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Abstract

As a crucial component for maintaining ecological security and human health, aquatic
ecosystems are facing risks from intensified human activities. Aquatic risk assessment
requires a comprehensive understanding of geographic distribution, exposure, and effects of
diverse pollutants. In the era of big data, utilizing available environmental data to its fullest
extent is expected to facilitate efficient regional risk assessment, and support informed
decision-making in risk management. However, it faces a significant challenge in data
integration, as environmental data are scattered across heterogeneous texts from diverse
corpora, such as scientific research literature, monitoring reports, and policy documents.
Natural language processing (NLP) approaches serve as key tools for structured information
extraction (IE). Traditional NLP techniques face bottlenecks such as cumbersome feature
engineering, and limited generalization, while newly developed large language models
(LLMs) can perform a wide array of tasks through prompting, achieving remarkable
generalization and versatility. The present work systematically reviewed cutting-edge
applications of LLMs in IE tasks across multiple disciplines, including chemistry, biology, and
toxicology, from three perspectives: entity extraction, relation extraction, and semantic
generation. On the contrary, the current application of LLMs in environmental science is still
in its early stages, facing challenges such as data dependence, hallucinations, and envi-
ronmental concerns. Future research should focus on building high-quality environmental
corpora and hybrid strategies to systematically integrate aquatic ecological risk data, and
support environmental risk assessment and management policies.
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Introduction

with chemical and toxicological data. Little is available to index field-
measured exposure and effect data in aquatic environments, such as

Aquatic ecosystems are critical components in maintaining ecological
security and human health. Aquatic ecological risk assessment gene-
rally requires a comprehensive understanding of exposure and effect
information, such as regional geographic characteristics, pollutant
occurrence, migration, and transformation in the aquatic environment,
exposure routes, toxicological endpoints, and modes of action. In the
era of environmental big data, making full use of related knowledge is
expected to efficiently identify and prioritize the primary risk-driven
pollutants in the environment, and support scientific decision-making
in aquatic risk management. Although much retrospective knowledge
has been curated in various databases as structured data, for example,
the CompTox Chemicals Dashboard!", PubChemLite!?, and the Ad-
verse Outcome Pathway Wiki¥), these databases are mainly associated

reported concentrations in surface water in a given river, detected
toxicity potencies in sediment samples, or mixture risks in aquatic
environments of certain regions. These types of knowledge are often
scattered and unstructured across multiple heterogeneous sources,
such as scientific literature, monitoring reports, and policy
documents!, In addition, this information is commonly characterized
by highly specialized terminology, implicit entity relationships, and
multimodal mixing. Developing technologies to extract such text data
would supplement existing knowledge of ecological risks in real
environments.

Natural language processing (NLP) is an important area in artifi-
cial intelligence (Al) applications that aims to build linguistic
pipelines to understand, learn, and produce human language
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contentll. Named entity recognition (NER), which regards the rule-
based terms (like terminologies) as entities, is designed to extract
key information from contextl®. Research on NER has been con-
ducted to collect various information, including chemical namest’-9,
and disease records!'%'1], Statistics on term frequency can provide
descriptive insights, such as research interests, temporal trends, and
the average of the observed values. Furthermore, explaining scien-
tific data often relies on the explicit relationships between terms, for
example, chemical reaction equations, genomes and phenotypes,
and geographic coordinates of the maps, which require developing
the relation extraction (RE) technique in NLPU'2, Currently, models
used for NER and RE tasks are mostly deep learning models. These
models are often designed with recurrent neural network (RNN)
architectures, and further modified to use long short-term memory
(LSTM), gated recurrent unit (GRU), or their bidirectional
variants!'314. Through manual feature engineering and task-specific
optimization, these deep learning models have shown strong
performance in extracting lexicon-guided terms and linguistic rela-
tions, and in highlighting symbols from the literaturel>16],

