural language processing (NLP) approaches serve as key tools for structured information

extraction  (IE).  Traditional  NLP  techniques  face  bottlenecks  such  as  cumbersome  feature

engineering,  and  limited  generalization,  while  newly  developed  large  language  models

(LLMs)  can  perform  a  wide  array  of  tasks  through  prompting,  achieving  remarkable

generalization  and  versatility.  The  present  work  systematically  reviewed  cutting-edge

applications of LLMs in IE tasks across multiple disciplines, including chemistry, biology, and

toxicology,  from  three  perspectives:  entity  extraction,  relation  extraction,  and  semantic

generation. On the contrary, the current application of LLMs in environmental science is still

in  its  early  stages,  facing  challenges  such  as  data  dependence,  hallucinations,  and  envi-

ronmental  concerns.  Future  research  should  focus  on  building  high-quality  environmental

corpora  and  hybrid  strategies  to  systematically  integrate  aquatic  ecological  risk  data,  and

support environmental risk assessment and management policies.
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 Introduction

Aquatic ecosystems are critical components in maintaining ecological
security  and  human  health.  Aquatic  ecological  risk  assessment  gene-
rally  requires  a  comprehensive  understanding of  exposure  and effect
information,  such  as  regional  geographic  characteristics,  pollutant
occurrence, migration, and transformation in the aquatic environment,
exposure routes,  toxicological  endpoints,  and modes of  action.  In the
era of environmental big data, making full use of related knowledge is
expected  to  efficiently  identify  and  prioritize  the  primary  risk-driven
pollutants in the environment, and support scientific decision-making
in aquatic risk management. Although much retrospective knowledge
has been curated in various databases as structured data, for example,
the  CompTox  Chemicals  Dashboard[1],  PubChemLite[2],  and  the  Ad-
verse Outcome Pathway Wiki[3], these databases are mainly associated

with  chemical  and toxicological  data.  Little  is  available  to  index  field-
measured exposure  and effect  data  in  aquatic  environments,  such as
reported  concentrations  in  surface  water  in  a  given  river,  detected
toxicity  potencies  in  sediment  samples,  or  mixture  risks  in  aquatic
environments  of  certain  regions.  These types  of  knowledge are  often
scattered  and  unstructured  across  multiple  heterogeneous  sources,
such  as  scientific  literature,  monitoring  reports,  and  policy
documents[4].  In addition,  this  information is  commonly characterized
by  highly  specialized  terminology,  implicit  entity  relationships,  and
multimodal mixing. Developing technologies to extract such text data
would  supplement  existing  knowledge  of  ecological  risks  in  real
environments.

Natural  language  processing  (NLP)  is  an  important  area  in  artifi-
cial  intelligence  (AI)  applications  that  aims  to  build  linguistic
pipelines  to  understand,  learn,  and  produce  human  language
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content[5].  Named entity  recognition (NER),  which regards the rule-
based  terms  (like  terminologies)  as  entities,  is  designed  to  extract
key  information  from  context[6].  Research  on  NER  has  been  con-
ducted to collect various information, including chemical names[7−9],
and  disease  records[10,11].  Statistics  on  term  frequency  can  provide
descriptive insights, such as research interests, temporal trends, and
the average of  the observed values.  Furthermore,  explaining scien-
tific data often relies on the explicit relationships between terms, for
example,  chemical  reaction  equations,  genomes  and  phenotypes,
and geographic coordinates of the maps, which require developing
the  relation  extraction  (RE)  technique  in  NLP[12].  Currently,  models
used for  NER and RE tasks  are  mostly  deep learning models.  These
models  are  often  designed  with  recurrent  neural  network  (RNN)
architectures,  and further modified to use long short-term memory
(LSTM),  gated  recurrent  unit  (GRU),  or  their  bidirectional
variants[13,14]. Through manual feature engineering and task-specific
optimization,  these  deep  learning  models  have  shown  strong
performance in  extracting lexicon-guided terms and linguistic  rela-
tions, and in highlighting symbols from the literature[15,16].

However,  these  traditional  NLP  methods  generally  relied  on
manual  feature  engineering  and  task-specific  modeling,  and  per-
formed  poorly  on  information  extraction  (IE)  tasks  when  the
contexts  involved  complex  terminology,  implicit  entity  relation-
ships,  and  multimodal  data.  As  a  consequence,  there  are  three
significant  limitations  of  traditional  NLP  methods  for  processing
unstructured data in environmental science, including poor genera-
lization,  high  migration  costs,  and  limited  relation-extraction  capa-
bilities. In recent years, large language models (LLMs), based on the
Transformer  architecture,  have  demonstrated  powerful  capabilities
for  long-distance  semantic  understanding  and  context  reasoning,
offering  a  new  framework  for  environmental  IE  tasks[17].  Notably,
GPT-3.5 became publicly accessible in November 2022[18], and since
then,  there  has  been  an  explosion  of  publications  on  cutting-edge
LLM applications  across  research fields.  Beyond AI  copilots,  agents,

and  question-and-answer  robots,  LLM  applications  have  greatly
expanded the use of AI in science. With significant breakthroughs in
NER, RE, and a new semantic generation (SG) function, LLMs are also
anticipated to address the challenge of data fragmentation by inte-
grating  multi-source  unstructured  environmental  data  and  to
develop  an  end-to-end  strategy  for  accomplishing  NLP  tasks  in
aquatic ecological risk assessments (Fig. 1).

