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Abstract

Amid rising global temperatures and accelerating carbon-neutral initiatives, the efficient
valorization of greenhouse gases has emerged as a central focus of contemporary research.
Microbial metabolism enables the low-cost transformation of methane, which has evolved
into a strategic technological reserve for a green and low-carbon future. Methanotrophs,
widely distributed across diverse habitats, utilize methane as both a carbon and an energy
source. Through key enzymes in their central metabolic pathways, these microorganisms
sequentially oxidize CH, into methanol, formaldehyde, formate, and ultimately to CO,. In
synthetic microbial consortia comprising methanotrophs and methylotrophs, inter-species
cross-feeding effectively alleviates the accumulation of inhibitory metabolites, improving
overall methane conversion efficiency. Beyond regulating the source-sink balance of atmos-
pheric greenhouse gases, methanotrophic consortia also drive the high-value resource
utilization of high-concentration CH, and CO,. Type |, ll, and X methanotrophs possess
distinct carbon fixation pathways and are capable of synthesizing high-value products such
as methanol, single-cell protein (SCP), and polyhydroxyalkanoate (PHA). Investigating their
mechanisms and efficient cultivation strategies is conducive to further exploring the
potential of methanotrophs in carbon cycling and biomanufacturing. However, the practical
application of methanotrophs still faces several challenges, including difficulties in process
control, ineffective suppression of byproduct formation, and potential safety concerns
associated with the synthesized products. Addressing these bottlenecks is imperative to
unlock their full potential for large-scale industrial applications in greenhouse gas mitigation
and sustainable biomanufacturing.
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Highlights

+ Methanotrophs with unique functional traits are summarized.

+ Divergent metabolic and electron transfer mechanisms are deciphered.
+ The dual role of methanotrophs in climate change is evaluated.

+ Species-specific yields of high-value products are benchmarked.

+ Metabolic regulation underlying efficient PHA biosynthesis is unveiled.
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Methane is a potent greenhouse gas capable of absorbing long-wave
radiation and driving the greenhouse effect!'l. On a mass basis, CH,
shows a significantly higher global warming potential (GWP) than CO,,
approximately 28 times higher over a 100-year horizon?. Methane
originates from both geochemical and biochemical processes, and
biogenic methane is predominantly generated by methanogens®. The
establishment of anaerobic conditions is a critical factor enabling
biogenic methane production, as observed in environments such as
anaerobic wastewater treatment!, solid waste digestion™, flooded
rice paddies®, and anoxic zones of river and lake ecosystems!’.
Globally, methane emissions are estimated at 500-600 Tg/year, with
roughly 70% originating from biogenic sources, whereby aerobic
methanotrophs play a critical role in the atmospheric source-sink
balance by oxidizing approximately 60% of this biogenic fraction!.,

Aerobic methanotrophs (methane-oxidizing bacteria, MOB) repre-
sent a group of microorganisms that utilize methane as their carbon
and energy source. They are widely distributed in natural environ-
ments and can be found in mineral springs!, lakes!'%, wetlands('"],
forests!'?), and grasslands!'3], where they frequently thrive through
syntrophic associations with other microorganismst'4. Since their
initial discovery in 1906, advances in molecular phylogenetics and
high-throughput omics have progressively refined the taxonomic
framework of methanotrophs and deepened the understanding
of their global biogeography, metabolic versatility, and ecological
significancel'l. Beyond their ecological roles, methanotrophs
possess unique biocatalytic machinery that oxidizes methane under
ambient conditions. This process mitigates atmospheric emissions
while concurrently generating a spectrum of value-added biopro-
ducts, serving a dual functionality that underpins their emerging
relevance in industrial and biotechnological applications!'®l. Further-
more, the methane monooxygenase (MMO) expressed by metha-
notrophs exhibits relatively broad substrate promiscuity, which
enables the co-metabolic degradation of a wide array of emerging
contaminants!'718], including alkylmercury'®, halogenated hydro-
carbons2%, microplasticsi2'], and certain antibiotics[?2l. This trait not
only highlights their potential in bioremediation but also implies an
adaptive advantage that sustains metabolic robustness under the
stress of emerging contaminants.

Methanotrophs exhibit significant advantages in methane
removal and resource utilization. Current chemical conversion

processes, aim to transform CH, into chemicals like methanol and
formaldehydel2324, However, the high C-H bond energy and chemi-
cal inertness of CH, necessitate severe reaction conditions, which
often result in considerable CO, emissions and exacerbate green-
house gas effects(?5], Although carbon capture, utilization, and stor-
age (CCUS) technologies offer an effective means of carbon seques-
tration, their widespread implementation remains constrained by
high costs of operation and maintenancel?9l. In contrast, methan-
otroph-based biological systems operate under mild conditions
with low energy input, offering a viable and sustainable alternative
for efficient methane removal and conversion. Consequently, the
valorization of methane through biological pathways has attracted
growing research interest. Nevertheless, the metabolic network of
methanotrophs is highly complex, and their interactions with other
microorganisms, as well as their responsiveness to environmental
factors such as nitrogen sources, are not yet fully elucidated. These
knowledge gaps currently hinder the engineered application of
methanotrophs at scale.

This review systematically summarizes research advances in
methanotrophs over the past decade, emphasizing that overcom-
ing bottlenecks in reaction efficiency, product selectivity, and
process stability through multi-level metabolic engineering strate-
gies is crucial for transitioning these systems from laboratory-scale
studies to industrial applications. We elucidate how the diversity of
methanotrophic metabolic pathways underpins their functional
versatility, evaluate and summarize their potential for greenhouse
gas mitigation and synthesis of high-value products, and discuss the
key regulatory mechanisms of carbon flux, along with analytical
approaches and underlying principles for improving microbial pro-
duct yields. Finally, the future development direction for integrating
high-value resource utilization technology of methanotrophs with
cutting-edge interdisciplinary fields is prospected.