However, these traditional NLP methods generally relied on
manual feature engineering and task-specific modeling, and per-
formed poorly on information extraction (IE) tasks when the
contexts involved complex terminology, implicit entity relation-
ships, and multimodal data. As a consequence, there are three
significant limitations of traditional NLP methods for processing
unstructured data in environmental science, including poor genera-
lization, high migration costs, and limited relation-extraction capa-
bilities. In recent years, large language models (LLMs), based on the
Transformer architecture, have demonstrated powerful capabilities
for long-distance semantic understanding and context reasoning,
offering a new framework for environmental IE tasks!'7l. Notably,
GPT-3.5 became publicly accessible in November 20220'8], and since
then, there has been an explosion of publications on cutting-edge
LLM applications across research fields. Beyond Al copilots, agents,

and question-and-answer robots, LLM applications have greatly
expanded the use of Al in science. With significant breakthroughs in
NER, RE, and a new semantic generation (SG) function, LLMs are also
anticipated to address the challenge of data fragmentation by inte-
grating multi-source unstructured environmental data and to
develop an end-to-end strategy for accomplishing NLP tasks in
aquatic ecological risk assessments (Fig. 1).

The primary objective of this perspective is to clarify the potential
of LLMs to mine, integrate, and reason over data from diverse
sources for aquatic ecological risk assessment. The technical approa-
ches of LLMs in NLP were systematically reviewed, and the current
research status in aquatic risk IE was summarized, with particular
attention given to advances in NER, RE, and SG tasks. Published
studies on the application of LLMs in scientific research were sys-
tematically collected, and the information extraction capabilities of
LLMs were examined. Current limitations, such as insufficient
reasoning capabilities for multimodal data fusion and complex envi-
ronmental challenges, were identified, and a prospective architec-
ture for intelligent decision-making platforms were proposed. By
integrating multi-disciplinary case studies and highlighting similari-
ties in IE tasks across chemistry, toxicology, and earth science, this
perspective evaluates the feasibility of mining aquatic ecological
data using LLMs, and aims to provide environmental scientists and
stakeholders with practical solutions for LLM-based data mining,
thereby advancing the application of Al in aquatic risk assessments.

Natural language processing methods for
information extraction

The goal of NLP is for computers to understand, process, and generate
human natural language, thereby achieving human-computer
interaction. As a core subfield of NLP, IE aims to automatically extract
structured, valuable information (such as entities, relationships, and
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Fig. 1 Potential use of large language models (LLMs) in aquatic ecological risk assessment. The LLMs are expected to transform unstructured multimodal
environmental data into structured data and then serve aquatic ecological risk assessment.
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events) from massive, complex natural language texts that contain
unstructured or semi-structured data, such as articles, academic
papers, and social media posts. IE can identify and extract the
information users need from massive information sources. This task
requires identifying and extracting entities and their complex relation-
ships, learning patterns, and predicting missing data in corpora. To
accomplish the task, a typical IE workflow is performed in three steps:
corpus preprocessing, feature engineering, and modeling and training.

The first step is corpus preprocessing. As shown in Fig. 2, this step
includes tokenization, text normalization, NER, and RE. Tokenization
is the premise for IE, and it is splitting the text into smaller but
meaningful units called 'tokens', which are words or phrases with
substantive connotations. Sometimes, depending on the entity
naming rules and application scenarios, tokens can be further split
into unary, binary, and ternary words. For instance, by splitting
IUPAC-named compounds into ternary word dictionaries, the accu-
racy of compound recognition in scientific literature can be signifi-
cantly improved!9],

Text normalization is further applied to standardize tokens,
reduce variability, and improve computational efficiency, including
lowercasing, stemming, lemmatization, part-of-speech tagging (POS
tagging), and stop-word removal. Stemming and lemmatization
reduce words to their root forms by converting related or similar
variants into their lemmas or stems. The POS tagging assigns a
specific 'part-of-speech' label to each token in a text based on the
token's grammatical function, meaning, and context within the
sentence. Subsequently, these preprocessed words, in their root
form, are used to construct corpora and word embeddings, allow-
ing computers to understand the semantic connotations of natural
language. The quality of the corpus will directly affect the perfor-
mance of the model. In addition, assigning weights based on diffe-

rent word embedding vectors can make it easier to extract
keywords.

