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Abstract

There are about 8 million tons of discarded cigarette butts generated annually worldwide.
The green and efficient use of them is urgently needed. Cigarette butts are waste cellulose-
based materials consisting of the outer packaging (cellulose) and the filter tip (cellulose
acetate) that are good candidates to be resourcefully utilized. Herein, N,O co-doped
hierarchical nanoporous biochars (CNPBs) with uniform morphology are readily prepared
from cigarette butts via hydrothermal carbonization, coupled with pyrolysis activation. The
hierarchical pore structure and surface properties of the prepared biochars could be expe-
diently controlled by adjusting the activator ratio and activation temperatures. The optimal
CNPB, which has a high specific surface area (2,133.5 m? g7'), excellent microporosity, and
oxygen-rich properties, is obtained at the activation temperature of 700 °C with a potassium
hydroxide ratio of 4 (CNPB-700-4). CNPB-700-4 exhibits an energy storage capacity of up
to 344.91 F g7' at a current density of 1 A g~'. After 10,000 constant charge/discharge cycles
at a current density of 10 A g7', the capacity remains at 95.44%. The energy density and
power density of the assembled CNPB-700-4//CNPB-700-4 symmetrical supercapacitors are
2433 Wh kg™' and 373.71 W kg™, respectively, demonstrating the high commercial value of
the prepared material.

Keywords: Biomass waste, N,O co-doping, Hierarchical porous biochar, Energy storage

Highlights

+ CNPB-700-4 exhibited a high capacitance of 344.91 F g~' in 6 M KOH electrolyte.
+ Only a 4.56% loss of capacity was observed after 10,000 cyclesat 10Ag~".
+ The robust performance originated from the developed porosity and rich N/O groups.
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Introduction butts (CBs)['2131, This waste, primarily composed of cellulose (outer

As the demand for energy and adverse environmental issues intensify,
the search for new, efficient, and environmentally friendly energy
storage technology is becoming even more urgent. Supercapacitors
are electrochemical energy storage devices that have gained wide
attention to solve the problems of insufficient energy and power
density of fuel cells and lithium batteries!'~\. There are two types of
supercapacitors, namely pseudocapacitors and electric double-layer
supercapacitors (EDLCs), according to the storage mechanismst*°),
Therefore, the capacitance of EDLCs depends mainly on the accessible
surface area of the electrode material®®l. During charging/discharging,
there are no chemical reactions in EDLCs since the energy is stored
at the interface between the electrode and electrolyte through
the electrostatic action of the charge, which generally makes them
have higher power density and better cycling stability than
pseudo-supercapacitors!’..

Biochar-based porous materials, which usually have a high spe-
cific surface area, a high degree of graphitization, and good electrical
and chemical stability, are ideal for preparing electrode
materials for EDLCs application®9. Amongst the various biomass
feedstocks, cellulose-based polymer materials or glucose (the com-
position unit of cellulose) can be used to prepare versatile porous
biochars with optimized hetero-electrochemical properties through
hydrothermal carbonization coupled with pyrolysis activation!'®l. The
key to the advantage of this route is that the cellulose-based feed-
stock is first readily converted in to carbon spheres through
hydrothermal treatment. Although the prepared hydrothermal
carbon spheres (HTCs) have the advantage of rich functional groups,
the hydrothermal process causes agglomeration of HTCs, making the
specific surface area small, and hinders their direct applicationl'"l.
However, the agglomerated HTCs are an ideal framework for prepar-
ing porous biochar through activation of the perforation.

The number of cigarettes consumed globally exceeds 5.8 trillion
annually, generating about 8 million tons of discarded cigarette

packaging), and cellulose acetate (filter tip), is notoriously difficult to
degrade and contains many harmful substances, such as volatile
organic compounds, heavy metals, and polycyclic aromatic hydro-
carbons, among othersl'#-16l, A green and efficient use for the
cigarette butts is urgently needed. Recently, some CBs derived
carbon materials, with developed pore structure and rich surface
groups, have been reported and have shown superior environmen-
tal remediation performance in hydrogen storagel'?, ciprofloxacin
and sodium dodecyl sulfate adsorption('”], and edible oils
decolorization['8], Although CBs have the potential to prepare
high-quality porous carbon materials as energy storage materials,
the relevant research is very limited. In addition, doping with hete-
roatoms like nitrogen and oxygen can enhance the electrical
conductivity of porous biochar materials by providing more active
sites without affecting the basic structure, thus improving their
supercapacitor's electrical storage performance, especially in speci-
fic capacitancel'9-21],