The primary objective of this perspective is to clarify the potential
of  LLMs  to  mine,  integrate,  and  reason  over  data  from  diverse
sources for aquatic ecological risk assessment. The technical approa-
ches  of  LLMs in  NLP were  systematically  reviewed,  and the current
research  status  in  aquatic  risk  IE  was  summarized,  with  particular
attention  given  to  advances  in  NER,  RE,  and  SG  tasks.  Published
studies  on  the  application  of  LLMs  in  scientific  research  were  sys-
tematically  collected,  and the information extraction capabilities  of
LLMs  were  examined.  Current  limitations,  such  as  insufficient
reasoning capabilities for multimodal data fusion and complex envi-
ronmental  challenges,  were  identified,  and  a  prospective  architec-
ture  for  intelligent  decision-making  platforms  were  proposed.  By
integrating multi-disciplinary case studies and highlighting similari-
ties  in  IE  tasks  across  chemistry,  toxicology,  and  earth  science,  this
perspective  evaluates  the  feasibility  of  mining  aquatic  ecological
data using LLMs,  and aims to provide environmental  scientists  and
stakeholders  with  practical  solutions  for  LLM-based  data  mining,
thereby advancing the application of AI in aquatic risk assessments.

 Natural language processing methods for
information extraction

The goal of NLP is for computers to understand, process, and generate
human  natural  language,  thereby  achieving  human-computer
interaction. As a core subfield of NLP, IE aims to automatically extract
structured,  valuable  information  (such  as  entities,  relationships,  and

 

Fig. 1  Potential use of large language models (LLMs) in aquatic ecological risk assessment. The LLMs are expected to transform unstructured multimodal
environmental data into structured data and then serve aquatic ecological risk assessment.
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events)  from  massive,  complex  natural  language  texts  that  contain
unstructured  or  semi-structured  data,  such  as  articles,  academic
papers,  and  social  media  posts.  IE  can  identify  and  extract  the
information  users  need  from  massive  information  sources.  This  task
requires identifying and extracting entities and their complex relation-
ships,  learning  patterns,  and  predicting  missing  data  in  corpora.  To
accomplish the task, a typical IE workflow is performed in three steps:
corpus preprocessing, feature engineering, and modeling and training.

The first step is corpus preprocessing. As shown in Fig. 2, this step
includes tokenization, text normalization, NER, and RE. Tokenization
is  the  premise  for  IE,  and  it  is  splitting  the  text  into  smaller  but
meaningful  units  called  'tokens',  which  are  words  or  phrases  with
substantive  connotations.  Sometimes,  depending  on  the  entity
naming rules  and application scenarios,  tokens  can be  further  split
into  unary,  binary,  and  ternary  words.  For  instance,  by  splitting
IUPAC-named compounds into ternary word dictionaries,  the accu-
racy of  compound recognition in  scientific  literature can be signifi-
cantly improved[19].

Text  normalization  is  further  applied  to  standardize  tokens,
reduce  variability,  and  improve  computational  efficiency,  including
lowercasing, stemming, lemmatization, part-of-speech tagging (POS
tagging),  and  stop-word  removal.  Stemming  and  lemmatization
reduce  words  to  their  root  forms  by  converting  related  or  similar
variants  into  their  lemmas  or  stems.  The  POS  tagging  assigns  a
specific  'part-of-speech'  label  to  each  token  in  a  text  based  on  the
token's  grammatical  function,  meaning,  and  context  within  the
sentence.  Subsequently,  these  preprocessed  words,  in  their  root
form,  are  used  to  construct  corpora  and  word  embeddings,  allow-
ing computers to understand the semantic connotations of  natural
language.  The  quality  of  the  corpus  will  directly  affect  the  perfor-
mance of the model.  In addition, assigning weights based on diffe-

rent  word  embedding  vectors  can  make  it  easier  to  extract
keywords.

