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Abstract
In  the  context  of  global  climate  change  and  frequent  natural  disasters,  the  impact  of  sudden  disasters  such  as  earthquakes  on  population  migration  is

becoming  increasingly  significant.  Taking  the  2008  Wenchuan  Earthquake  as  a  case  study,  this  study  explores  the  impact  mechanism  of  earthquake

disasters on population migration by combining the modified gravity model and the social vulnerability index. By collecting seismic data for earthquakes of

of magnitude 5 or higher in China and its surrounding areas from 2011 to 2023, combined with population density information, this study first visualized the

seismic events and revealed the spatial distribution characteristics and potential impacts of seismic activities. Subsequently, based on the socioeconomic

data before and after the Wenchuan Earthquake, the social  vulnerability index was constructed to quantify the impact of the earthquake on population

migration. Finally, a model based on the traditional gravity model, social vulnerability, the gross domestic product (GDP) of the place of migration, and the

place of migration is introduced. The results show that the GDP of the place of migration and the places of migration have a significant impact on population

migration, while the social vulnerability index has a relatively small impact on intraprovincial migration. The goodness-of-fit of the model reached 0.9927,

indicating  that  the  modified  gravity  model  could  effectively  explain  the  variability  of  population  migration.  This  study  provides  a  new  quantitative

evaluation  method  for  managing  post-disaster  population  migration,  and  provides  a  scientific  basis  for  future  disaster  risk  management  and  urban

planning.
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 Introduction

Earthquakes,  as  sudden  and  highly  destructive  natural  events,
have a profound impact on human society. In recent years, frequent
seismic activities worldwide have not only caused significant casual-
ties and property damage but have also triggered large-scale popu-
lation  migrations  and  environmental  changes.  Especially  in  the
context  of  accelerating  urbanization,  the  destructive  effects  of
earthquakes  on  urban  infrastructure,  economic  development,  and
residents'  livelihoods  have  become  more  pronounced.  As  global
climate  change  intensifies,  the  frequency  and  intensity  of  natural
disasters,  in  addition  to  earthquakes,  may  further  increase,  posing
higher demands on cities' disaster response capabilities. Simultane-
ously,  globalization  and  urbanization  have  led  to  greater  concen-
trations  of  the  population  and  economic  activities,  making  cities
increasingly  vulnerable  to  natural  disasters.  Earthquakes  not  only
directly  damage  urban  infrastructure  and  economic  activities,  but
may  also  lead  to  large-scale  population  migration,  thereby  exert-
ing  profound  impacts  on  the  socioeconomic  structures  of  both
origin  and destination regions[1].  For  example,  the 2008 Wenchuan
Earthquake led to  significant  population migration,  which not  only
affected  the  recovery  and  reconstruction  of  the  disaster-stricken
areas, but also had ripple effects on the economy, society, and envi-
ronment of the surrounding regions[2]. Against this backdrop, exam-
ining  how  natural  disasters  such  as  earthquakes  shape  population
migration  is  essential  for  understanding  their  long-term  social  and
urban  impacts  and  for  informing  evidence-based  recovery  policies
and  planning.  In  the  current  era  of  climate  change  and  escalat-
ing  disaster  risks,  assessing  urban  vulnerability,  anticipating  post-
disaster  migration,  and  developing  targeted  response  strategies

have become central concerns for both researchers and policymak-
ers.  Accordingly,  this  study  investigates  the  effects  of  earthquakes
on population migration, identifies the key driving mechanisms, and
offers  theoretical  and  practical  insights  to  support  future  disaster-
risk management.