Ecophysiology and distribution of
methanotrophs

Phylogeny and core metabolism

Methanotrophic microorganisms are broadly categorized into two
functional groups: aerobic methanotrophs and anaerobic methano-
trophs. The latter group includes NC10 bacteria?”? and anaerobic
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methanotrophic archaea (ANME)®8), which utilize substances such as
nitrate and nitrite as electron acceptors!'"! and are generally unable to
grow in oxygen-rich environments. In contrast, aerobic methanotrophs
employ O, as their terminal electron acceptor, exhibit considerable
phylogenetic and metabolic diversity, and demonstrate remarkable
functional versatility with some strains retaining activity even under
hypoxic conditions'?. Owing to these traits, aerobic methanotrophs
play a significant role in both ecological remediation and contribute
substantially to the biogeochemical regulation of carbon flux.

Based on phylogenetic divergence and distinct carbon assimila-
tion pathways, aerobic methanotrophs are primarily classified
into Type | (Gammaproteobacteria), Type Il (Alphaproteobacteria),
and Type X (primarily belonging to Verrucomicrobia)2939, Type |
methanotrophs, characterized by intracellular membrane systems
arranged as vesicular disks or bundles, predominantly drive
methane oxidation in high-methane environments such as wet-
lands, hot springs, and marine ecosystems; in contrast, Type I
methanotrophs possess layered intracytoplasmic membranes and
demonstrate higher adaptability to low-methane environments,
including acidic soils, wetlands, and plant-associated niches; addi-
tionally, Type X methanotrophs represent extremophilic lineages
with relatively simplified membrane structures, enabling them to
thrive under highly acidic and elevated temperature
conditions2231],

A suite of unique enzyme systems employed by methanotrophs
catalyze methane oxidation, primarily including methane mono-
oxygenase (MMO), methanol dehydrogenase (MDH), formaldehyde
dehydrogenase (FDH), and formate dehydrogenase (FaDH)B2.
Among these enzymes, MMO is classified into two types: particulate
methane monooxygenase (pMMO) and soluble methane monooxy-
genase (sSMMO). Specifically, pMMO is bound to the intracellular
membrane and exists in nearly all methanotrophs, while SMMO is
only present in a few methanotrophic groups and distributed in
the cytoplasm[32., In addition, there are some methylotrophs lacking
MMO in the methane oxidation system, which cannot directly utilize
methane but fix carbon using the metabolic products of
methanel3l, pMMO and sMMO are structurally and evolutionarily
unrelated enzymes, differing fundamentally in their molecular archi-
tecture and catalytic mechanisms, and their expression is regulated
by distinct trace metal ions: pMMO activity is strictly copper-
dependent, whereas sMMO expression requires sufficient iron
availability®4. Moreover, copper concentration acts as a key meta-
bolic switch: elevated copper levels promote pMMO expression,
while copper limitation induces SMMO expression°. In summary,
methanotrophs exhibit considerable diversity in their carbon fixa-
tion pathways, which involve markedly distinct intermediate meta-
bolites. Notably, the pmoA gene, encoding a critical subunit of
pPMMO, is conserved across the majority of methanotrophs and has
been established as a key molecular marker for assessing their
ecological distribution and abundance in diverse environments3¢),

The central metabolic pathway of methanotrophs involves the
sequential oxidation of CH, to methanol, formaldehyde, formate,
and ultimately CO,, catalyzed by the key enzymes mentioned
abovel7l, During this process, pivotal intermediate metabolites can
be channeled into different carbon assimilation routes to support
either cellular growth or the synthesis of specific bioproducts. Type
I methanotrophs predominantly employ the ribulose monophos-
phate (RuMP) pathway for carbon fixation, with 3-hexulose-6-phos-
phate synthase acting as a key enzymatic step; whereas Type I
methanotrophs utilize the serine pathway, relying on hydroxypyru-
vate reductase as a critical catalyst; and Type X methanotrophs
primarily fix carbon via the Calvin-Benson-Bassham (CBB) cyclet*.

The diversity in phylogeny and metabolic pathways directly deter-
mines their diverse resource utilization potential. Methanotrophs
employ three principal electron transfer mechanisms. Type | metha-
notrophs primarily utilize a direct coupling mechanism for methane
oxidation, while Type Il methanotrophs predominantly rely on a
redox arm mechanismB8l, Under specific physiological or environ-
mental conditions, certain methanotrophs may also engage in an
uphill electron transfer mechanism39l. This metabolic versatility not
only expands their potential for applications in biomanufacturing
and environmental remediation but also provides a robust physio-
logical foundation for their industrial deployment across diverse
scenarios. Metabolic pathways of methanotrophs are demonstrated
in Fig. 1, while the representative genera and characteristics of
methanotrophic communities are shown in Table 1.

Habitats and global prevalence

On a global scale, distinct methanotroph species possess specific
habitat preferences. While the majority thrive under mesophilic and
neutral pH conditions, certain methanotrophic lineages have adapted
to extreme environments, displaying thermophilic, acidophilic, or
alkaliphilic characteristics”%’'. A recent study in 2025 revealed that
Mycobacterium (Actinobacteria) also possesses methane-oxidizing
capabilities, and strain MM-1 shows significant NH; tolerance and pH
tolerance, maintaining activity even at an NH,® concentration of
143 mM and pH = 4V2. This finding has significantly expanded the
known physiological boundaries of methanotrophs and provides a
new microbial resource for methane emission reduction in high-
ammonia environments such as livestock and poultry farms, and
landfills.