In this paper, waste CBs derived N,O co-doped porous carbon
(CNPB) as an electrode material for supercapacitors was prepared
through a process of hydrothermal carbonization through the
hydrothermal carbonization coupled with pyrolysis activation. The
effects of KOH ratios and pyrolytic temperatures on CNPB's pore
structure and surface chemical properties, as well as its energy stor-
age performance, were investigated. This study demonstrated the
favorable conversion of cigarette butts into porous carbons for high
performance energy storage applications.

Experimental methods

Materials and chemicals

Waste CBs were collected from public areas such as roadsides in
Kaifeng city (China) and were pretreated to remove residual tobacco
ashes and impurities. The obtained butts were crushed into a fluffy
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state, and dried at 60 °C for 2 h, and stored in a rapid glass dryer before
use. Concentrated hydrochloric acid, potassium hydroxide (analytical
grade), urea (analytical grade), acetylene black, polytetrafluoroethylene
(PTFE), and foam nickel were all acquired from Aladdin Reagent
Company (Shanghai, China).

Hydrothermal carbonization of cigarette butts

As a pre-carbonization step, CBs (5 g) and urea (5 mmol) were
thoroughly mixed using deionized water (50 mL) and placed in a
hydrothermal autoclave (YSFB-100, Yushen Technology Co. Ltd,
Shanghai, China). The autoclave was kept in an oven and reacted at
250 °C for 120 min. Afterwards, the autoclave was removed and
allowed to cool to room temperature. The reacted mixture was filtered,
and the solid residue was thoroughly washed with ethanol and
deionized water until the washings were neutral. After being dried at
80 °C for 12 h, the N-hydrochar was obtained.

Preparation of N-doped porous biochar

The mixture of KOH and N-hydrochar with different mass ratios was
well ground and pyrolyzed in a CHY-1200 tube furnace (Chengyi
Technology Co., Ltd, Zhengzhou, China) for 2 h at the target tempe-
ratures under a nitrogen atmosphere (25 mL min~"), and a pressure of
1 bar. Afterwards, the carbonized samples were washed with diluted
hydrochloric acid, anhydrous ethanol, and deionized water until neu-
tral. After being dried at 80 °C for 12 h, the N,O-doped porous biochar
was obtained and named as CNPB-X-Y, where X represented the
pyrolytic temperatures (600, 700, 800, and 900 °C), and Y represented
the KOH to N-hydrochar ratios (1, 2, and 4).

Material characterization

The elemental compositions (C/H/N/O) of CBs, hydrochars, and CNPBs
were analyzed using an elemental analyzer (Vario EL lll, Elementar,
Germany). SEM (scanning electron microscope; Zeiss Merlin Compact,
Germany) was used to analyze the morphology of N-hydrochars and
CNPBs. XRD (X-ray diffraction; Bruker D8 Advance, Germany) was
employed to examine the mineral and crystal properties of N-
hydrochars and CNPBs. The pore structure and specific surface area of
N-hydrochars and CNPBs were determined using a specific surface
area and porosity tester (V-Sorb 2800P, Ultmetrics, China) through the
static volumetric method. The Raman spectra of CNPBs were also
detected using a laser confocal Raman spectroscopy (LabRAM HR800,
Horiba Jobin Yvon, France) to identify their crystallinity. XPS (X-ray
photoelectron spectroscopy; ESCALAB 250Xi, Thermo Fischer, USA)
was employed to explore the surface composition of N-hydrochar and
CNPBs.

Electrode assembly and electrochemical
measurement

The electrochemical performance of the prepared CNPBs as electrodes
was evaluated using two types of cell configurations (three-electrode
and two-electrode, respectively). CNPBs (80 wt%), acetylene black
(10 wt%), and polytetrafluoroethylene (PTFE, 10 wt%) were uniformly
mixed in ethanol solution. This mixture (8 mg) was constantly stirred to
a black paste and was evenly spread over nickel foam (1 cm?), which
was then dried at 80 °C for 6 h in a vacuum oven. Finally, it was overlaid
with 1 cm X 1.5 cm of nickel foam, which was pressed for 1 min at
10 MPa to obtain the working electrodes. For the three-electrode
system, mercury/mercuric oxide, platinum wire electrode, and the
above prepared electrodes slices were employed as the reference, the
counter, and working electrodes, respectively. All potentials reported

for the three-electrode measurements are presented relative to this
Hg/HgO reference electrode. In the two-electrode system, the positive
and negative electrodes were two mass-identical electrode sheets, and
the cellulose septum was placed in the middle of the two electrode
sheets to assemble symmetric supercapacitors. A 6 M KOH aqueous
electrolyte was used to evaluate the electrochemical performance of
both cell configurations.