The main tasks of IE include NER, RE, and event extraction (EE).
NER detects entities and assigns them to predefined categories
(such as compound names, modes of toxic action, and geographic
locations), serving as the most basic and widely used IE subtask.
Recurrent neural networks (RNNs), Long Short-Term Memory (LSTM)
networks['3], and gated RNNs['4 have been established as state-of-
the-art approaches in sequence modeling, and have significantly
improved the accuracy of entity recognition!2%, RE aims to identify
the semantic relationships between two or more entities extracted
in the NER step, and to transform isolated entities into meaningful
pairs. Therefore, it is expected to identify contexts where compound
names and toxicological terms co-occur, and to relate pollutant
names to their environmental concentrations. EE is a more complex
subtask that extracts structured information about specific events
from the text and involves identifying event triggers and their asso-
ciated arguments.

Semantic similarity calculation and text classification are impor-
tant for these IE subtasks. Semantic similarity can be computed
using cosine similarity applied to word embeddings, or through
knowledge-based techniques such as WordNet, which can provide
semantic distances between sentences. These approaches are com-
monly used in tasks such as text clustering and deduplication. On
the other hand, text classification involves assigning documents to
predefined categories. Traditional classification techniques, includ-
ing Naive Bayes (NB), Support Vector Machines (SVM), and logistic
regression, typically use bag-of-words or TF-IDF features to extract
patterns from labeled data and predict categories for unseen texts.
For example, an NB classifier incorporating adverse outcome path-
ways (AOP) has been developed to enhance the mechanistic inter-
pretation of toxicity endpoints[2'l,
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Fig. 2 Schematic diagram of a workflow for ecological risk assessment (ERA) based on natural language processing (NLP). Left panel shows a workflow of
NLP, which converts unstructured text into structured data through sequential stages, including Data Curation, Named Entity Recognition (NER), Relation
Extraction (RE), and Semantic Generation (SG). Middle panel shows structured output content. Taking texts from a publication in the field of ERA as an
example, this section illustrates the NLP corpus preprocessing step. Right panel presents a case in ERA to explain a proposed end-to-end process, in which
an environmental risk assessment of emerging contaminants (e.g., neonicotinoids) in the Pearl River was conducted. Through data extraction and
information correlation, aquatic risk baselines, including occurrence and toxicity features of these contaminants, were obtained. Subsequent risks were
profiled in the region, ultimately leading to the prioritization of a high-risk inventory.
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However, the aforementioned traditional machine learning
models can handle only numerical vectors and require numerical
inputs rather than raw text. Therefore, engineers need to manually
define rules to convert text into structured features, a process
known as feature engineering. Traditional NLP feature engineering
is not a single step but a series of complex processes that require
repeated trial-and-error, and are highly dependent on experience. In
the field of environmental science, NER and RE have been used to
extract structured information from heterogeneous multi-source
data. The NER task relies on manually screened features (e.g., tokens,
POS tags) for sequence labeling, whereas text classification often
uses manually selected features, such as n-grams or TF-IDF, with
classifiers such as SVMs. Both tasks are time-consuming and require
continuous trial and error. The RE technique, dealing with deeper
semantics, is even more challenging. In addition, these task-specific
models with dedicated feature pipelines and annotated data suffer
from poor cross-task and cross-lingual transferability, considerably
limiting their adaptability and generalization. In contrast, LLMs
present a promising alternative through end-to-end learning, long-
context understanding, and vast parameter scales, potentially over-
coming these long-standing limitations.

LLM application in data mining and
information extraction for aquatic risk
assessment

While promising, studies using LLMs in aquatic risk assessment are
limited. A literature search in the Web of Science Core Collection's
SCI-EXPANDED database (2000-present) using the keywords 'water’,
'ecological risk', and 'large language models', limited to the research
areas of Environmental Sciences and Ecology, yielded only four rele-
vant publications, including one review article. These studies primarily
focused on using LLMs to analyze ecological risk data related to the
aquatic environment, such as policy documents??>?%], monitoring
reports®?4, and social media datal®?, with the aim of developing more
intelligent, dynamic risk assessment and management models.