In terms of specific sites, the community structure and spatial
distribution of methanotrophs are co-regulated by climatic and
edaphic factors. Methanotroph abundance is generally elevated in
regions with favorable hydrothermal conditions3¢], showing a posi-
tive correlation with pH and a negative correlation with concentra-
tions of ammonium and nitrate nitrogenl’3l. Significant functional
differentiation is observed across distinct habitats, and aside from
spatial heterogeneity, methanotroph populations also display
marked seasonal fluctuations. For instance, their abundance in
aquatic ecosystems is influenced by hydrological characteristics and
seasonal variations in dissolved constituents74. Although summer
typically offers richer nutrient availability and higher overall bacte-
rial abundance, the relative abundance of methanotrophs in certain
rivers and lakes has been reported to peak during winter!74, which
may be attributed to a combination of factors such as elevated
dissolved oxygen levels, reduced solar radiation, and higher organic
carbon content during the colder months[751,

Cultivation and separation methods

The optimal growth temperature for most methanotrophs is
approximately 30 °C, with a preferred pH near neutral (around 7.0)7°..
Nevertheless, some acidophilic and thermophilic methanotrophs have
been successfully cultivated and isolated under high temperatures and
low pH. For example, Verrucomicrobia bacteria can be cultivated at
55 °C and pH = 37 In terms of carbon sources, methanotrophs
typically use methane as a growth substrate, but they differ in sub-
strate affinity. Low-affinity methanotrophs typically require high
methane concentrations for cultivation, whereas high-affinity metha-
notrophs are capable of metabolizing atmospheric trace methanel’®.,
Commonly, standard cultivation media include nitrate mineral salts
(NMS) and ammonium mineral salts (AMS)7), Notably, certain metha-
notrophic strains can fix atmospheric nitrogen, enabling growth in
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Fig. 1 Metabolic pathways of methanotrophs (adapted from Park & Kim[2),

media devoid of exogenous nitrogen sources®®”. Beyond nitrogen,
essential mineral salts must be supplemented, as several metal ions act
as cofactors of key enzymes in methane oxidation. As mentioned
above, MMO activity depends on Cu or Fel**!, Similarly, the XoxF-type
MDH requires lanthanide elements such as Ce, Eu, or Yb to function®®',
In addition, methanotrophs display considerable divergence in salt
tolerance, because of which medium composition can be directionally
optimized according to the ecological origin and physiological type of
the strain. For example, dilute nitrate mineral salt (DNMS) medium may
be employed for strains inhabiting low-salt environments®?; whereas
ammonium-nitrate mineral salt (ANMS) medium with 3% NaCl may be
utilized for marine strainst®.

Conventional procedures for obtaining methanotrophs typically
involve environmental sampling, microscopic examination, and
enrichment culturel'®., Common inoculum sources include paddy
soils'484, marine sediments83, and biodesulfurization filter beds!85!.
However, due to the propensity of methanotrophs to form micro-
bial aggregates with heterotrophic bacteria, obtaining axenic
colonies remains challenging®dl, Traditional isolation methods such
as the 'dilution to extinction' technique, consume a large amount of
time and effort86l, It has been reported that increasing the dilution
rate gradually can improve specific growth rate to 0.40 h-!, yet this
approach is generally effective only for fast-growing species®’l. In
recent years, several novel separation strategies have been deve-
loped to improve the isolation efficiency of methanotrophs!'. For
instance, a label-free, high-throughput Raman-activated cell sorting
platform (pDEP-DLD-RACS), pioneered by Qingdao Single-Cell

Biotechnology Co., Ltd, enables rapid screening of target live cells
based on metabolic function®8l. Raman flow cytometry can achieve
a 58% yield improvement of docosahexaenoic acid (DHA) over wild-
type strains by sorting DHA-overproducing mutants within two
days!88l. This advanced methodology provides a powerful tool for
the efficient and precise acquisition of functional methanotrophic
strains.

Biotechnological applications of
methanotrophs

Carbon mitigation and ecosystem restoration

Conventional approaches to mitigating methane emissions from
various sources (such as fugitive releases during biogas utilization)
often focus on suppressing methanogenesis at the source, such as
adding chemical inhibitors to suppress methanogenic activity®. As
a complementary strategy, the use of methanotrophs for methane
removal offers distinct advantages, including applicability across
diverse locations and emission modes®. For example, in mining
operations, the application of ultrafine water mists containing
methanotrophs has been shown to reduce methane concentrations in
ambient air, lowering the risk of gas explosions®'\. Currently, a range of
methanotroph-based engineering solutions has been developed, such
as bio-cover systems, biofiltration units, and bacterial suspension
injection, enabling efficient methane removal tailored to different
operational scenarios®®?. Representative applications include exhaust
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Table 1 Representative genera and characteristics of methanotrophic communities