Using an electrochemical analyzer workstation (CHI-760,
Chenhua Instruments, Shanghai, China), the cyclic voltammetry (CV)
curves, galvanostatic charge/discharge (GCD) curves, and electro-
chemical impedance spectra (EIS) of the prepared samples were
determined. The related setting parameters can be referred to in
the Supplementary Fig. S1. The cycling test was performed with
continuous GCD cycling (10,000 cycles) at 10 A g~ over a battery-
testing instrument (LAND CT2001A, Lanhe Instruments, Beijing,
China).

The discharge specific capacitances of the three- and two-
electrode cells could be calculated according to the GCD curves
with Egs (1) and (2), respectively:

IAt
I 1
C mAV M
1At
Cn= AV X2 2)

where, | (A), At (s), m (g), AV (V), and C,, (F g") represent the discharge
current, the discharge time, the electric potential, the weight of the
active material, and the discharge specific capacitance, respectively. It
is important to note that for the two-electrode system, the capacitance
Cn Eq. (2) is normalized by the mass of a single electrode (Mgjyge).
However, all device-level energy density (E, Eq. [3]) and power density
(P, Eq. [4]) calculations are normalized by the total mass of the active
material on both electrodes (m;,;,), as is standard for symmetric cells.

Energy density (E, Wh kg~'), and power density (P, W kg~') were
calculated with Egs (3) and (4), respectively:

E = % X Cp X (AV)? 3)
E
P== 4

Results and discussion

Material characterization

The yields of hydrochar, N-hydrochar, CPB-700-4, and different CNPBs
are listed in Table 1. The total process yields of CNPBs ranged from
7.22% for CNPB-900-4 to 19.18% for CNPB-700-1. It can be seen that
both activation temperature and KOH ratio significantly influence the
yield of CNPBs with a general negative correlation. The prepared N-
hydrochar (Fig. 1a) had stacked spherical structures with varying
diameters from tens to hundreds of nanometers. There were no
openings or pores on its dense and smooth surface, which is consistent
with the ordered structure of cellulose acetate. After KOH activation,
the SEM images of CNPBs (Fig. 1b & h) revealed their 3D scaffold/
spherical porous structures. It has been reported that KOH played a
meritorious role in the activation of hydrochar during pyrolysis and
undergoes chemical reactions with hydrochar, as described in Eqs
(5)-(7)22
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C(s) +4KON(s) — KZCO3 +K,0(s) +2H, (5)
C(s) + Kaors) = 2K(s) + CO(g) 6
Kaco, +2C(s) — 2K(s) +3CO(g) @)
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Table 1 Yields and elemental analysis of hydrochar, N-hydrochar, CPB-700-4, and CNPBs derived from CBs

Sample Yield (%) C (%) H (%) N (%) 0 (%) H/C© o/Cce (O+N)/C¢
Hydrochar 22.882 67.11 4.38 0.11 28.40 0.782 0.317 0319
N-hydrochar 23.67 67.70 5.09 4.77 2244 0.902 0.248 0.309
CPB-700-4 10.16%/44.41° 77.79 2.82 0.04 18.45 0.436 0.178 0.178
CNPB-600-4 12.95/54.71 57.77 4.39 1.50 36.35 0911 0.472 0.494
CNPB-700-1 19.18/81.03 76.30 443 293 15.34 0.697 0.161 0.194
CNPB-700-2 16.32/68.95 75.25 3.03 273 18.99 0.484 0.189 0.220
CNPB-700-3 13.26/56.02 73.60 244 2.39 2157 0.560 0.210 0.237
CNPB-700-4 11.25/47.53 77.56 2.59 1.96 23.11 0.401 0.224 0.245
CNPB-800-4 9.86/41.66 82.76 1.86 1.78 13.61 0.270 0.123 0.142
CNPB-900-4 7.22/30.50 87.69 2.63 1.07 8.61 0.360 0.074 0.084

2 Calculated based on dried OFR; ° Calculated based on dried hydrochar or N-hydrochar; € Atomic ratio.

Fig. 1 SEM images of (a) H-hydrochar, (b) CNPB-600-4, (c) CNPB-700-1, (d) CNPB-700-2, (e) CNPB-700-3, (f) CNPB-700-4, (g) CNPB-800-4, (h) CNPB-900-4.