The  main  tasks  of  IE  include  NER,  RE,  and  event  extraction  (EE).
NER  detects  entities  and  assigns  them  to  predefined  categories
(such as  compound names,  modes  of  toxic  action,  and geographic
locations),  serving  as  the  most  basic  and  widely  used  IE  subtask.
Recurrent neural networks (RNNs), Long Short-Term Memory (LSTM)
networks[13],  and  gated  RNNs[14] have  been  established  as  state-of-
the-art  approaches  in  sequence  modeling,  and  have  significantly
improved  the  accuracy  of  entity  recognition[20].  RE  aims  to  identify
the semantic  relationships  between two or  more entities  extracted
in  the  NER  step,  and  to  transform  isolated  entities  into  meaningful
pairs. Therefore, it is expected to identify contexts where compound
names  and  toxicological  terms  co-occur,  and  to  relate  pollutant
names to their environmental concentrations. EE is a more complex
subtask  that  extracts  structured  information  about  specific  events
from the text and involves identifying event triggers and their asso-
ciated arguments.

Semantic  similarity  calculation  and  text  classification  are  impor-
tant  for  these  IE  subtasks.  Semantic  similarity  can  be  computed
using  cosine  similarity  applied  to  word  embeddings,  or  through
knowledge-based  techniques  such  as  WordNet,  which  can  provide
semantic distances between sentences. These approaches are com-
monly  used  in  tasks  such  as  text  clustering  and  deduplication.  On
the other  hand,  text  classification involves  assigning documents  to
predefined  categories.  Traditional  classification  techniques,  includ-
ing  Naive  Bayes  (NB),  Support  Vector  Machines  (SVM),  and  logistic
regression,  typically  use  bag-of-words  or  TF-IDF  features  to  extract
patterns from labeled data and predict categories for unseen texts.
For  example,  an  NB  classifier  incorporating  adverse  outcome  path-
ways  (AOP)  has  been developed to  enhance the mechanistic  inter-
pretation of toxicity endpoints[21].

 

Fig. 2  Schematic diagram of a workflow for ecological risk assessment (ERA) based on natural language processing (NLP). Left panel shows a workflow of
NLP, which converts unstructured text into structured data through sequential stages, including Data Curation, Named Entity Recognition (NER), Relation
Extraction (RE),  and Semantic Generation (SG).  Middle panel shows structured output content.  Taking texts from a publication in the field of ERA as an
example, this section illustrates the NLP corpus preprocessing step. Right panel presents a case in ERA to explain a proposed end-to-end process, in which
an  environmental  risk  assessment  of  emerging  contaminants  (e.g.,  neonicotinoids)  in  the  Pearl  River  was  conducted.  Through  data  extraction  and
information correlation, aquatic risk baselines,  including occurrence and toxicity features of these contaminants,  were obtained. Subsequent risks were
profiled in the region, ultimately leading to the prioritization of a high-risk inventory.
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However,  the  aforementioned  traditional  machine  learning
models  can  handle  only  numerical  vectors  and  require  numerical
inputs  rather  than raw text.  Therefore,  engineers  need to manually
define  rules  to  convert  text  into  structured  features,  a  process
known  as  feature  engineering.  Traditional  NLP  feature  engineering
is  not  a  single  step  but  a  series  of  complex  processes  that  require
repeated trial-and-error, and are highly dependent on experience. In
the  field  of  environmental  science,  NER  and  RE  have  been  used  to
extract  structured  information  from  heterogeneous  multi-source
data. The NER task relies on manually screened features (e.g., tokens,
POS  tags)  for  sequence  labeling,  whereas  text  classification  often
uses  manually  selected  features,  such  as  n-grams  or  TF-IDF,  with
classifiers such as SVMs. Both tasks are time-consuming and require
continuous  trial  and  error.  The  RE  technique,  dealing  with  deeper
semantics, is even more challenging. In addition, these task-specific
models with dedicated feature pipelines and annotated data suffer
from  poor  cross-task  and  cross-lingual  transferability,  considerably
limiting  their  adaptability  and  generalization.  In  contrast,  LLMs
present a promising alternative through end-to-end learning, long-
context understanding, and vast parameter scales, potentially over-
coming these long-standing limitations.

 LLM application in data mining and
information extraction for aquatic risk
assessment

While  promising,  studies  using  LLMs  in  aquatic  risk  assessment  are
limited.  A  literature  search  in  the  Web  of  Science  Core  Collection's
SCI-EXPANDED  database  (2000-present)  using  the  keywords  'water',
'ecological  risk',  and  'large  language  models',  limited  to  the  research
areas  of  Environmental  Sciences  and  Ecology,  yielded  only  four  rele-
vant publications, including one review article. These studies primarily
focused  on  using  LLMs  to  analyze  ecological  risk  data  related  to  the
aquatic  environment,  such  as  policy  documents[22,23],  monitoring
reports[24],  and social media data[22],  with the aim of developing more
intelligent, dynamic risk assessment and management models.