Representative

Type Genera Species Srefig Separation source Characteristics Ref.
Typel Methylococcus Methylococcus geothermalis IM1 A geothermal spring Thermophilic (48 °C) [40]
Methylomonas ~ Methylomonas methanica MC09 Coastal seawater Halotolerant (seawater) [41]
Methylomonas koyamae Fw12E-Y A rice paddy field Methanol-utilizing [42]
Methylobacter Methylobacter tundripaludum SVo6 Arctic wetland soil Nitrogen-fixing (nifH) [43]
Methylovulum Methylovulum miyakonense HT12 Forest soil Formaldehyde-assimilating  [44]
Methylovulum psychrotolerans Sph1 Low-temperature terrestrial  Psychrotolerant (2 °C) [45]
environments
Methylosoma Methylosoma difficile Lc2 Lake sediment Nitrogen-fixing (nifH) [46]
Methylothermus ~ Methylothermus thermalis MYHT A hot spring Thermophilic (67 °C) [47]
Methylothermus subterraneus HTM55 Subsurface hot aquifer Thermophilic (65 °C) [48]
Methylogaea Methylogaea oryzae E10 A rice paddy field Nitrogen-fixing (nifH) [49]
Methylohalobius ~ Methylohalobius crimeensis 10Ki Hypersaline lakes Extremely halophilic [50]
(15% NacCl)
Methylomarinum  Methylomarinum vadi IT-4 Marine environment Obligate marine [51]
Methyloprofundus  Methyloprofundus sedimenti WF1 Marine sediment Nitrogen-fixing (nifH) [52]
Methylotenera Methylotenera versatilis 301 Lake sediment Multiple substrate utilization [53]
Type ll Methylocystis Methylocystis hirsuta asa A groundwater aquifer Special surface structure [54]
Methylocella Methylocella silvestris BL2 An acidic forest cambisol ~ Multiple substrate utilization [55]
Methylocapsa Methylocapsa aurea KYG A forest soil Multiple substrate utilization [56]
Methyloferula Methyloferula stellata AR4 Acidic Sphagnum peat bogst Acidophilia (pH = 3.5) [57]
Methylorubrum  Methylorubrum rhodesianum MB200 A household biodigester ~ Multiple substrate utilization [58]
Methylobrevis Methylobrevis albus L22 Freshwater lake sediment ~ Oxidase and catalase [59]
production
Type X Methylacidiphilum  Methylacidiphilum fumariolicum Solv Volcanic region Hydrogenase-possessing [60]
Methylacidiphilum infernorum V4 A geothermal field Hyperthermophilic (60 °C) [61]
Methylacidimicrobium Methylacidimicrobium fagopyrum 3C Volcanic soil Acidophilia (pH = 0.6) [62]
Methylacidimicrobium 4AC Volcanic soil Acidophilia (pH = 0.5)
tartarophylax
Methylacidimicrobium 3B Volcanic soil Acidophilia (pH = 3.6)
cyclopophantes
Candidatus Candidatus Methylacidithermus PQ17 Volcanic environments Sulfur-fixing (cysD/C/H) [63]
Methylacidithermus pantelleriae
Methylotrophs Methylophaga Methylophaga marina ATCC 35842 Sea water FrL;ctose and methylamine  [64]
utilization
Methylophaga thalassica ATCC 33146 Sea water Fructose and methylamine
utilization
Methylotenera Methylotenera mobilis JLW8 Lake sediment Methylamine-utilizing [65]
Hyphomicrobium  Hyphomicrobium denitrificans TK 0415 - Anaerobic denitrification [66]
Paracoccus Paracoccus denitrificans Stanier 381 Garden soil Hydrogen-utilizing [67]
Methyloversatilis ~ Methyloversatilis universalis FAM5 Freshwater wetlands Multiple substrate utilization [68]
Methylopila Methylopila capsulata IM1 Soil Multiple substrate utilization [69]

treatment in biogas upgrading facilities!®®, rhizoremediation of diesel-
contaminated soils®, and mitigation of methane and odorous
compounds in landfill sites’®!. Furthermore, during wastewater treat-
ment, methanotrophs can simultaneously remove dissolved methane
and nitrite, achieving synergistic reduction of greenhouse gases and
pollutants®,

However, the regulatory role of methanotrophs in greenhouse
gas dynamics is bidirectional: while oxidizing CH,, they may inadver-
tently trigger the emission of other greenhouse gases. For instance,
aerobic methanotrophs can compete with denitrifying bacteria
for Cu?*, potentially suppressing denitrification activity and leading
to N,O releasel®’]. Similarly, certain anaerobic methanotrophs have
been reported to generate N,O via NO dismutation during
denitrification[®8], Given that the GWP of N,O is approximately 10
times that of CH, over 100 years, even minor N,O emissions
can substantially offset the climate benefits gained from CH,
oxidation[®l, Therefore, controlling concomitant N,O emissions is
critical for maximizing net greenhouse gas mitigation. Notably,
some methanotrophs possess N,O reductase genes, enabling them
to concurrently remove both CH, and N,OM8l. Certain aerobic
methanotrophs, such as Methylocella tundrae and Methylacidiphilum

caldifontis, can grow under anaerobic conditions, using methanol or
C-C substrates (such as pyruvate) as electron donors to respire N,O,
and they can also adapt to suboxic environments!®?. Anaerobic
oxidation of CH, by aerobic methanotrophs can be coupled with
denitrification, utilizing N,O produced during denitrification as an
electron acceptor, significantly reducing emissions of both CH, and
N,O and influencing the net greenhouse effect of the ecosystem!'001,
Furthermore, the newly identified anaerobic methanotroph
Candidatus Methylomirabilis sinica has been shown to completely
reduce nitrate to N, via a methane-dependent denitrification path-
way without N,O production and accumulation, preventing the
generation of N,O at the sourcel''l, This unique metabolic capa-
bility offers a promising route for the synergistic mitigation of multi-
ple greenhouse gases.