The surface of CNPB-700-1 started to become rough, and a pleated
spherical structure appeared (Fig. 1c). These protrusions could
expand the contact area with the electrolyte to promote charge stor-
agel?3], With the KOH ratio increased, the carbon material became
looser, and an irregular block structure was formed compared with
the original spherical structure (Fig. 1d & f). Rich, irregular, honey-
comb-like mesoporous structures were formed, which were in favor
of the fast transport of electrons/ions2425l, The pore size of CNPBs
became more and more regular as the activation temperature
increased (Fig. 1b, f & h), indicating that high activation tempera-
tures were beneficial to the growth of uniform pore structures.

Table 2 shows the pore properties of the prepared carbons.
Compared with N-hydrochar, the CNPBs generated from N-
hydrochar with different KOH ratios and activation temperatures all
had highly developed porosity. Amongst them, CNPB-700-4 showed
a high specific surface area of 2,133.5 m2 g-', a substantial pore

volume of 1.203 cm3 g~ (micropore volume of 0.401 cm3 g-'), and
an adsorption average pore width of 2.24 nm. The porosity of the
CNPBs were evidently positively influenced by the KOH ratio. The
N, adsorption-desorption isotherms of CNPBs prepared under
different activation conditions are shown in Fig. 2a and b. The pre-
sence of narrow micropores and multiple micro-mesoporous struc-
tures could be evidenced by the steep gas adsorption in the low-
pressure region(26l and the H-4 type hysteresis loops!?’], respectively,
which are in agreement with the pore size distribution plots of
CNPBs (mainly in the range of 1-3 nm) in Fig. 2c. The microporosity
ratio (V,i./Vy) increased slightly at 800 °C but decreased significantly
at 900 °C due to the development of mesoporesl?>. Interestingly,
the microporosity (V,i/V;) was also closely related to the amount of
KOH added. There was a significant decrease in V,,;/V; at the high-
est KOH ratio, indicating the micropore volume decreased with
increased KOH addition, and the increased mesopore volume
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Table 2 Pore structure parameters of N-hydrochar and CNPBs derived from CBs
Sample Sger” (m2g7") Smic® (m2g™") Vi (em3g™) Vd(cm3g™) Vic/Vy (%) Pore size® (d, nm)
N-hydrochar 7.8 - 0.003 - - 2.51
CNPB-600-4 1,136.9 770.0 0.319 0.560 57.03 2.24
CNPB-700-1 7723 668.9 0.271 0.407 66.53 2.24
CNPB-700-2 1,683.5 1,529.7 0.599 0.693 86.58 2.22
CNPB-700-3 1,598.8 1,376.5 0.554 0.751 73.72 2.24
CNPB-700-4 2,1335 903.2 0.401 1.203 33.29 2.24
CNPB-800-4 2,787.2 5345 0.237 1.649 14.34 2.23
CNPB-900-4 2,492.9 203.6 0.060 1.880 3.21 2.25

2 Specific surface area; P Surface area of micropores calculated by the t-plot method; ¢ Micropore volume calculated by the t-plot method; ¢ Total pore volume at P/P0 =

0.99; © Average pore size value.
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Fig. 2 (a), (b) N, adsorption-desorption isotherms, (c) pore size distribution, (d) XRD patterns, and (e) Raman spectra of CNPBs prepared under different

activation conditions.