Before  the  emergence  of  Transformers,  RNNs  and  their  variants,
such as LSTMs and the Gated Recurrent Unit (GRU), were the main-
stream  models  for  handling  sequential  tasks.  In  environmental
science,  LSTM  models  have  been  combined  with  other  models
to  address  spatiotemporal  problems,  such  as  air  quality
prediction[25−27],  precipitation  estimation[28],  and  groundwater
quality  prediction[29].  Although  RNNs'  sequential  computation
makes  it  easy  to  process  text,  it  prevents  parallelization  and  limits
their  ability  to  model  long-range  context,  resulting  in  a  complex
training process and lower computational efficiency[25,27].

While  there  have  been  improvements  in  RNN  efficiency,  the
increased model complexity has hindered their practical application.
For  example,  Srivastava  &  Kumar[20] optimized  the  air  pollution
prediction  system  by  improving  the  activation  function  (Swish-
Tanh),  and  introducing  the  Xavier  Reptile  search  algorithm,  which
alleviated  gradient  issues  in  the  traditional  model  to  a  certain
extent,  but  it  also  increased  the  difficulty  of  model  development
and parameter tuning, limiting the transferability and application of
the model.

The  introduction  of  the  Transformer  architecture  has  effectively
addressed  the  aforementioned  bottlenecks  of  RNNs.  Transformers
can achieve parallel token processing and global context modeling,
making  Transformer-based  LLMs  more  efficient  for  most  NLP
tasks[17].  Transformers  adopts  a  split  encoder-decoder  architecture,
with each component containing key sub-layers, such as multi-head

self-attention  layers,  which  can  simultaneously  focus  on  informa-
tion  from  multiple  positions,  and  feed-forward  networks  that
perform non-linear transformations. Meanwhile, each sub-layer also
combines residual connections and layer normalization techniques,
enabling training to be more stable and effective.

The  core  of  Transformers  is  multi-head  self-attention,  which
excels at capturing relationships between tokens and long-distance
context  dependencies,  while  positional  encoding  is  used  to  retain
their  positions  in  the  sequence.  By  replacing  sequential  recurrence
in  RNNs  with  parallelizable  self-attention  and  feed-forward  net-
works,  Transformers  drastically  reduce  training  time,  especially  for
long  sequences.  Landmark  NLP  models  such  as  BERT[30] and  GPT
have been developed based on Transformers, which have extended
context  windows  from  hundreds,  to  hundreds  of  thousands  of
tokens, contributing substantially to progress in text understanding
and  generation.  Furthermore,  the  extensive  pre-training  corpora
and  billions  of  parameters  warrant  LLMs  with  broad  real-world
knowledge  (Fig.  3).  This  suggests  a  huge  potential  for  LLMs  to
extract environmentally relevant information for aquatic risk assess-
ment,  and the related applications of  LLMs are detailed in  NER,  RE,
and SG below (Table 1).

 Information extraction task 1: named entity
extraction
The  first  step  in  extracting  environmental  information  from  unstruc-
tured text is NER, which identifies specific entities,  and classifies them
into predefined categories. Aquatic ecological risk assessment involves
multi-disciplinary  knowledge  such  as  chemistry,  toxicology,  and
hydrology. In this field, the entities to be identified typically include the
types  and  sources  of  pollutants,  their  physicochemical  properties,
toxicity  threshold  data,  and  modes  of  toxic  action.  However,  current
NER  tasks  in  this  field  face  two  significant  challenges.  Firstly,  its
interdisciplinary  nature,  and  the  complexity  of  terminology,  signifi-
cantly increase the difficulty of entity recognition. Secondly, the lack of
a systematic taxonomic framework in toxicology makes it challenging
to construct standard lexicons. Methods based on manual coding and
large annotated datasets are often too complex and time-consuming,
posing  significant  challenges  for  accomplishing  the  word  segmenta-
tion task due to complex rules or insufficient labeled data. This issue is
particularly pronounced when dealing with a chemical IUPAC name.

With  their  deep  semantic  understanding,  LLMs  can  directly
extract complex relationships among multiple entities, offering new
solutions for entity extraction in challenging scenarios. In NER, LLMs
have shown great potential for accurately identifying both complex
and straightforward chemical entities. Liang et al.[9] extracted 17,780
records  containing  multi-dimensional  information,  such  as  chemi-
cals,  markers,  and  experimental  conditions,  from  7,166  documents
in  a  single  pass.  Subsequently,  they  compiled  a  list  of  1,416  pro-
oxidants,  and  1,102  antioxidants,  supplementing  these  with  data
from chemical  and pharmaceutical  databases such as ChEMBL[9].  In
another  study,  Dagdelen  et  al.[8] fine-tuned  an  LLM  for  material
chemistry,  and  achieved  accuracy  and  recall  rates  both  exceeding
80%  in  NER  tasks.  The  model  successfully  identified  complex  enti-
ties  such  as  metal-organic  frameworks  using  only  20  samples[8].  In
addition,  LLMs  have  demonstrated  zero-shot  entity  recognition
capabilities  in  materials  science.  For  instance,  ChatMOF  can  trans-
form  complex  material  entities  into  forms  that  LLMs  can  interpret,
thereby  intelligently  aligning  users'  query  intents  with  database
records,  facilitating  accurate  entity  extraction  without  training  for
specific entities[31].