 Literature review

Regarding  the  issue  of  post-earthquake  population  migration,
Demirchyan et al.[3] conducted a study on the survivors of the 1988
Spitak  Earthquake  in  Armenia  to  explore  the  factors  influencing
long-term  emigration.  The  results  showed  that  emigrants  were
predominantly  younger,  male,  better  educated,  and  more  socially
active,  indicating a  phenomenon of  selective  migration.  This  selec-
tive migration led to the potential loss of human capital and econo-
mic  stagnation  in  the  affected  areas.  Additionally,  unemployment
and  loss  of  housing  were  identified  as  key  push  factors  driving
migration.  Therefore,  the  authors  suggested  that  improving  hous-
ing  conditions  and  employment  opportunities  in  disaster-stricken
areas  could  mitigate  large-scale  emigration  and  its  negative  con-
sequences.  They  also  emphasized  that,  beyond  short-term  relief,
governments  should  incorporate  migration-prevention  strategies
into the long-term reconstruction and rehabilitation plans for earth-
quake-affected regions[3]. He et al.[4] studied the changes in popula-
tion  size  and  urban  land  area  in  earthquake-prone  regions  from
1990  to  2015,  and  their  impact  on  earthquake-related  fatalities.
The  study  found  that  in  areas  with  a  lower  urbanization  rate,  the
number of deaths increased, but once the urbanization rate reached
40%–50%, the number of earthquake-related deaths decreased. The
study emphasized the need to pay attention to population changes
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in  earthquake-prone  areas  to  better  address  earthquake  risks[4].
Huang  et  al.[5] investigated  residents'  willingness  to  migrate  in  the
Wenchuan  Earthquake  disaster  area,  where  secondary  disasters
frequently  occurred.  The  study  found  that  45.2%  of  residents  were
willing to migrate.  However,  the improvements in living conditions
and the optimization of economic conditions brought about by the
successful  post-disaster  reconstruction  gave  most  people  greater
confidence in the future of the disaster area, leading the majority to
choose  to  stay[5].  Mayer  et  al.  collected  data  via  telephone  surveys
of  residents  affected  by  the  2013  tornadoes  in  Moore,  Oklahoma,
and Hattiesburg, Mississippi. Using conditional inference trees, they
revealed  the  importance  of  factors  such  as  the  extent  of  damage,
homeownership  before  and after  the  disaster,  and housing type in
influencing  decisions  regarding  household  relocation[6].  Guadagno
Lorenzo  et  al.[7] explored  housing  changes  in  two  villages  in  the
southern  Apennines  of  Italy  caused  by  population  outflows  in
the  latter  half  of  the  20th  century  and  their  impact  on  disaster
risks,  analyzing  how  remittances,  population  decline,  and  land-use
changes influenced disaster risks through housing construction and
management,  and  proposed  risk  management  recommendations
for  areas  experiencing  emigration.  Shishir  Shakya  et  al.  used  the
2015  Nepal  Earthquake  as  a  quasi-natural  experiment  and  found,
through  a  difference-in-differences  approach,  that  the  earthquake
significantly  reduced  the  number  of  male  international  migrant
workers  from severely  affected areas  but  had no significant  impact
on  female  international  migrant  workers,  indicating  that  natural
disasters  significantly  affect  labor  market  outcomes  in  developing
countries[8].  Jessie  Colbert  et  al.  employed a  multi-scale  geographi-
cally  weighted  regression  (MGWR)  approach  to  study  population
changes  and  their  driving  factors  following  the  Canterbury  Earth-
quake Sequence (CES)  in  New Zealand,  revealing significant  spatial
heterogeneity  in  post-earthquake  population  changes  related  to
socioeconomic,  demographic,  land-use,  and  earthquake-related
factors,  and highlighting the profound impact  of  government  poli-
cies  on  the  post-disaster  population  distribution[9].  Lyn  Wei  et  al.
reviewed  research  on  population  mobility  under  the  influence  of
earthquake disasters in China, summarizing progress in the study of
emergency evacuation management,  psychological  and behavioral
analysis in disaster contexts, and post-earthquake population distri-
bution, and pointed out that future research should focus on multi-
ple  temporal  and  spatial  scales,  cascading  disaster  analysis,  and
post-disaster infrastructure reconstruction[10].