provided more channels for the electrolyte diffusion into the
microporel22,

The crystallinity composition is also crucial for carbon materials
used as supercapacitor electrodes. Figure 2d shows the X-ray
diffraction patterns of the prepared materials. The two broad peaks
located at 23.5° and 43.5° corresponded to the (002) and (100)
planes, respectively, revealing the graphitization of biochar mate-
rials, and graphitic carbon is favorable for fast electron transfer in
electrochemical reactions!28l, It is noticed that CNPBs presented a
significant intensity in the small-angle region of 26 < 20°, implying
the existence of high-density micropores, which is in line with the
analysis from the SEM and pore properties analysis. In addition, the
peak intensities of CNPB-800-4 and CNPB-900-4 were significantly
weaker compared with CNPB-700-4 due to the presence of amor-
phous carbon structure after KOH activation, implying that the
graphitization and crystallinity were reduced considerably!2?l. As the
temperature increased, the characteristic peak strength of carbon
weakened (the broader peaks), indicating an increase in defect
and disorder structures as the activation temperature further
increasedi3031,

Figure 2e shows the Raman spectroscopy of the samples, which
was employed to further investigate their crystallinity. It is well
recognized that the D-band (~1,350 cm~') caused by structural
defects is associated with graphite disorder, while the G-band
(~1,590 cm™") corresponds to the carbon atoms in regular graphite
crystalsi2832, The relative graphitization of CNPBs was evaluated
by qualitative analysis using the D-band and G-band's integrated
intensity ratio (Ip/lg). An increased Ip/lg indicated that the defect
structure developedB2. The Ip/Ig values of CNPB-700-1, CNPB-700-2,
CNPB-700-3, and CNPB-700-4 were 0.95, 0.86, 0.75, and 0.53, respec-
tively, indicating the lowest disordering degree of CNPB-700-4. The
I/l values of CNPB-700-4, CNPB-800-4, CNPB-900-4 were 0.53, 0.91,
and 0.92, respectively, which could be explained by the fact that
high activation temperatures may lead to more defects and disor-
dered structures and more chemical reactions between KOH and the
graphitized regions in the carbon particlesi33l.

Table 1 shows the elemental composition of the samples. N-
hydrochar and CNPBs all contained N with the content range of
1.86 wt% to 4.93 wt%, indicating the successful introduction of N
during hydrothermal carbonization with the addition of urea. The
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surface element composition, valence states, and content of the
CNPBs were further characterized through XPS (Fig. 3), demonstrat-
ing that the resulting porous carbon materials all consisted of C
(284.8 €eV), O (530 eV), and N (400 eV) elements, which is in
agreement with the results of elemental analysis. The surface nitro-
gen content of CNPB-700-4 was about 1.82 wt%, close to the elemen-
tal analysis (1.96 wt%), meaning that the N elements were uniformly
distributed in the framework of the ordered porous biochar.

Figure 3b shows the high-resolution C 1s spectrum of CNPB-700-
4, which consisted of three resolved individual peaks of C-C
(~284.8 eV), C-O-C (~286.46 eV), and C-N-C (~288.79 eV) binding.
The high-resolution N 1s spectrum (Fig. 3c) consisted of four peaks
of ~398.83, ~399.93, ~401.01, and ~402.17 eV, reflecting pyridine
(N-5), pyrrole (N-Q), quaternary (N-4), and N-oxide (N-x) groups,
respectively. Among these, the pyridinic (N-5) and pyrrolic (N-Q)
groups are particularly renowned for inducing pseudo-capacitance
by providing electrochemically active sites for fast, reversible
Faradaic reactions at the electrode-electrolyte interface. It is recog-
nized that pyridine and pyrrole nitrogen are able to contribute to
forming surface and edge defects in carbon materials, which is in
favor of increasing the number of active sites for electrochemical
reactions such as Faraday processes in Eqs 8 and 934, thereby trig-
gering pseudo-capacitance behavior in the charge/discharge
processBl. It is also well recognized that N-Q and nitrous oxide
groups in the carbon skeleton can provide positive charges, alter
charge density, reduce charge migration resistance, and improve
conductivity36l,

>CH-NH, +20H™ «— >C = NH +2H, +2e~ ®)

>C-NH; +20H™ «— >C-NHOH + H,0 +2¢” )]

The O 1s spectrum (Fig. 3d) demonstrated the three oxygen-
based bindings of C-O (~531.38 eV), C=0 (~533.25 eV), and COOR
(~533.49 eV). These oxygenated groups were able to improve the
wettability of carbon materials with aqueous electrolytes and
introduce Faraday pseudo-capacitance to enhance their electro-
chemical capacity!®l.