For the NER in the biological and toxicological field, Duan et al.[32]

applied  the  protein  language  models  to  develop  a  standardized

https://doi.org/10.48130/ebp-0026-0002

page 4 of 9 Li et al.  |  Volume 2  |  2026  |  e007

https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002


entity  extraction  pipeline  and  systematically  identified  19  catego-

ries  of  protein-related  entities,  which  covered  multiple  dimensions

such  as  molecular  function,  taxonomic  information,  attribute

descriptions, and formed the largest and most diverse protein entity

dataset to date. Similarly, clinical text structuring tools like GENIE[11]

(F1 =  0.837,  accuracy  =  0.912)  are  capable  of  accurately  extracting

medical entities along with their attributes (e.g.,  status, value, unit),

and  outputting  the  results  in  a  structured  format,  outperforming

traditional  tools  like  cTAKES  (F1 =  0.182,  accuracy  =  0.748)  and

MetaMap (F1 = 0.172) in IE tasks such as phrase extraction and asser-

tion classification.

Collectively,  these  achievements  indicate  that  LLMs  not  only

possess strong domain transferability and adaptability in data-poor

scenarios  but  also  have the potential  to  accomplish  environmental

entity  recognition  tasks  efficiently  and  accurately.  This  is  expected

to  provide  a  reliable,  scalable  new  approach  to  IE  tasks  in  aquatic

ecological risk assessment.

 Information extraction task 2: relation extraction
To acquire environmentally relevant data for aquatic risk assessments,
it  is  essential  to  associate  pollutant  entities  with  their  quantitative
attributes, rather than merely extracting entities. The second IE task is
RE,  which  aims  to  identify  semantic  relationships  between  entities
from unstructured text and construct structured knowledge. However,
entity relationships in environmental literature are often characterized
by sparse co-occurrence and implicit coupling, and these relationships
are  frequently  distributed  across  multiple  modalities  such  as  text,
tables,  and  figures.  Traditional  machine  learning  methods  generally
rely on manually designing features that transform text into structured
vectors,  and on extracting relationships based on lexical,  syntactic,  or
semantic  features.  As  a  consequence,  traditional  machine  learning
methods  struggle  with  extracting  relationships  from  multimodal
texts  in  the  context  of  environmentally  relevant  data.  Alternatively,
advanced LLMs enable automated extraction of complex environmen-
tal  relationships  with  their  abilities  of  contextual  reasoning  and
multimodal understanding.

 

Fig. 3  The architecture and optimized strategies of LLMs. Compared to original NLP methods, LLMs were trained on extensive corpora, feature parameter
scales  in  the  billions,  and  were  capable  of  deep  semantic  understanding,  multi-task  handling,  and  long-context  retention.  To  adapt  LLMs  to  domain-
specific  tasks,  three  primary  optimization  techniques  are  commonly  employed,  including  prompt  engineering,  retrieval-augmented  generation  (RAG),
and fine-tuning.
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For  chemical  RE,  LLMs  have  demonstrated  high  accuracy,  high
efficiency,  and  strong  generalization  in  a  few-sample  setting.
Dagdelen et al.[8] used GPT-3 and Llama-2 with few-shot fine-tuning
and  human-AI  collaborative  annotation,  and  these  LLMs  enabled
highly  accurate  and  efficient  extraction  of  complex  relationships
from scientific literature with only 100 to 500 samples. The F1 score
of  the  host-dopant  relationship  extraction  by  Llama-2  reached
0.821,  and  the  F1 score  of  the  formula-application  relationship
extraction by GPT-3 was 0.537, and improved to 0.832 after manual
correction.  In  the  meantime,  the  annotation  time  was  reduced  by
57%, demonstrating a strong few-shot performance.