In addition, microorganisms, including methanotrophs, can act as
effective bioindicators for oil and gas resource exploration!'9Z, In
petroleum reservoir areas, the upward seepage of light hydrocar-
bons causes an increase in surface methane, which in turn induces
specific changes in the abundance and community structure of
methanotrophs, and a significant positive correlation has been
observed between their population density and the intensity of

Dengetal. | Volume2 | 2026 | e002

page 5 of 14


https://doi.org/10.48130/een-0025-0018
https://doi.org/10.48130/een-0025-0018
https://doi.org/10.48130/een-0025-0018
https://doi.org/10.48130/een-0025-0018
https://doi.org/10.48130/een-0025-0018

Energy &
Environment Nexus

https://doi.org/10.48130/een-0025-0018

hydrocarbon seepagel’®3, Compared to traditional exploration
techniques, which are often characterized by high costs and long
operational cycles!'%4, microbial prospecting of oil and gas offers
considerable advantages, including lower expense and higher
sensitivityl'03],

Synthesis of high-value products

Methanotrophs not only contribute to greenhouse gas mitigation but
also synthesize a range of value-added products through carbon
assimilation pathways. Currently, methanotrophs are capable of syn-
thesizing high-value resources such as methanol””, single-cell protein
(SCP)!',  polyhydroxyalkanoate (PHA)!', ectoinel'?”), fatty acids
and lipids!'®®, succinate!'®”, carotenoids’®?, and so on. Additionally,
methanotrophs can be co-cultured with other microorganisms to
produce new products such as mevalonatel''”). As shown in Fig. 2,

pyruvate and acetyl-CoA play pivotal roles in the high-value product
production of methanotrophs. Overall, Type | methanotrophs are
suited to producing pyruvate-related products, while Type Il metha-
notrophs are suited for products originating from acetyl-CoA. Due to
the anaplerotic role of the RuMP cycle towards the tricarboxylic acid
(TCA) cycle, Type | methanotrophs are more capable of producing
certain products related to the TCA cycle.

However, the primary products that have reached scale-up
production include methanol, SCP, and PHAlI''l, Although chal-
lenges remain in regulating carbon flux and optimizing the expres-
sion of key enzymes during large-scale production(''"}, their applica-
tion potential in sectors including food and pharmaceuticals is
considerable. A systematic comparison of the production status for
three major value-added products is summarized in Table 2. The
cases of methanol, SCP, and PHA production by methanotrophs are
shown in Tables 3, 4, and 5, respectively.
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Fig. 2 Pathways for high-value product production by (a) methanotrophs, (b) yields of primary high-value products, and (c) yields of key high-value
products with large-scale production potential at common reaction temperatures (G3P: Glyceraldehyde 3-phosphate; MEP: Methyl-erythritol Phos-

phate; FPP: Farnesyl Pyrophosphate; PHB: Poly-3-hydroxybutyrate; OAA:
Tables 3[1'\2—119] 4[85,120—124] and 5[106,125—131]).

Oxaloacetate, FA: Fatty acid. Data are sourced from the literaturel''"), and
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Methanol production

Methanol serves as a crucial industrial feedstock and clean fuel, valued
for its high energy density and ease of storage and transportation!'3?,
with broad applications across the energy and chemical sectors.
Compared with conventional catalytic synthesis processes, which are
typically energy-intensive, methanotroph-based conversion of CH, to
methanol operates under mild conditions and offers distinct advan-
tages such as minimal byproduct formation and reduced process
carbon emissions!'*3., In practical applications, the immobilization of
methanotrophic cells has been shown to improve both the efficiency
and operational stability of methanol production, and various materials
such as coconut shell biochar, ion-exchange resins, and chemically
modified chitosan have been employed as effective immobilization
carriers, some of which can achieve a maximum yield increase of more
than 20 times!''>"""4, However, these supports differ significantly in
mass transfer efficiency and operational costs, necessitating careful
selection based on the specific production system. Interestingly, it has
been reported that a thermophilic methanotroph species can reduce
CO, to methanol via the CBB cycle!''™, providing promising prospects
for the synergistic resource utilization of greenhouse gases.

It has been indicated that the methanol production yield by
methanotrophs ranges between 5.34 and 64.6 mM (Table 3)[115.116],
The production efficiency is influenced by multiple factors includ-
ing strain type, gas composition, immobilization carrier, and cultiva-
tion conditions. Among the investigated species, Methylocystis
bryophila has demonstrated robust methanol synthesis capability
in several studies!''3176], and is often applied in combination with
other methanotrophs such as Methyloferula stellatal''2114117), Cul-
turing with 20%-30% CH, or a CH, : CO, ratio of 2:1 to 4:1 can
improve the output of methanol''2-114], and coupling with 15% H,
can attain a methanol yield of up to 64.6 mM['16l, In addition, certain
methanotrophs, including Methylocaldum sp. exhibit notable
tolerance to sulfur impurities (500 ppm H,S), highlighting their
potential applicability in the treatment of real industrial off-
gases!!18],

Table 2 Comparison of high-value resource products of methanotrophs!*'>'!"!

SCP production
SCP, also referred to as microbial protein, represents a resource-
efficient alternative protein source!'*#'3, It is characterized by rapid
growth rates and high spatial productivity!'*?, offering a sustainable
pathway to alleviate the environmental pressures associated with
conventional protein production. Methanotrophs possess strong pro-
tein biosynthesis capacity and can utilize methane-containing waste
gases like biogas as substrates to enable the valorization of
pollutants’3”). These microorganisms can be cultivated either in pure
culture or in co-culture systems with other functional bacteria, such as
sulfur-oxidizing bacteria (SOB), to optimize both protein yield and
amino acid profile'%852% |t has been shown that methanotroph-
derived SCP is rich in diverse amino acids, including essential amino
acids!', and sulfur-containing amino acids®'?%, meeting the nutri-
tional standards for feed applications, whereas its potential use in the
food industry still entails certain safety and regulatory considerations!“.
It has been indicated that SCP synthesized by methanotroph
generally possesses high protein content, with reported values
ranging from 41% to 73% of cell dry weight (Table 4)85121],
Representative methanotrophic genera employed in SCP
production include Methylococcust'?2, Methylosinust'?3], and
Methylomonas!'2), and non-methanotrophs such as Terrimonas!'4
and Chryseobacterium!8>1201 are also frequently present in produc-
tion consortia. In current practice, optimal SCP content is typically
achieved using a CH, : O, ratio between 1:4 and 2:3[85124], supple-
mented with controlled amounts of CO,!'38], and a cultivation
temperature maintained within 25-37 °Cl121.122],