The above characterizations showed the favorable properties of
CNPBs, such as the ultra-high specific surface area, feasible pore
volume, uniformly distributed adjustable nitrogen atoms, and
enhanced wettability to be used as supercapacitor electrode
material. The analysis also indicated that CNPB-700-4 potentially
possessed the most excellent electrochemical properties amongst
the prepared porous biochars.

Electrochemical performance

Three-electrode test

Various electrochemical measurements on CNPBs were performed in
a three-electrode system with a 6 mol L™' KOH aqueous solution as
the electrolyte. The cyclic voltammetric curves of CNPBs prepared at
various KOH/N-hydrochar mass ratios (Fig. 4a) and pyrolysis tempe-
ratures (Fig. 4b) showed similar rectangular features (scan rate =
50 mV s7") in the potential window of —1.0 to 0 V (vs Hg/HgO), showing
that the electrical energy was mainly stored in the electric double layer.
The redox peaks can be observed around 0.4 V (Fig. 4a & b), which
could be explained by the Faraday pseudo-capacitance generated
by the redox reactions of functional groups containing oxygen and
nitrogen on the electrode surface*”3%. Cigarette butt-derived porous
biochar, without the introduction of nitrogen, was prepared at 700 °C
with a hydrochar and KOH ratio of 4 (CPB-700-4). It was found that
N-doping overall enhanced the electrochemical properties of the
material (Supplementary Fig. S1). When the activation temperature
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=
& CNPB-700-3
‘E _.,_..—--‘\‘
bt CNPB-700-4
EEES T \
1200 1000 800 600 400 200 O
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Fig. 3 (a) XPS measurement spectra of CNPBs prepared under different activation conditions; (b), (c), and (d) fine spectra of C 1s, N 1s, and O 1s of sample

CNPB-700-4.
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Fig. 4 (a), (b) CV curves of prepared CNPBs under different activation conditions at a sweep rate of 50 mV s~'; (c), (d) GCD curves of prepared CNPBs under

different activation conditions at a current density of 1Ag~".

was 600 °C, the CV curve was distorted, which may be due to the low
graphitization order of CNPB-600-4 at a low activation temperature,
while as the pyrolysis temperature reached 900 °C, this excessive
temperature would lead to the reduction of the remaining functional
groups, thus decreasing the total capacitance®. The charge/discharge
performance of CNPBs was investigated at a current density of 1 A g™
(Fig. 4c & d), showing that the charge/discharge curves of CNPBs were
quasi-triangular in shape, indicating that the prepared CNPBs were
supercapacitor materials with electric double-layer capacitive proper-
ties. The charge/discharge time of CNPBs tended to proportionally
increase with the increasing KOH ratio (Fig. 4c), which also indicated
that the regulation of porosity and specific surface area could help to
enhance the electrochemical performance of CNPBs. Similarly, it was
found that the charging and discharging time of CNPBs showed a
decreasing trend with increasing pyrolysis temperature when the
amount of KOH addition was identical (Fig. 4d), which might be due to
the fact that higher temperatures during the pyrolysis process pro-
moted the conversion of N elements in N-hydrochar to NH3, resulting
in a decrease in the nitrogen content of CNPBs (Table 1), thus reducing
the pseudo-capacitance provided by N atoms.

The CV curves of CNPB-700-4 exhibited good storage capacitance
performance (Fig. 5a & b) due to the sculpting effect of KOH to form
a layered mixed mesoporous and microporous structures. The
micropores stored the charge, and the mesopores provided chan-
nels for electrolyte diffusion into the micropores#l. At lower scan
rates (Fig. 5a), the higher diffusion of electrolytic charges to the
electrode surface resulted in increased diffusion-controlled capaci-
tance. Nevertheless, when the scan rate was elevated from 100 to
200 mV s71, the CV curve's rectangular and symmetric shape became
slightly distorted (Fig. 5b), primarily due to the restricted ion influx
in the active electrode material at higher scan rates.