In the field of toxicology, AOP describes a typical multi-level chain
relationship, i.e.,  molecular initiating event → key event → adverse
outcome.  For  example,  an  AOP  from  'protein  alkylation'  to  'liver
fibrosis' (protein alkylation - cellular stress - release of inflammatory
factors - recruitment and activation of hepatic stellate cells - exces-
sive  production  of  extracellular  matrix  proteins - accumulation  of
scar  tissue  and formation of  fibrotic  lesions - liver  fibrosis)  involves
multiple  intermediate  key  events.  Such  AOPs  are  characterized  by
sparse  co-occurrence  and  implicit  coupling  across  the  literature.
For  instance,  key  events  such  as  'cellular  stress',  and  'release  of
pro-inflammatory  cytokine'  may  be  reported  separately  across
studies.  Their  interconnections  require  inference  based  on  addi-
tional toxicological mechanisms, such as 'cell damage triggering an
immune  response'.  To  address  this  challenge,  Zhao  used  GPT-4  to
automatically annotate and reconstruct five established AOPs in the
AOPWiki.  They  found that  the  model-generated AOPs  were  consis-
tent with the expert-validated versions in terms of event association
and  structural  consistency[33],  further  validating  LLMs'  capability  to
extract complex multi-level implicit relationships.

Specialized  hydrological  LLMs  like  WaterGPT[24],  designed  for
environmental  multimodal  data,  outperformed general  models  like
ChatGPT  by  a  significant  margin,  with  Dice  and  mIoU  metrics
exceeding  90%  and  maintaining  data  stability  over  a  decade.  In
addition,  using  the  constructed  EvalWater  evaluation  dataset,  the
accuracy of RE by the WaterGPT reached 83.09%, which was 17.83%
higher than that of the general model GPT-4. These results demon-
strated significant advantages of the domain-adapted LLMs in terms
of accuracy and stability.

Despite the great potential  of LLMs for RE tasks,  caution remains
necessary due to the risk of unreliable associations in their outputs.
This  risk  is  particularly  elevated  when  processing  data  from  non-
peer-reviewed  literature  sources  such  as  preprints,  where  spurious
relationships  may  be  more  likely  to  occur[34].  Therefore,  the  LLM-
generated  results  should  be  validated  against  domain  knowledge.

Moreover, recent research indicates that domain-fine-tuned models
usually  excel  at  RE  tasks  compared  to  zero-shot  and  few-shot
LLMs[35].  As  a  result,  a  hybrid  strategy  integrating  domain  adapta-
tion  with  human-in-the-loop  is  proposed  to  be  a  key  direction  for
future environmental relationship extraction.

 Knowledge extraction task 3: semantic generation
Semantic  generation  is  the  process  of  anticipating  missing  or  up-
coming information based on available context. In the environmental
field,  such  tasks  often  involve  understanding  and  inferring  the
behaviors of complex environmental systems, for example, predicting
future  changes  of  water  quality  based  on  historical  data,  revealing
pollutant  dispersion  patterns,  or  generating  environmental  policy
recommendations.  LLMs,  with  their  deep  semantic  understanding,
contextual reasoning, and multimodal integration offer a viable option
for these applications.

Although  general-purpose  pre-trained  LLMs,  such  as  GPT-4  and
Llama,  have  already  learned  general  language  rules  from  massive
unlabeled  corpora,  their  performance  in  environmental  domains
remains  limited  due  to  insufficient  coverage  of  environmental
knowledge,  and  relatively  weak  domain-generalization  ability  in
environmental  professional  tasks.  Under  these  circumstances,
fine-tuning  can  adjust  the  model  using  labeled  data  to  enhance
semantic  generation  performance  in  environmental  tasks[36].
Furthermore,  retrieval-augmented  generation  (RAG)  technology
combines information retrieval with LLM text generation, effectively
mitigating  hallucinations  while  enhancing  transparency  and  trust-
worthiness. The combined use of fine-tuning and RAG enables LLMs
to achieve performance close to that of domain experts in environ-
mental semantic generation tasks.

In terms of chemical reasoning, LLMs have demonstrated remark-
able potential to advance scientific discovery by conducting chemi-
cal research autonomously. AI agent systems, such as Coscientist[37],
demonstrated  (semi-)autonomous  experimental  design,  planning,
and multi-step execution by leveraging web search and code gene-
ration. The intelligent agent ChemCrow[38] has not only successfully
automated  the  synthesis  of  target  compounds  such  as  DEET  and
thiourea-based  organocatalysts,  but  also  contributed  to  the  disco-
very  of  new  chromophores.  Meanwhile,  LLM4SD[39] is  capable  of
automatically  integrating  knowledge  in  the  field  of  chemistry  and
inferring new knowledge from prior knowledge. For example, using
the  extracted  information  that  'molecules  under  500  Da  are  more
likely  to  cross  the  blood-brain  barrier',  and SMILES codes,  it  can be
inferred that 'molecules containing halogens are more likely to cross
the blood-brain barrier'.

 

Table 1  The applications and performance of large language models (LLMs) in data mining and information extraction tasks

Tasks Category Performance Ref.

Oxidative stress inventory
extraction

NER Through optimization of prompt engineering on GPT-4, the values of 0.91, 0.81, and 0.86 were
achieved for precision, recall, and F1 score, respectively.