Before the emergence of Transformers, RNNs and their variants,
such as LSTMs and the Gated Recurrent Unit (GRU), were the main-
stream models for handling sequential tasks. In environmental
science, LSTM models have been combined with other models
to address spatiotemporal problems, such as air quality
prediction!2>-27], precipitation estimation?8, and groundwater
quality prediction[2, Although RNNs' sequential computation
makes it easy to process text, it prevents parallelization and limits
their ability to model long-range context, resulting in a complex
training process and lower computational efficiency2527],

While there have been improvements in RNN efficiency, the
increased model complexity has hindered their practical application.
For example, Srivastava & Kumarl29 optimized the air pollution
prediction system by improving the activation function (Swish-
Tanh), and introducing the Xavier Reptile search algorithm, which
alleviated gradient issues in the traditional model to a certain
extent, but it also increased the difficulty of model development
and parameter tuning, limiting the transferability and application of
the model.

The introduction of the Transformer architecture has effectively
addressed the aforementioned bottlenecks of RNNs. Transformers
can achieve parallel token processing and global context modeling,
making Transformer-based LLMs more efficient for most NLP
tasks!'7]. Transformers adopts a split encoder-decoder architecture,
with each component containing key sub-layers, such as multi-head

self-attention layers, which can simultaneously focus on informa-
tion from multiple positions, and feed-forward networks that
perform non-linear transformations. Meanwhile, each sub-layer also
combines residual connections and layer normalization techniques,
enabling training to be more stable and effective.

The core of Transformers is multi-head self-attention, which
excels at capturing relationships between tokens and long-distance
context dependencies, while positional encoding is used to retain
their positions in the sequence. By replacing sequential recurrence
in RNNs with parallelizable self-attention and feed-forward net-
works, Transformers drastically reduce training time, especially for
long sequences. Landmark NLP models such as BERTE% and GPT
have been developed based on Transformers, which have extended
context windows from hundreds, to hundreds of thousands of
tokens, contributing substantially to progress in text understanding
and generation. Furthermore, the extensive pre-training corpora
and billions of parameters warrant LLMs with broad real-world
knowledge (Fig. 3). This suggests a huge potential for LLMs to
extract environmentally relevant information for aquatic risk assess-
ment, and the related applications of LLMs are detailed in NER, RE,
and SG below (Table 1).

Information extraction task 1: named entity
extraction
The first step in extracting environmental information from unstruc-
tured text is NER, which identifies specific entities, and classifies them
into predefined categories. Aquatic ecological risk assessment involves
multi-disciplinary knowledge such as chemistry, toxicology, and
hydrology. In this field, the entities to be identified typically include the
types and sources of pollutants, their physicochemical properties,
toxicity threshold data, and modes of toxic action. However, current
NER tasks in this field face two significant challenges. Firstly, its
interdisciplinary nature, and the complexity of terminology, signifi-
cantly increase the difficulty of entity recognition. Secondly, the lack of
a systematic taxonomic framework in toxicology makes it challenging
to construct standard lexicons. Methods based on manual coding and
large annotated datasets are often too complex and time-consuming,
posing significant challenges for accomplishing the word segmenta-
tion task due to complex rules or insufficient labeled data. This issue is
particularly pronounced when dealing with a chemical IUPAC name.

With their deep semantic understanding, LLMs can directly
extract complex relationships among multiple entities, offering new
solutions for entity extraction in challenging scenarios. In NER, LLMs
have shown great potential for accurately identifying both complex
and straightforward chemical entities. Liang et al.’! extracted 17,780
records containing multi-dimensional information, such as chemi-
cals, markers, and experimental conditions, from 7,166 documents
in a single pass. Subsequently, they compiled a list of 1,416 pro-
oxidants, and 1,102 antioxidants, supplementing these with data
from chemical and pharmaceutical databases such as ChEMBLEL. In
another study, Dagdelen et al.® fine-tuned an LLM for material
chemistry, and achieved accuracy and recall rates both exceeding
80% in NER tasks. The model successfully identified complex enti-
ties such as metal-organic frameworks using only 20 samplest®. In
addition, LLMs have demonstrated zero-shot entity recognition
capabilities in materials science. For instance, ChatMOF can trans-
form complex material entities into forms that LLMs can interpret,
thereby intelligently aligning users' query intents with database
records, facilitating accurate entity extraction without training for
specific entities3'],