The charge/discharge behavior of the CNPB-700-4 electrode was
tested at current densities ranging from 0.5 to 20 A g~ (Fig. 5¢).
Owing to the pseudo-capacitive behavior of functional groups con-
taining N and O in CNPBs, the constant-current charge/discharge
curve did not form a perfectly symmetric isosceles triangle. Its excel-
lent reversibility and conductivity made it only slightly distorted.
The minimal bending of CNPB-700-4's charging curve (Fig. 5c) at
high voltage was due to the increase in potential influencing ion
transport™'l, The longer charging and discharging durations at
lower current densities were attributed to the relatively adequate
time for electrolyte ions to enter and diffuse into the pores of the
electrode compared to higher current densities2, The specific
capacitance at various current densities (shown in Fig. 5d & e)
increased with the increase of the KOH ratio, and the specific capaci-
tance of the CNPB-700-4 electrode at 1 A g~' (344.91 F g') was the
highest. Even when the current density increased to 20 A g7, an
excellent specific capacitance of 54.21% of the initial value was still
maintained, demonstrating the CNPB-700-4 electrode's good rate
capability (Fig. 5e).

Electrochemical impedance spectra (EIS) ranging from 0.01 to
10,000 Hz were analyzed to investigate the resistances related to the
charge storage process (Fig. 5f). The Nyquist curve of CNPB-700-4
showed a steep linear trend at low frequencies and a small semicir-
cle at high frequencies, indicating near-ideal capacitance characte-
ristics and small equivalent series resistance. This performance was
credited to the superior intrinsic electronic properties and more effi-
cient ions transportation through the electrode compared with
others*%l, The solution resistance (R,) was derived from the high-
frequency intercept of the solid axis (Z') in the Nyquist plot, in which
the semicircle indicates the charge transfer resistance (R.) and the
inclined straight line represents the diffusion resistance (Warburg
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activator ratio (4:1) at different activation temperatures; (f) impedance profiles of CNPBs.

impedance), related to the diffusion and transport of ions from the
electrolyte to the surface of the electrodel*344, The CNPB-900-4
electrode exhibited the lowest impedance (Fig. 5f), probably
because of its well-developed pore structure and high specific
surface area. Interestingly, the R.s values of the Nyquist plots of
CNPB-600-4, CNPB-700-4, CNPB-800-4, CNPB-900-4 presented a
gradually decreasing trend (0.8703, 0.7858, 0.6576, and 0.5888,
respectively). This may be due to the higher graphitization of the
pyrolysis samples at high temperaturesB9. The R, values of CNPB-
600-4, CNPB-700-4, CNPB-800-4, and CNPB-900-4 were 0.1199,
0.1475, 0.1603, and 0.1667, respectively. The minor R and R; values
indicated that the CNPB electrode materials had low contact
resistance, good electrical conductivity, and superior ion transfer
properties.

As shown in Fig. 6, CNPB-700-4's capacitance remained at 95.44%
of the initial capacitance after 10,000 cycles of constant current
charge/discharge at a current density of 10 A g~'. The first five cycles

’400 o ":3'\»/—/ 222222y - — " ad _
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Fig. 6 Cycling stability and coulomb efficiency plots of CNPB-700-4 in
the three-electrode system.

and the 9,996t to 10,000t charge/discharge cycles exhibited
extremely similar potential-time response behavior (Fig. 6) and
remained as quasi-symmetric triangles, demonstrating that the elec-
trochemical process was quasi-reversible. These results indicate that
CNPB-700-4 had good long-cycle performance (> 10,000 cycles),
high reversibility, and stable capacitive performance when used as a
supercapacitor electrode material.

In summary, the outstanding electrochemical performance of
CNPB-700-4, including its highest specific capacitance (344.91 F g~
at 1 A g7") and remarkable long-term stability (95.44% retention), is
directly attributed to the synergistic combination of its unique struc-
tural and compositional features. As established in the characteriza-
tion, these features include its ultra-high specific surface area
(2,133.5 m2 g"), a well-developed hierarchical pore network that
ensures efficient ion transport (mesopores) and charge storage
(micropores), and the N,O co-doping which enhances conductivity
and provides additional pseudo-capacitance.

Symmetric supercapacitor of the two-electrode cell

The symmetric CNPB-700-4//CNPB-700-4 electrode was assembled
and tested to further estimate the practical use of CNPBs in super-
capacitors. Figure 7a shows the CV curves at various voltage windows
with a scan rate of 50 mV s7'. In the voltage range of 0~1.5 V, the
CV curve remained in an excellent rectangular shape. The CV curve
showed a 'sickle' distortion as the voltage window was expanded
to 16 V, indicating the severe polarization”). The symmetric
supercapacitor's electrochemical behavior was examined by setting
the voltage window to range from 0 to 1.5 V. Figure 7b shows a quasi-
rectangular shape and a broad pseudo-capacitance peak of the CV
curves in the 0.3-0.5 V range. Even at a high scan rate of 200 mV s,
the CV curves showed no significant distortion, indicating the device
had good double-layer capacitance behavior'?. As illustrated in the
GCD curve of Fig. 7¢, the charge/discharge curve of the symmetric
supercapacitor also exhibited an approximate triangle with a specific
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impedance profiles; (e) energy-power density Ragone plot.