PHA production

PHA represents a class of biodegradable polyesters that serve as
environmentally friendly alternatives to conventional petroleum-based
plastics!'>?. To achieve cost-effective production, C1 gases such as CH,
from biogas or industrial off-gases can be utilized as economical
carbon sources for large-scale PHA synthesis by methanotrophs!'4%,
Within the PHA family, poly-3-hydroxybutyrate (PHB) is the most

Production Methanol

SCP PHA

Biosynthesis pathway
Producers

Product value Moderate

Commercialisation status Not yet commercialised

Carbon conversion challenges Methanol is a metabolic intermediate
that is readily oxidized, leading to low
accumulation.

Chemical feedstocks, fuel, bioplastic
precursors

Central metabolic pathway
Type|, Il, and X capable

Applications

Multiple carbon assimilation pathways
Type | dominant, Type Il, and X applicable
Relatively low

Large-scale commercialisation

The production requires maximized carbon The production is typically induced
flux toward biomass and suppression of
complete oxidation.

Animal feed, food additives, nutrient
supplements

Serine carbon assimilation pathway
Primarily type Il

Relatively high

Small-scale commercialisation

under nutrient imbalance, creating a
growth-synthesis trade-off.
Biodegradable plastics, biomedical
materials

Table 3 Cases of methanol production by methanotrophs

Production Output Production condition Corresponding producer Ref.

Methanol 529 mM  30% CHy, 30 °C, NMS medium, immobilized on coconut coir, eight Methylocystis bryophila, Methyloferula stellata, ~ [112]
repeated batch conditions Methylocella tundrae

Methanol 2575mM  CH,:CO, = 2:1, 30 °C, NMS medium, immobilized on chitosan, eight Methylocystis bryophilla [113]
repeated batch conditions

Methanol 2436 MM CH,:CO, =4:1,30% CH,, 30 °C, NMS medium, immobilized on Methylomicrobium album, Methylocystis [114]
chemically modified chitosan, eight repeated batch conditions bryophila, Methyloferula stellata

Methanol 534mM Cultivation in biogas containing CH,, 25 °C, AMS medium, six repeated Primarily Methylobacter and Methylosarcina [115]
batch conditions

Methanol 64.6 MM 30% CH,, 15% H,, 30 °C, NMS medium, six repeated batch conditions ~ Metholosinus sporium, Methylocystis bryophila [116]

Methanol 164mM  30% CH,, 15% CO,, 30 °C, NMS medium, immobilized on synthetic Methyloferula stellata, Methylocystis bryophila [117]
precursor solution, ten repeated batch conditions

Methanol 859 mM  CH,:air=1:4, 37 °C, NMS medium, 500 ppm H,S Methylocaldum sp. [118]

Methanol 537mM  30% CHy, 30 °C, NMS medium, immobilized on polyvinyl alcohol, five  Methylocystis bryophila, Methyloferula stellata [119]

repeated batch conditions
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Table 4 Cases of SCP production by methanotrophs

Production Content Production condition Corresponding producer Ref.

SCP 56.10% + 10.99% CH,: O, = 1:2, NMS medium, 2,973 ppm H,S Primarily Methylocystis and Terrimonas [14]

SCP 73% £ 5% CH,: O, = 2:3,30 °C, NMS medium, 1,500 ppm H,S Primarily Methylocystis spp. and Chryseobacterium spp. [85]

SCP 59.2% + 3.6% CH,:CO,=70:30 or 50:50, CH, : 0, =2:3,30°C, Primarily Methylocystis spp. and Chryseobacterium spp. [120]
AMS medium, 4,000 ppm H,S

SCP 41% + 2.0% CH,4:0,=1:2, 25 °C, dAMS medium Primarily Methylophilus sp.1 and Methylomonas sp.1 [121]

SCP 45% 60% CH,, 30% O,, 10% CO,, 37 °C, cultivation in Methylococcus capsulatus [122]
wastewater containing NH,*

SCP 52.3% 60% CH,, 40% CO,, 27 °C, AMS medium Primarily Methylosinus and Methylococcus [123]

SCP 67% CH,: O, = 1:4, 25 °C, AMS medium Primarily Methylomonadaceae and Methylococcaceae [124]

SCP 50.2% Primarily CH, : O, : CO, = 1:2:0.05, NMS medium Primarily Methylococcus and Methylotenera [138]

dAMS: dilute ammonium mineral salt.

prevalent homopolymer'#!, exhibiting mechanical properties com-
parable to those of traditional polyolefins!''"). Methanotrophs possess
the capacity to accumulate intracellular carbon reserves, with PHA
primarily synthesized by Type Il strains, whereas Type | strains tend to
produce extracellular polysaccharides!'?.,

It has been indicated that the methanotroph-derived poly-3-
hydroxybutyrate (PHB) content can reach up to 59.4% (Table 5)[26l,
The polymer composition can be modulated by supplementing
specific co-substrates. For instance, the addition of valerate pro-
motes the incorporation of 3-hydroxyvalerate monomers, leading
to the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) copolymers with improved mechanical properties!'27l,
Methylocystis sp. MJC1 has been reported to synthesize PHBV
copolymers with a content of 41.9%. In an optimized medium,
Methylocystis parvus OBBP reached a PHA content of approximately
54%!128], Under specific recovery strategies, genera such as Methylo-
cystis and Pseudomonas can reach PHB content approaching
60%!'26], Optimal production conditions, typically involving a CH, :
O, ratio between 1:1 and 2:3['281291 and a temperature range of
25-30 °Cl126:128] are critical for achieving high PHA accumulation.