For the NER in the biological and toxicological field, Duan et al.;32!
applied the protein language models to develop a standardized
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Fig. 3 The architecture and optimized strategies of LLMs. Compared to original NLP methods, LLMs were trained on extensive corpora, feature parameter
scales in the billions, and were capable of deep semantic understanding, multi-task handling, and long-context retention. To adapt LLMs to domain-
specific tasks, three primary optimization techniques are commonly employed, including prompt engineering, retrieval-augmented generation (RAG),

and fine-tuning.

entity extraction pipeline and systematically identified 19 catego-
ries of protein-related entities, which covered multiple dimensions
such as molecular function, information, attribute
descriptions, and formed the largest and most diverse protein entity
dataset to date. Similarly, clinical text structuring tools like GENIE[']
(F; = 0.837, accuracy = 0.912) are capable of accurately extracting
medical entities along with their attributes (e.g., status, value, unit),
and outputting the results in a structured format, outperforming
traditional tools like cTAKES (F,; = 0.182, accuracy = 0.748) and
MetaMap (F; = 0.172) in IE tasks such as phrase extraction and asser-
tion classification.

Collectively, these achievements indicate that LLMs not only
possess strong domain transferability and adaptability in data-poor
scenarios but also have the potential to accomplish environmental
entity recognition tasks efficiently and accurately. This is expected
to provide a reliable, scalable new approach to IE tasks in aquatic
ecological risk assessment.

taxonomic

Information extraction task 2: relation extraction
To acquire environmentally relevant data for aquatic risk assessments,
it is essential to associate pollutant entities with their quantitative
attributes, rather than merely extracting entities. The second IE task is
RE, which aims to identify semantic relationships between entities
from unstructured text and construct structured knowledge. However,
entity relationships in environmental literature are often characterized
by sparse co-occurrence and implicit coupling, and these relationships
are frequently distributed across multiple modalities such as text,
tables, and figures. Traditional machine learning methods generally
rely on manually designing features that transform text into structured
vectors, and on extracting relationships based on lexical, syntactic, or
semantic features. As a consequence, traditional machine learning
methods struggle with extracting relationships from multimodal
texts in the context of environmentally relevant data. Alternatively,
advanced LLMs enable automated extraction of complex environmen-
tal relationships with their abilities of contextual reasoning and
multimodal understanding.
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Table 1 The applications and performance of large language models (LLMs) in data mining and information extraction tasks

Tasks Category Performance Ref.
Oxidative stress inventory NER Through optimization of prompt engineering on GPT-4, the values of 0.91, 0.81, and 0.86 were [9]
extraction achieved for precision, recall, and F, score, respectively.
Host-dopant extraction NER,RE  Llama-2 (precision = 0.836, recall = 0.807, F; = 0.821) outperforms MatBERT-Proximity (precision = [8]
0.377, recall = 0.403, F; = 0.390) in terms of overall performance.
Note information extraction NER, RE  GENIE (F, = 0.837, accuracy = 0.912) outperforms cTAKES (F, = 0.182, accuracy = 0.748). [11]
Object detection and waterbody RE, SG WaterGPT achieves an accuracy of 0.96 on simple tasks and 0.90 on complex tasks. [24]
extraction
MOFs prediction and generation SG The accuracy analysis reports 96.9% and 95.7% for the search and prediction tasks, respectively. [31]
Expert-level question answering SG GPT-4 achieves a relevance of 0.644 and a factuality of 0.791. [36]
Molecular property prediction SG In classification tasks within the field of physiology, the AUC-ROC improved from the previous state-  [39]
of-the-art of 74.53% to 76.60%; in biophysics classification tasks, the average AUC-ROC reached 79.10;
for regression tasks in physical chemistry, the average RMSE was 1.54; and in quantum mechanics
tasks, the average MAE was 5.8233, representing a 48.2% improvement over the baseline.
Modeling complex toxicity SG In the classification task for target inhibitors, MoIBART achieved an AUC above 0.85 and an F, score [40]

pathways and predicting

steroidogenesis RMSE under 0.8.

over 0.7; in the task of predicting IC50 values, it attained an R? over 0.7, with an MAE below 0.5 and an

For chemical RE, LLMs have demonstrated high accuracy, high
efficiency, and strong generalization in a few-sample setting.
Dagdelen et al.!®l used GPT-3 and Llama-2 with few-shot fine-tuning
and human-Al collaborative annotation, and these LLMs enabled
highly accurate and efficient extraction of complex relationships
from scientific literature with only 100 to 500 samples. The F; score
of the host-dopant relationship extraction by Llama-2 reached
0.821, and the F, score of the formula-application relationship
extraction by GPT-3 was 0.537, and improved to 0.832 after manual
correction. In the meantime, the annotation time was reduced by
57%, demonstrating a strong few-shot performance.