Post-disaster  population  migration  is  primarily  influenced  by
urban  economic  development,  urban  reconstruction,  and  other
factors.  Regarding  urban  resilience  and  vulnerability  issues  follow-
ing disasters, Cutter et al. studied social vulnerability in US counties,
constructing  a  social  vulnerability  index  based  on  socioeconomic
and demographic data from 1990, and found that social vulnerabil-
ity  exhibited  distinct  spatial  distribution  characteristics,  emphasiz-
ing  that  social  vulnerability  is  a  multidimensional  concept  influ-
enced  by  factors  such  as  personal  wealth,  age,  the  built  environ-
ment's  density,  single  economic  dependency,  housing  condi-
tions, race, ethnicity, occupation, and infrastructure dependency[11].
Thiri[12] studied  the  relationship  between  social  vulnerability  and
environmental migration based on the Miyagi Prefecture and muni-
cipalities affected by the Great East Japan Earthquake and tsunami.
The study revealed that factors such as evacuation, temporary hous-
ing,  policies  and planning,  collective  relocation,  rural  lifestyles,  and
beliefs all contributed to social vulnerability, and these factors were
interconnected in influencing the disaster's outcomes[12].  Bronfman
et  al.  conducted  an  empirical  and  geographic  spatial  analysis  to
study  the  relationship  between  community  resilience  and  social
vulnerability in Chile.  They found that the districts with the highest

levels  of  resilience  and  the  lowest  levels  of  vulnerability  were
located in the main cities of the country, and emphasized the need
to  explore  the  complex  relationship  between  social  vulnerability
and disaster resilience[13].  Aránguiz et al. studied the reconstruction
process in Llico, Chile, following the 2010 tsunami and its impact on
earthquake  risks,  finding  that  although  the  reconstruction  process
improved  material  conditions,  the  neglect  of  social  cohesion  and
community organization led to the creation of new risk zones, high-
lighting  the  importance  of  incorporating  social  capital  and  social
resilience  in  disaster  reconstruction[14].  Zhao  et  al.  conducted  an
empirical  study  on  rural  residents'  choice  of  resettlement  mode
following  three  major  earthquakes  in  Sichuan,  finding  that  factors
such  as  length  of  residence,  housing  construction  time,  access  to
employment and public services, and previous resettlement experi-
ences  significantly  influenced  their  decisions  to  resettle in  situ or
relocate, providing empirical evidence for human-centered resettle-
ment planning in post-disaster rural areas[15].

In  previous  studies,  the  gravity  model  has  been  widely  used
in  research  related  to  population  mobility.  Song  et  al.  used  one-
year  nationwide  location-based  service  (LBS)  data  and  applied  five
human  mobility  models,  including  the  gravity  model,  to  analyze
population  movement  patterns  in  China  across  different  dates.
The  fitting  results  of  the  gravity  model  indicated  that  the  trade-
off  between  the  destination's  attractiveness  and  the  cost  of  travel
distance  varied  by  date[16].  Ton  et  al.  used  US  Internal  Revenue
Service  (IRS)  tax  data  and  applied  multiple  forms  of  the  gravity
model  to  analyze  the  impact  of  natural  disasters  on  inter-county
migration  in  the  United  States.  The  results  show  that  disaster-
affected  counties  experienced  significant  increases  in  emigration,
and  that  during  floods  and  severe  storms,  people  tended  to  relo-
cate  to  nearby  counties[17].  Goswami  et  al.  applied  a  gravity  model
to analyze the main factors influencing international tourist arrivals
in Australia, incorporating variables such as gross domestic product
(GDP), distance, population size, migration ties, and cultural similar-
ity. The results show that GDP, migration ties, and cultural similarity
have  significant  positive  effects  on  tourist  inflows,  wheres  the
impacts of  distance and cost  of  living are relatively weak[18].  Zhang
et  al.[19] used  data  from  the  2017  China  Migrants'  Dynamic  Survey
and  an  extended  gravity  model  combined  with  least  absolute
shrinkage and selection operator (LASSO)-penalized Poisson regres-
sion  to  analyze  inter-provincial  migration  patterns  and  driving  fac-
tors across different age groups. The study found significant hetero-
geneity  among  age  groups:  the  working-age  population  mainly
migrated short distances from densely populated provinces to econo-
mically developed areas, whereas the elderly predominantly moved
from  northern  regions  to  Beijing  and  from  southern  regions  to
Shanghai.  Regarding  the  influencing  factors,  economic  opportuni-
ties drove migration across all age groups, but had a stronger effect
on the working-age population, whereas the elderly prioritized envi-
ronmental  comfort  at  their  destinations  and  were  less  constrained
by  distance[19].  Brakman  Steven  et  al.  used  the  gravity  model  to
analyze  the  impact  of  demographic  changes  on  global  trade  pat-
terns in the 21st century, concluding that as global population aging
intensifies,  the  global  trade  dominance  of  North  America  and
Europe  will  gradually  be  replaced  by  South  Asia  and  sub-Saharan
Africa, with China's trade share peaking around 2060 through demo-
graphic drag before declining significantly[20].