[9]

Host-dopant extraction NER, RE Llama-2 (precision = 0.836, recall = 0.807, F1 = 0.821) outperforms MatBERT-Proximity (precision =
0.377, recall = 0.403, F1 = 0.390) in terms of overall performance.

[8]

Note information extraction NER, RE GENIE (F1 = 0.837, accuracy = 0.912) outperforms cTAKES (F1 = 0.182, accuracy = 0.748). [11]
Object detection and waterbody
extraction

RE, SG WaterGPT achieves an accuracy of 0.96 on simple tasks and 0.90 on complex tasks. [24]

MOFs prediction and generation SG The accuracy analysis reports 96.9% and 95.7% for the search and prediction tasks, respectively. [31]
Expert-level question answering SG GPT-4 achieves a relevance of 0.644 and a factuality of 0.791. [36]
Molecular property prediction SG In classification tasks within the field of physiology, the AUC-ROC improved from the previous state-

of-the-art of 74.53% to 76.60%; in biophysics classification tasks, the average AUC-ROC reached 79.10;
for regression tasks in physical chemistry, the average RMSE was 1.54; and in quantum mechanics
tasks, the average MAE was 5.8233, representing a 48.2% improvement over the baseline.

[39]

Modeling complex toxicity
pathways and predicting
steroidogenesis

SG In the classification task for target inhibitors, MolBART achieved an AUC above 0.85 and an F1 score
over 0.7; in the task of predicting IC50 values, it attained an R2 over 0.7, with an MAE below 0.5 and an
RMSE under 0.8.

[40]
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In  terms  of  toxicological  reasoning  ability,  Lane  et  al.[40]

constructed  a  MoIBART  model,  and  simultaneously  predicted  all
steroid-related  endpoints  under  sparse  co-occurrence  conditions,
achieving an AUC above 0.85, and a F1 score over 0.7. In geoscience,
after  pre-training  on  extensive  Earth  system  data,  and  fine-tuning
for  specific  tasks,  the  Aurora  Earth  system  model[41] can  forecast  a
range  of  global  phenomena,  including  global  air  pollution,  ocean
wave  dynamics,  tropical  cyclone  tracks,  and  climate  change  pat-
terns.  For  biological  reasoning,  the  ESM3  model[42] reasons  over
protein sequence, structure, and function and has simulated a novel
fluorescent  protein  (esmGFP)  at  a  distant  evolutionary  distance
(58%  identity)  from  known  fluorescent  proteins.  This  degree  of
difference is equivalent to simulating over 500 million years of natu-
ral  evolution.  Finally,  MedTsLLM[43] provides  insights  into  medical
time-series analysis for aquatic ecological risk assessment.

Nevertheless, LLMs continue to face challenges in environmental
SG tasks. As noted by Zhu et al.,  GPT-4 delivers inconsistent perfor-
mance  on  expert-level  questions,  while  fine-tuning  strategies  may
result  in  overfitting  and  performance  degradation[36].  Moving
forward,  future  research  should  pay  more  attention  to  developing
reasoning  architectures  tailored  to  domain-specific  needs,  such  as
the self-verification mechanism used in GeneAgent[44], coupled with
the  construction  of  high-quality  environmental  corpora,  and  the
integration  of  human-in-the-loop  strategies[42].  Collectively,  LLMs,
with  their  cross-modal  integration,  semantic  reasoning,  and  auto-
mated  decision-making  capabilities,  have  great  potential  for
applications  in  aquatic  ecological  risk  assessment.  By  combining

fine-tuning,  RAG,  multimodal  modeling,  and  scientific  reasoning
mechanisms,  LLMs  can  not  only  enhance  the  accuracy  and  inter-
pretability of environmental semantic generation but also promote
the  discovery  of  new  environmental  pollutant  patterns  and  the
innovation of governance strategies.

 Advantages, limitations, and future
challenges

To  date,  LLMs  are  capable  of  understanding  complex  long  texts,  and
improving accuracy in NER and RE tasks when combined with few-shot
fine-tuning, as validated across multiple disciplines such as chemistry,
biology,  and  earth  science.  At  the  same  time,  LLMs  can  analyze
environmental  data  of  multiple  modalities  simultaneously  to  extract
comprehensive  information.  Furthermore,  LLMs  have  demonstrated
reasoning  ability.  For  example,  they  can  identify  unreported  quanti-
tative  structure-activity  relationships  in  molecules,  which  can  effec-
tively  advance  knowledge  discovery.  To  take  this  a  step  further,
concatenating  LLMs  with  different  functions  will  create  an  AI  agent
that  can automatically  execute workflows,  including file  parsing,  data
analysis, and knowledge discovery (Fig. 4).