In the field of toxicology, AOP describes a typical multi-level chain
relationship, i.e., molecular initiating event — key event — adverse
outcome. For example, an AOP from 'protein alkylation' to 'liver
fibrosis' (protein alkylation - cellular stress - release of inflammatory
factors - recruitment and activation of hepatic stellate cells - exces-
sive production of extracellular matrix proteins - accumulation of
scar tissue and formation of fibrotic lesions - liver fibrosis) involves
multiple intermediate key events. Such AOPs are characterized by
sparse co-occurrence and implicit coupling across the literature.
For instance, key events such as 'cellular stress', and 'release of
pro-inflammatory cytokine' may be reported separately across
studies. Their interconnections require inference based on addi-
tional toxicological mechanisms, such as 'cell damage triggering an
immune response'. To address this challenge, Zhao used GPT-4 to
automatically annotate and reconstruct five established AOPs in the
AOPWiki. They found that the model-generated AOPs were consis-
tent with the expert-validated versions in terms of event association
and structural consistency®3), further validating LLMs' capability to
extract complex multi-level implicit relationships.

Specialized hydrological LLMs like WaterGPT24, designed for
environmental multimodal data, outperformed general models like
ChatGPT by a significant margin, with Dice and mloU metrics
exceeding 90% and maintaining data stability over a decade. In
addition, using the constructed EvalWater evaluation dataset, the
accuracy of RE by the WaterGPT reached 83.09%, which was 17.83%
higher than that of the general model GPT-4. These results demon-
strated significant advantages of the domain-adapted LLMs in terms
of accuracy and stability.

Despite the great potential of LLMs for RE tasks, caution remains
necessary due to the risk of unreliable associations in their outputs.
This risk is particularly elevated when processing data from non-
peer-reviewed literature sources such as preprints, where spurious
relationships may be more likely to occur4. Therefore, the LLM-
generated results should be validated against domain knowledge.

Moreover, recent research indicates that domain-fine-tuned models
usually excel at RE tasks compared to zero-shot and few-shot
LLMsB3L As a result, a hybrid strategy integrating domain adapta-
tion with human-in-the-loop is proposed to be a key direction for
future environmental relationship extraction.

Knowledge extraction task 3: semantic generation
Semantic generation is the process of anticipating missing or up-
coming information based on available context. In the environmental
field, such tasks often involve understanding and inferring the
behaviors of complex environmental systems, for example, predicting
future changes of water quality based on historical data, revealing
pollutant dispersion patterns, or generating environmental policy
recommendations. LLMs, with their deep semantic understanding,
contextual reasoning, and multimodal integration offer a viable option
for these applications.

Although general-purpose pre-trained LLMs, such as GPT-4 and
Llama, have already learned general language rules from massive
unlabeled corpora, their performance in environmental domains
remains limited due to insufficient coverage of environmental
knowledge, and relatively weak domain-generalization ability in
environmental professional tasks. Under these circumstances,
fine-tuning can adjust the model using labeled data to enhance
semantic generation performance in environmental tasks(6l,
Furthermore, retrieval-augmented generation (RAG) technology
combines information retrieval with LLM text generation, effectively
mitigating hallucinations while enhancing transparency and trust-
worthiness. The combined use of fine-tuning and RAG enables LLMs
to achieve performance close to that of domain experts in environ-
mental semantic generation tasks.