Table 3 Comparison of SSA and electrochemical properties between CNPB-700-4 and other biomass electrode materials

Bioma;s electrode SSA Specific capacitance  Currentdensity Energy density Power density Cycle stability Ref
materials (m?2g™") (Fg™) (Ag™") (Whkg™) (Wkg™) (%) :
CNPB-700-4 2,1335 34491 1 24.33 373.71 95.44/10,000 cycles  This work
Baby diaper 2,399 353 1 7.22 125 87.65/10,000 cycles [47]
Peanut shells 17.8 240 1 4.08 101.3 90/1,200 cycles [48]
Platycladus oriental leaves 1,140.2 156 0.5 11 65 96.3/10,000 cycles [49]
Buckwheat core 805.91 330 0.5 6.1 250 90/5,000 cycles [50]

capacitance of 210 F g~' for CNPB-700-4//CNPB-700-4 at 1 A g~' and
86.02 F g7' (when the current density was increased to 10 A g7).
Figure 7e shows that CNPB-700-4//CNPB-700-4 had an ideal reversible
double-layer capacitance behavior due to its low internal resistance.
Correspondingly, the power density reached up to 373.71 W kg~' at an
energy density of 24.33 Wh kg™, where all energy and power density
values for the symmetric device (Fig. 7e) are normalized by the total
mass of the active material on both electrodes. All the above electro-
chemical properties revealed that CNPB-700-4//CNPB-700-4 symmetric
supercapacitor had good rate capability. Compared to other studies,
the values found for the specific capacitances of CB derived porous
biochars were quite high (210 F g™' of symmetric supercapacitor)
(Table 3), even compared with commercial activated carbon while
being tested as a symmetric supercapacitor at 1 A g~ (e.g., nitrogen-
rich microalgae 117 F g~'¥, nitrogen-doped brewer's spent grain
46 F g~ commercial activated carbon 79 F g~', and nitrogen-rich
chicken feather 25 F g7'B)),

A further interpretation of Table 3 highlights the balanced
competitive advantages of CNPB-700-4. First, its ultra-high SSA
(2,133.5 m2 g7') significantly exceeds that of other biomass
sources*959, More importantly, CNPB-700-4 achieves an excellent
balance of key metrics: it delivers not only a high energy density
(2433 Wh kg™') and the highest power density listed
(373.71 W kg"), but also maintains exceptional cycling stability
(95.44% over 10,000 cycles). In contrast, other materials listed either

suffer from poor stability®*”! or much lower energy densitiest8-50,
This high, well-rounded performance, achieved from a hazardous
waste source, demonstrates its unique application potential.

Conclusions

Waste cigarette butts-derived N,O co-doped hierarchical nanoporous
biochars (CNPBs) electrode materials were readily prepared by hydro-
thermal carbonization coupled with pyrolysis activation. Attributed to
the combination of high specific surface area, extremely high micro-
porosity, and N/O rich properties, CNPB-700-4 exhibited excellent
capacitance capacity, excellent rate capability, and long-term stability,
comparable to or better than commercial activated carbon. It had a
high storage capacity of 34491 F g at a current density of 1 A g™
(210 F g~' for the symmetric supercapacitor), and after 10,000 cycles of
constant current charge/discharge at a current density of 10 A g7, the
capacity remained over 95% of the initial capacitance. The assembled
symmetric CNPB-700-4//CNPB-700-4 electrode had an energy density
of 24.33 Wh kg™', and a power density of 373.71 W kg~', demonstrat-
ing a high commercial potential. This work provides a scalable path-
way for the large-scale waste valorization of toxic cigarette butts,
addressing a significant environmental hazard. The resulting CNPB's
high performance, which is comparable to, or even exceeds that of
commercial activated carbon, highlights its robust potential for com-
mercial application. This study thus demonstrates a viable circular
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economy model, upcycling hazardous waste into high-value materials
for energy storage.
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