To  adapt  the  gravity  model  to  different  research  contexts,  some
scholars  have  proposed  combining  other  theories  with  the  tradi-
tional  gravity  model  and  modifying  the  model  to  improve  its  per-
formance.  Wang  revised  the  constrained  gravity  model,  propos-
ing  three  modified  models  with  standardized  migration  rates  as
the dependent variable: origin-constrained, destination-constrained,
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and origin–destination-constrained models,  and used the Newton–
Raphson  method  for  parameter  estimation,  overcoming  the  limita-
tions  of  the  traditional  model  where  the  dependent  variable  was
influenced  by  the  administrative  region's  size[21].  Li  et  al.  proposed
an improved population migration gravity  model  based on system
dynamics  and  push–pull  theory,  incorporating  factors  such  as
expected  income,  employment  opportunities,  transportation  resis-
tance,  and  housing  prices,  and  empirically  tested  the  model  using
Suzhou  Industrial  Park  and  Shenzhen  as  case  studies.  The  results
showed  that  lower  transportation  resistance,  higher  expected
income ratios, and smaller increases in housing prices led to higher
population  inflows[22].  Wang  et  al.  proposed  an  improved  gravity
model  by  considering  the  relationship  between  urban  industrial
structures, enhancing the traditional gravity model's performance in
predicting  inter-city  population  migration  patterns.  The  analysis
showed that the improved model outperformed the baseline model
in  predicting  high-intensity  and  long-distance  migration  flows,
particularly  in  eastern  China,  by  introducing  characteristics  of  the
urban industrial  structure into the gravity model,  thereby broaden-
ing existing research and deepening our understanding of the rela-
tionship  between  population  migration  and  distance[23].  Yu  et  al.
proposed  an  inverse  gravity  model  using  genetic  algorithms  to
reconstruct  complex  international  migration  network  interaction
patterns  with  high  precision,  finding  that  node  attractiveness  was
highly  correlated  with  socioeconomic  factors  and  network  metrics,
and  that  the  calculated  node  locations  outperformed  geometric
centers in reflecting migration patterns related to the economy and
population[24].  Coimbra Vieira Carolina et al.  used Facebook data to
construct  a  proxy  indicator  for  cultural  similarity  based  on  users'
interests in food and beverages, incorporating it into the traditional
gravity  model  to  predict  international  migration  flows.  The  results
showed  that  the  cultural  similarity  indicator  based  on  food  and
beverage  interests  significantly  improved  the  model's  predictive
power,  with its  predictive efficacy similar  to classical  variables  such
as  shared  language  and  history,  and  captured  dynamic  changes  in
cultural  dimensions,  providing new perspectives for  understanding
the  determinants  of  migration[25].  Baldwin  Andrew  et  al.  analyzed
the application of  the  gravity  model  in  quantifying "climate  migra-
tion", exploring the statistical logic and power restructuring mecha-
nisms  behind  it,  revealing  an  emerging  power  topology  based  on
intuition  and  inference  that  calculates  and  optimizes  population
flows  to  address  uncertainties  brought  by  climate  change.  The
conclusions emphasized the gravity model's role as a political tool in
shaping climate migration issues and governance strategies[26].