In terms of chemical reasoning, LLMs have demonstrated remark-
able potential to advance scientific discovery by conducting chemi-
cal research autonomously. Al agent systems, such as Coscientist(37],
demonstrated (semi-)autonomous experimental design, planning,
and multi-step execution by leveraging web search and code gene-
ration. The intelligent agent ChemCrow38! has not only successfully
automated the synthesis of target compounds such as DEET and
thiourea-based organocatalysts, but also contributed to the disco-
very of new chromophores. Meanwhile, LLM4SDB9 is capable of
automatically integrating knowledge in the field of chemistry and
inferring new knowledge from prior knowledge. For example, using
the extracted information that 'molecules under 500 Da are more
likely to cross the blood-brain barrier’, and SMILES codes, it can be
inferred that 'molecules containing halogens are more likely to cross
the blood-brain barrier'.
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In terms of toxicological reasoning ability, Lane et al.l*o
constructed a MoIBART model, and simultaneously predicted all
steroid-related endpoints under sparse co-occurrence conditions,
achieving an AUC above 0.85, and a F; score over 0.7. In geoscience,
after pre-training on extensive Earth system data, and fine-tuning
for specific tasks, the Aurora Earth system model*! can forecast a
range of global phenomena, including global air pollution, ocean
wave dynamics, tropical cyclone tracks, and climate change pat-
terns. For biological reasoning, the ESM3 model*?! reasons over
protein sequence, structure, and function and has simulated a novel
fluorescent protein (esmGFP) at a distant evolutionary distance
(58% identity) from known fluorescent proteins. This degree of
difference is equivalent to simulating over 500 million years of natu-
ral evolution. Finally, MedTsLLMI*3] provides insights into medical
time-series analysis for aquatic ecological risk assessment.

Nevertheless, LLMs continue to face challenges in environmental
SG tasks. As noted by Zhu et al., GPT-4 delivers inconsistent perfor-
mance on expert-level questions, while fine-tuning strategies may
result in overfitting and performance degradation3¢. Moving
forward, future research should pay more attention to developing
reasoning architectures tailored to domain-specific needs, such as
the self-verification mechanism used in GeneAgent*4, coupled with
the construction of high-quality environmental corpora, and the
integration of human-in-the-loop strategies*?. Collectively, LLMs,
with their cross-modal integration, semantic reasoning, and auto-
mated decision-making capabilities, have great potential for
applications in aquatic ecological risk assessment. By combining

fine-tuning, RAG, multimodal modeling, and scientific reasoning
mechanisms, LLMs can not only enhance the accuracy and inter-
pretability of environmental semantic generation but also promote
the discovery of new environmental pollutant patterns and the
innovation of governance strategies.

Advantages, limitations, and future
challenges

To date, LLMs are capable of understanding complex long texts, and
improving accuracy in NER and RE tasks when combined with few-shot
fine-tuning, as validated across multiple disciplines such as chemistry,
biology, and earth science. At the same time, LLMs can analyze
environmental data of multiple modalities simultaneously to extract
comprehensive information. Furthermore, LLMs have demonstrated
reasoning ability. For example, they can identify unreported quanti-
tative structure-activity relationships in molecules, which can effec-
tively advance knowledge discovery. To take this a step further,
concatenating LLMs with different functions will create an Al agent
that can automatically execute workflows, including file parsing, data
analysis, and knowledge discovery (Fig. 4).

However, the applications of LLMs are still in their infancy, and
numerous challenges await. Firstly, 'garbage in, garbage out'. Build-
ing reliable models requires the availability of high-quality datasets,
which is a critical challenge in current LLM development. In aquatic
risk assessment, the available databases generally lack

v Complex context comprehension
v Multi-source heterogenous handling
v Reasoning capability

...................... Al Agent

"
vz
Reactivity !

Autonomy  Task-Specificity i

Ability

Strate
% Human-in-the-Loop 9y
.