Metabolic regulation for resource
valorization

In the high-value resource valorization of methanotrophs, precise
metabolic regulation is key to enhancing the synthesis efficiency of
target products. Depending on the characteristics of the desired
metabolites, mixed-culture strategies are often employed to optimize
system performance through microbial synergies (cross-feeding)!'#%,
For instance, co-culturing methanotrophs with SOB enables the
removal of H,S from biogas, alleviating its inhibitory effect on
methanotrophic activity!'?%, Similarly, the presence of methylotrophs
facilitates the timely consumption of metabolic intermediates such as

Table 5 Cases of PHA production by methanotrophs

methanol generated during methane oxidation, preventing feedback
inhibition and improving the overall methane oxidation rate*3l, By
sharing metabolic byproducts, different microbial species form com-
plementary and symbiotic relationships that help overcome inherent
limitations of methanotrophs, including slow growth and sensitivity
to accumulated metabolites?. Beyond microbial interactions, the
modulation of environmental and nutritional factors can effectively
direct carbon flux toward target product synthesis. Optimizing the
CH, : O, ratio, adjusting temperature, selecting appropriate nitrogen
sources, and regulating the concentrations of trace elements such as
Cu and Fe have all been demonstrated to improve the efficiency of
methane-based bioconversion.

Reprogramming central metabolism for
methanol yield

The high-yield accumulation of methanol relies on the precise regu-
lation of central carbon metabolism—facilitating the conversion of
CH, to methanol while moderately suppressing its downstream
oxidation. As the first intermediate in the methanotrophic pathway,
methanol contains C-H bonds that are more readily cleaved than
those of CH,, rendering it prone to further oxidation!'*¥\. Since metha-
notrophs constitutively express MDH, which continuously catalyzes
methanol oxidation, effective production strategies require targeted
inhibition of MDH activity to facilitate methanol accumulation®2.
However, such metabolic interventions must account for cellular
energy balance. The oxidation of CH, to methanol is an energy-
consuming process that relies on reducing equivalents such as
nicotinamide adenine dinucleotide (NADH), whereas subsequent
methanol oxidation helps regenerate NADH, thereby forming a cyclic
energy supply!'“4, Complete inhibition of MDH would lead to NADH
depletion, which in turn hinders the initial oxidation step of CH,.
Therefore, the ideal strategy is to partially inhibit MDH, enabling
net methanol accumulation while maintaining sufficient NADH
regeneration!’*!. In practice, the extracellular hyperaccumulation of

Production Content Production condition Corresponding producer Ref.
PHA 12.6% + 2.4% 20% CHy, 30 °C, AMS medium Primarily Methylocystis [106]
PHB 48.7% £ 1.2% CH,4:0,=1:1,30 °C, NFMS medium Primarily Methylophilus and Methylocella [125]
PHB 59.4% + 4.5% CH,: 0, =1:1, 25 °C, AMS medium, recycle PHB producers Primarily Methylocystis and Pseudomonas ~ [126]
after accumulation
PHBV 41.9% 30% CHy, 30 °C, NMS medium Methylocystis sp. MJC1 [127]
Mutiple PHA  50% % 4% to 56% * 4% CH,4: 0, = 2:3, 30 °C, JM2 medium (modified AMS medium)  Methylocystis parvus OBBP [128]
PHB 22.20% CH,: 0, =1:1, 30 °C, NMS medium Primarily Methylocystis [129]
PHBV 35% 0.5 atm CH,, 0.33 atm O,, 38 °C, AMS medium Methylosinus thricosporum OB3b [130]
PHB 52.9% + 4% CH,:0,=1:1, 25 °C, AMS medium Mutiple methanotrophs [131]

NFMS: nitrate free mineral salt.
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methanol can be achieved by reducing the concentration of
lanthanides in the medium to inhibit MDH activity”” or by adding
specific enzyme inhibitors such as cyclopropanolt'*. The intracellular
NADH/NAD* ratio serves as a key indicator of the cellular redox state,
providing a basis for the dynamic regulation of inhibitor dosage!'*%. In
summary, by finely balancing MDH activity with energy metabolism, it
is possible to significantly increase methanol yield under mild reaction
conditions and overcome the long-standing challenge of its rapid
over-oxidation.

Enhancing carbon assimilation for protein
synthesis

In SCP production, the core objective of metabolic regulation is to
maximize biomass yield by directing carbon and energy fluxes toward
cellular biosynthesis. Type | methanotrophs are considered preferred
candidates for SCP production owing to their rapid growth rates.
However, under nitrogen-limited conditions, these microorganisms
tend to redirect carbon flux toward the synthesis of storage com-
pounds such as extracellular polysaccharides!'?], which can reduce
protein yield. Therefore, maintaining an appropriate C/N ratio and
ensuring sufficient nitrogen supply are critical to sustaining efficient
protein synthesis. It has been shown that the CH, : O, ratio significantly
influences nitrogen assimilation efficiency. For instance, at a CH, : O,
ratio of 2:3, nitrogen assimilation approaches completion!®], improving
protein synthesis efficiency. Moreover, precise editing of metabolic
pathways via synthetic biology, such as the knockout of glycogen
synthase or glucokinase genes, can effectively suppress carbon storage
formation!'**), redirecting more carbon toward protein accumulation.
In summary, systematically optimizing cultivation conditions and gas
composition, combined with genetic engineering to fine-tune meta-
bolic flux, provides a dual strategy for improving the conversion
efficiency of carbon and nitrogen and maximizing protein yield.