Existing studies offer substantial theoretical and empirical insights
into  post-earthquake  migration,  urban  resilience,  vulnerability,  and
migration  drivers,  providing  valuable  references  for  post-disaster
reconstruction  and  population  management.  However,  a  system-
atic  integration  of  these  dimensions,  particularly  the  mechanisms
connecting  social  vulnerability  with  urban  development,  remains
limited. To address this gap, this study constructed a social vulnera-
bility index (SVI) to quantify pre-earthquake urban vulnerability and
applied  a  modified  gravity  model  incorporating  urban  develop-
ment  indicators  to  analyze  post-earthquake  population  flows.  This
approach provides an innovative quantitative framework for evalu-
ating post-disaster recovery and strengthening urban resilience.

 Construction of the model

 The traditional gravity model
In  the  mid-19th century,  the  theory  of  universal  gravitation  from

natural  sciences  was  applied to  the study of  socioeconomic  spatial

flow  phenomena,  leading  to  the  development  of  the  social  gravity
model. Because of the importance of population migration and the
availability  of  related  statistical  data,  this  field  became  a  focus  of
gravity model-based research. The gravity model is one of the earli-
est models proposed for migration, based on the premise that most
migrations occur over short distances, and as the distance between
origin  and  destination  increases,  migration  numbers  decrease
rapidly because of various barriers, with each migration flow gener-
ating a reverse flow[27]. The gravity model's formula is:

Mi j = K
PiP j

Di j
, (1)

where, Mij is the total population migration from region i to region j, K
is a constant, Pi and Pj are the population sizes of regions i and j, and Dij
is the distance between regions i and j. This model is an unconstrained
gravity model, as it does not satisfy either of the following conservation
constraints: ∑

j

qi j = αPi

∑
j

P jd−2
i j = Oi (2)

∑
i

qi j = αP j

∑
i

Pid−2
i j = D j (3)

Because  it  mimics  Newton's  law  of  universal  gravitation  in  a
highly  simplified  manner,  the  traditional  gravity  model  faces  seve-
ral  limitations  in  practical  applications.  First,  measuring  transport-
related resistance solely by spatial distance overlooks travelers' time
costs, reducing the model's ability to capture variations in migration
flows across regions.  Second,  using the total  population as a  proxy
for the scale of migration imposes no realistic constraints on migra-
tion  capacity,  resulting  in  conceptual  inconsistencies;  standardized
migration  rates  provide  a  more  appropriate  measure.  Finally,  the
model  excludes  key  economic  determinants  of  migration,  such  as
regional development levels and income, which should be incorpo-
rated to improve the explanatory power.

 The modified gravity model
Integrating  the  SVI  into  the  gravity  model  effectively  addresses

the  limitations  of  the  traditional  formulation  and  substantially  en-
hances  its  explanatory  and  predictive  performance.  First,  the  SVI
captures  a  region's  socioeconomic  structure  and  residents'  adap-
tive  capacity,  offering  a  more  accurate  representation  of  the  time
costs and actual resistance faced by migrants. Second, by assessing
vulnerability  levels  in  both  the  origin  and  destination,  the  index
helps  constrain  feasible  migration  flows  and  yields  more  realistic
migration  rates,  thereby  avoiding  the  logical  inconsistencies  inher-
ent  in  population-based  measures.  Moreover,  the  SVI  indirectly
incorporates  key  economic  dimensions,  such  as  income,  employ-
ment,  and  educational  conditions,  which  strongly  influence  migra-
tion-related  decisions.  By  embedding  these  socioeconomic  attri-
butes,  the  improved  model  more  comprehensively  reflects  the
combined  effects  of  economic  and  social  factors  on  migration,
resulting in enhanced predictive accuracy.