- Fine-Tuning

Experts

e
Feedback K‘) RAG

O Model Architecture and Parameter
O Optimization

O Mixture of Experts

O Attention Mechanism Optimization

O Parameter-Efficient Fine-Tuning

Environmental

Hallucination
Benchmarking Dataset

27

Resource Consumption
‘ Billions of liters per day
@ Hundreds of kWh-PUE per model
J:’/ Hundreds of metric #CO,e per model

& Thousands of USD range per model

Challenge
Future
Data Fairness
High-Quality
Noisy Data
Data

Governmental Intelligent Decision
2

Decision

Fig. 4 The ability, challenge, strategy, and future of LLMs. Al agents enable the integration of multiple LLMs, thereby enhancing the level of task
automation. LLMs still face challenges such as insufficient environmental data, hallucinations, and high resource consumption. Human-in-the-loop
strategies can guide model learning and improve output reliability. Optimizing model architecture and parameters remains a conventional yet effective
method for performance enhancement. In the future, greater attention should be directed toward improving data quality, ensuring data fairness, and
leveraging Al agents to build intelligent systems that support governmental decision-making.

Lietal. | Volume2 | 2026 | e007

page 7 of 9


https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002
https://doi.org/10.48130/ebp-0026-0002

Environmental and
Biogeochemical Processes

https://doi.org/10.48130/ebp-0026-0002

comprehensiveness and a large scale. High-quality database
construction relies on ample, high-quality, source-credible, and
authentic textual resources, which require rigorous selection criteria
defined by experts. Secondly, training and running state-of-the-art
LLMs require significant computational power and electricity, rais-
ing environmental concerns, particularly regarding energy, water,
and carbon consumption#>46], Training a model like BERT on a GPU
incurs significant costs: 12,000 watts of energy, 1,400 pounds of
CO,e, and up to USD$3,751 in cloud computing expenses, corre-
sponding to a carbon footprint roughly equivalent to a trans-Ameri-
can flight™’l. Large-scale models indicate that consumption of
massive freshwater, primarily for data center cooling, could surge
over sevenfold to 28.11 billion liters per day by 205018, Ultimately,
regardless of the refinement strategies implemented, hallucinations
in LLMs cannot be eliminated. Therefore, it is essential to ensure the
reliability of information sources.

Researchers have introduced the ChatEnv dataset and the
EnvBench evaluation benchmark within the environmental domain.
These resources encompass knowledge in five key areas: atmo-
spheric environment, water environment, soil environment, biodi-
versity, and renewable energy. They have contributed to improving
large language models' reasoning, analytical, and text-generation
capabilities for environmental tasks[““l. Besides, to ensure the trust-
worthiness of LLM outputs in policy-making, interpretability, and
fairness are essential. Attention, visualization, and causal reasoning
could be used to enhance model transparency. Moreover, mitigat-
ing taxonomic biases in training data can distort risk predictions.

The application of LLMs to integrate global monitoring data,
reports, and literature on pollutants, combined with embedded risk
assessment models, can enable environmental scientists to maxi-
mize the utility of historical data and achieve a more accurate,
systematic understanding of the risks associated with environmen-
tal pollutants. Integrating scientific knowledge with national poli-
cies may further minimize environmental risks. To address resource
consumption, stakeholders should enhance the efficiency of large-
scale model computation by optimizing utilization and adopting
advanced cooling-water technologies.

Conclusions

Large language models (LLMs) represent significant advancements in
data mining and knowledge discovery for aquatic ecological risk
assessment. Compared with traditional natural language processing
(NLP) models, LLMs achieve superior performance in entity recog-
nition, relation extraction, and semantic generation. These capabilities
allow LLMs to efficiently process heterogeneous, multi-source
environmental data, reduce manual annotation costs, and improve
adaptability in data-scarce contexts. Recent studies indicate that LLMs
can extract complex terminology and reconstruct implicit relationships
from literature in chemistry, toxicology, geoscience, and environmen-
tal science, thereby providing a transformative framework for inte-
grating fragmented data in aquatic ecological risk assessment.

Despite these advancements, the application of LLMs in environ-
mental science is still nascent and faces several challenges, includ-
ing a lack of high-quality domain-specific corpora, inconsistent
training data quality, hallucinations, and high computational
demands. Future research should prioritize the development of
robust environmental corpora and hybrid strategies that integrate
fine-tuning, retrieval-augmented generation (RAG), and expert feed-
back to improve model accuracy and reliability. With systematic
integration of aquatic ecological risk data, LLMs have the potential
to become essential tools for scientific risk assessment and

intelligent management, thereby providing a strong data founda-
tion for ecological security and public health.
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