Metabolic regulation for PHA
hyperconcentration

In the production of PHA, the central aim of metabolic regulation is
to leverage the synthetic capacity of Type Il methanotrophs by
redirecting carbon flux toward storage polymer synthesis under
specific nutrient-limiting conditions. Type Il methanotrophs act as the
primary microbial workhorses of PHA synthesis, and their pure culture
system is more conducive to the efficient accumulation of PHA!'3",
However, in industrial settings, inocula often consist of mixed com-
munities of Type | and Type Il methanotrophs, where interspecific
competition can compromise the stability of PHA production. NH;,
due to its structural similarity to CH,, acts as a competitive inhibitor of
MMO activity, and this inhibition is more pronounced in Type |
methanotrophs, thereby providing a selective advantage to Type |l
strains and helping them dominate the microbial community!'?°.,
Nevertheless, if the sludge retention time (SRT) is excessively pro-
longed, Type | methanotrophs may adapt to the NH; stress and re-
establish dominance, ultimately reducing PHA synthesis efficiency!'3".,
In addition, the capacity for PHA accumulation varies across growth
phases, with higher synthesis rates typically observed during the
lag and exponential phases compared to the stationary phasel’”.
Therefore, appropriately optimizing operational conditions to extend
the duration of these two phases may represent a viable strategy for
improving overall PHA productivity.

The synthesis efficiency of PHA is regulated by multiple environ-
mental parameters, including carbon source availability, tempera-
ture, pH, and the type of nitrogen source. Appropriately increasing
the partial pressure of CH, can improve O, utilization and promote
PHA accumulation('3%, Certain non-growth co-substrates such as

ethane may inhibit methane oxidation, yet their metabolic deriva-
tive acetate can act as a precursor of PHA biosynthesis, indirectly
facilitating polymer formation('46l. Temperature and pH exert selec-
tive influences on community structure. When strains with strong
PHA production capabilities become dominant, the yield is
improved. For instance, the higher abundance of Methylocystis
facilitates PHA production at 25-30 °C, while deviations from this
range can significantly impair metabolic activity!'4”1, Similarly, while
genera of high-yield PHA, such as Methylocystis, exhibit a competi-
tive advantage within pH 5.5-7.0, which is conducive to PHA
productionl'8l, There remains considerable controversy regarding
nitrogen source selection: some studies suggest nitrate is prefer-
able due to its minimal inhibitory effect on MMO activity!'4?],
whereas others report that ammonium exerts weaker inhibition on
Type Il methanotrophs harboring ammonium tolerance genes,
which facilitates their enrichment!'26, No-nitrogen (NoN) conditions
can trigger PHA accumulation as a carbon reservel’?, but they also
retard biomass growth. Therefore, future research may need to tailor
nitrogen source strategies according to the genetic background of
specific strains and process objectives rather than seeking a univer-
sal solution.

To achieve high-efficiency synthesis of PHA, a variety of strategic
approaches have been developed. The selection of inoculum
sources selection is fundamental, with priority given to environmen-
tal samples enriched with Type Il methanotrophs. For example,
methanotrophs derived from Sphagnum moss can raise the base-
line potential of the production system['50l, At the process level,
biomass recycling after the PHA accumulation phase can help
reduce the proportion of Type | methanotrophs, while alternating
nitrogen supply regimes can optimize resource allocation between
growth and synthesis phases!'29., It has been indicated that nitro-
gen-feeding and starvation cycles of 8 h:16 h or 24 h:24 h yield the
best results, whereas excessively long nitrogen starvation (2-fold
higher than the feeding duration) inhibits PHA productionl's',
Furthermore, the construction of co-culture systems coupling
methanotrophs with heterotrophic bacteria such as Methylocystis sp.
OK1 with Escherichia coli BL21 (DE3) enables multi-directional cross-
feeding!’>2l. In such systems, intermediates like acetone generated
by Methylocystis can be utilized by E. coli for heterologous PHA syn-
thesis, extending carbon flux and doubling overall productivity!'>2,
Looking forward, metabolic regulation in PHA production should
evolve from single-factor optimization toward multi-scale metabolic
network engineering. Integrating strain selection, process control,
and system coupling will pave the way for comprehensive effi-
ciency enhancement.

Conclusions and outlook

Methanotrophs play a pivotal role in the global carbon cycle and hold
significant potential for sustainable biomanufacturing. They demon-
strate considerable promise in methane emission mitigation, ecologi-
cal restoration, and the synthesis of high-value products such as green
methanol, SCP, and PHA. The discovery of novel species with unique
traits like ammonium tolerance and pH tolerance, as well as direct
denitrification, further expands their application scope. However,
challenges in cultivation, metabolic complexity, and process stability
hinder their large-scale deployment. Future efforts should leverage
synthetic biology to construct high-capacity microbiological strains
and synthetic consortia and even engineer strains with enhanced
product yields, develop advanced bioreactors for optimized operation,
and establish robust life-cycle assessments to evaluate sustainability.
The integrated application of multiple technologies enables the full
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exploitation of methanotrophs' metabolic potential, which plays a
crucial role in driving the large-scale application of negative carbon
biotechnology, facilitating carbon neutrality goals, and accomplishing
the synergistic control of environmental pollution.
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