Furthermore,  the  modified  model  replaces  the  population  vari-
able  in  the  traditional  gravity  model  with  city-level  GDP.  As  a  key
measure of regional economic scale and vitality, GDP better reflects
employment  opportunities,  income,  and  development  potential,
which are major drivers of migration. In contrast, relying on popula-
tion  alone  cannot  capture  economic  attractiveness,  limiting  the
explanatory  power.  GDP  also  highlights  inter-regional  disparities:
lower GDP per capita and larger populations in the origin areas act
as push factors, whereas higher GDP and larger populations in desti-
nation  areas  serve  as  pull  factors.  Incorporating  these  differences
allows the model to more accurately predict both the direction and
magnitude of population flows.
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Therefore, this study modifies the gravity model by incorporating
the SVI and replacing the population indicator with the GDP of the
origin and destination cities. The modified model is as follows:

Mi j = k
GDPαi GDPβjS VIγi

db
i j

(4)

where, GDPi and GDPj are  the GDP of  regions i and j; SVIi is  the social
vulnerability  index score of  the origin region;  and k, α, β, γ,  and b are
parameters to be estimated. The next step is to calculate the SVI.

 Construction of the model's indicator

 Preprocessing the index data
Drawing on Cutter's research, factors such as population size, age

structure, gender composition, urban–rural population distribution,
and  levels  of  urban  economic  and  educational  development  are
recognized as key determinants of population migration and differ-
ences  in  social  resilience  following  disaster  events[11].  Accordingly,
when collecting data from statistical yearbooks, this study primarily
focused on indicators related to demographic characteristics, econo-
mic development, and social resources. The data for this chapter are
sourced  from  the  Statistical  Yearbooks  for  2005−2010,  primarily
including  core  indicators  such  as  population  size,  age  structure,
gender composition, urban–rural population distribution, and urban
economic and educational development. Given the focus on analyz-
ing the dynamic changes in urban social vulnerability indices before
and  after  the  Wenchuan  Earthquake  of  2008,  the  study  period  is

limited to 2005–2010 to ensure the data's continuity and relevance
to the research question.

The data contain no missing values.  To facilitate subsequent cal-
culations,  all  indicators  except  for  the year  are  standardized.  More-
over,  we apply a year-by-year normalization procedure within each
region.  Specifically,  for  each  year,  all  variables  are  standardized
within their respective regional scope to eliminate inter-annual and
intra-regional  differences  in  scale,  ensuring  that  the  subsequent
principal component analysis (PCA) extracts the structural character-
istics  of  social  vulnerability  on  a  consistent  basis  across  both  years
and  regions.  To  explore  linear  relationships  among  indicators,  a
heatmap is plotted as shown in Fig. 1.

The  heatmap  in Fig.  1 shows  the  linear  correlations  between
multiple socioeconomic indicators, with different colors and numeri-
cal  values  indicating the strength and direction of  the correlations.
Red represents positive correlations, blue represents negative corre-
lations, and darker colors indicate stronger correlations. The correla-
tion  coefficient  ranges  from −1  to  1,  with  positive  values  indicat-
ing  positive  correlations  and  negative  values  indicating  negative
correlations.

The  heatmap  reveals  strong  positive  correlations  between  some
indicators.  For example,  urban and rural  annual per capita incomes
are  nearly  perfectly  correlated,  indicating  synchronized  growth  in
urban and rural incomes, likely driven by overall economic develop-
ment. GDP per capita and consumption levels are also highly corre-
lated,  approaching  1,  suggesting  that  increased  economic  output
significantly  enhances  the  residents'  consumption  capacity.  Addi-
tionally,  the  positive  correlation  between  the  proportion  of  the

 

Fig. 1    Heat map of correlations between indicators.
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educated population and government fiscal  revenue indicates  that
higher  education  levels  are  closely  linked  to  economic  develop-
ment,  possibly  because  education  improves  labor  productivity,
thereby increasing government tax revenues.