However,  the  applications  of  LLMs  are  still  in  their  infancy,  and
numerous challenges await. Firstly, 'garbage in, garbage out'. Build-
ing reliable models requires the availability of high-quality datasets,
which is a critical challenge in current LLM development. In aquatic
risk  assessment,  the  available  databases  generally  lack

 

Fig.  4  The  ability,  challenge,  strategy,  and  future  of  LLMs.  AI  agents  enable  the  integration  of  multiple  LLMs,  thereby  enhancing  the  level  of  task
automation.  LLMs  still  face  challenges  such  as  insufficient  environmental  data,  hallucinations,  and  high  resource  consumption.  Human-in-the-loop
strategies can guide model learning and improve output reliability. Optimizing model architecture and parameters remains a conventional yet effective
method for  performance enhancement.  In  the  future,  greater  attention should  be directed toward improving data  quality,  ensuring data  fairness,  and
leveraging AI agents to build intelligent systems that support governmental decision-making.
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comprehensiveness  and  a  large  scale.  High-quality  database
construction  relies  on  ample,  high-quality,  source-credible,  and
authentic textual resources, which require rigorous selection criteria
defined  by  experts.  Secondly,  training  and  running  state-of-the-art
LLMs  require  significant  computational  power  and  electricity,  rais-
ing  environmental  concerns,  particularly  regarding  energy,  water,
and carbon consumption[45,46]. Training a model like BERT on a GPU
incurs  significant  costs:  12,000  watts  of  energy,  1,400  pounds  of
CO2e,  and  up  to  USD 3,751  in  cloud  computing  expenses,  corre-
sponding to a carbon footprint roughly equivalent to a trans-Ameri-
can  flight[47].  Large-scale  models  indicate  that  consumption  of
massive  freshwater,  primarily  for  data  center  cooling,  could  surge
over sevenfold to 28.11 billion liters per day by 2050[48].  Ultimately,
regardless of the refinement strategies implemented, hallucinations
in LLMs cannot be eliminated. Therefore, it is essential to ensure the
reliability of information sources.

Researchers  have  introduced  the  ChatEnv  dataset  and  the
EnvBench evaluation benchmark within the environmental domain.
These  resources  encompass  knowledge  in  five  key  areas:  atmo-
spheric  environment,  water  environment,  soil  environment,  biodi-
versity, and renewable energy. They have contributed to improving
large  language  models'  reasoning,  analytical,  and  text-generation
capabilities for environmental tasks[49].  Besides,  to ensure the trust-
worthiness  of  LLM  outputs  in  policy-making,  interpretability,  and
fairness  are  essential.  Attention,  visualization,  and causal  reasoning
could  be  used  to  enhance  model  transparency.  Moreover,  mitigat-
ing taxonomic biases in training data can distort risk predictions.

The  application  of  LLMs  to  integrate  global  monitoring  data,
reports, and literature on pollutants, combined with embedded risk
assessment  models,  can  enable  environmental  scientists  to  maxi-
mize  the  utility  of  historical  data  and  achieve  a  more  accurate,
systematic  understanding of  the risks  associated with environmen-
tal  pollutants.  Integrating  scientific  knowledge  with  national  poli-
cies may further minimize environmental risks.  To address resource
consumption,  stakeholders  should  enhance  the  efficiency  of  large-
scale  model  computation  by  optimizing  utilization  and  adopting
advanced cooling-water technologies.

 Conclusions
Large language models  (LLMs)  represent significant  advancements in
data  mining  and  knowledge  discovery  for  aquatic  ecological  risk
assessment.  Compared  with  traditional  natural  language  processing
(NLP)  models,  LLMs  achieve  superior  performance  in  entity  recog-
nition, relation extraction, and semantic generation. These capabilities
allow  LLMs  to  efficiently  process  heterogeneous,  multi-source
environmental  data,  reduce  manual  annotation  costs,  and  improve
adaptability in data-scarce contexts. Recent studies indicate that LLMs
can extract complex terminology and reconstruct implicit relationships
from literature in chemistry,  toxicology,  geoscience,  and environmen-
tal  science,  thereby  providing  a  transformative  framework  for  inte-
grating fragmented data in aquatic ecological risk assessment.

Despite these advancements, the application of LLMs in environ-
mental  science  is  still  nascent  and  faces  several  challenges,  includ-
ing  a  lack  of  high-quality  domain-specific  corpora,  inconsistent
training  data  quality,  hallucinations,  and  high  computational
demands.  Future  research  should  prioritize  the  development  of
robust  environmental  corpora  and  hybrid  strategies  that  integrate
fine-tuning, retrieval-augmented generation (RAG), and expert feed-
back  to  improve  model  accuracy  and  reliability.  With  systematic
integration of  aquatic  ecological  risk  data,  LLMs have the potential
to  become  essential  tools  for  scientific  risk  assessment  and

intelligent  management,  thereby  providing  a  strong  data  founda-
tion for ecological security and public health.
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