Additionally,  some  significant  negative  correlations  can  be
observed. For example, the proportion of the population aged 0−14
shows  a  strong  negative  correlation  with  the  proportion  of  the
population aged 15−64, reflecting the trend that when the working-
age population is relatively high, the proportion of young people is
often  lower.  The  negative  correlation  between  the  proportion  of
agricultural  land  and  per  capita  regional  GDP  may  indicate  that
regions  that  are  primarily  dependent  on  agriculture  tend  to  have
lower  economic  output.  Furthermore,  the  negative  correlation
between years  and birth rate suggests  that  birth rates  have gradu-
ally  declined  over  time,  which  may  be  related  to  socioeconomic
development,  urbanization,  and  population  policies.  Moreover,
some  indicators  exhibit  weaker  correlations.  For  instance,  the  gen-
der  ratio  has  low  correlations  with  most  other  indicators,  possibly
indicating  that  changes  in  the  gender  ratio  are  influenced  more
by  independent  factors  and  are  less  associated  with  economic  or
demographic  variables.  Similarly,  the  housing  consumption  index
shows  no  significant  correlation  with  most  other  indicators,  which
may  suggest  that  changes  in  housing  consumption  are  influenced
by more complex market and policy factors.

 Calculation of the SVI
Referring to Cutter's indicator calculation method, the dimension-

ality  of  all  indicators  was  reduced.  In  this  study,  PCA  was  used
to  reduce  dimensionality  alongside  the  Kaiser  normalization  vari-
max  rotation  method.  The  rotated  component  matrix  is  shown  in
Table 1.

According  to Table  1,  after  performing  PCA  and  Kaiser-normal-
ized  varimax  rotation,  two  principal  components  were  extracted,
revealing  the  underlying  structural  patterns  in  the  data.  By  analyz-
ing  the  loadings  of  these  components,  we  can  assign  specific
names  to  them  for  better  interpretation  of  their  socioeconomic
significance.

Principal  Component  (PC)  1  mainly  reflects  factors  related  to
economic  development.  Its  variables  with  strong  positive  loads
include  annual  per  capita  income  in  urban  areas,  government
fiscal  revenue,  and  per  capita  regional  GDP,  which  are  directly
related  to  the  economic  level  of  a  region.  In  addition,  variables
with  large  negative  loads  in PC1,  such  as  the  proportion  of  culti-
vated land to total  land area and birth rate,  indicate that  economi-
cally  developed  regions  are  usually  associated  with  a  lower  pro-
portion of agriculture and a lower birth rate.  Therefore, PC1 can be

named  the  "economic  development  level",  which  represents  the
degree of regional economic modernization and industrialization.

PC2  mainly  reveals  changes  in  the  population  structure,  espe-
cially social characteristics such as the population's age distribution
and gender ratio. Variables with strong positive loads in this compo-
nent include the population aged 0−14, the population aged 64 and
above,  and the gender  ratio,  which reflect  issues  such as  rejuvena-
tion  and  aging  of  the  population  and  gender  imbalance.  Variables
with large negative loads in PC2, such as the proportion of the aging
population, indicate that changes in population structure will bring
certain challenges to society. Therefore, PC2 can be named "popula-
tion  structure  changes",  which  reflects  the  impact  of  changes  in
population age levels and gender ratio on the social structure.

PC1  explains  75.42%  of  the  variance,  making  it  the  most  signifi-
cant  component,  whereas PC2  explains  13.21%  of  the  variance.
Together, they explain 88.63% of the variance.

Using  the  derived  principal  component  calculation  formulas,  we
computed the scores for each year, as shown in Table 2.

Table  2 shows  significant  changes  in  economic  development
levels  and  demographic  structures  between  2005  and  2010.  From
2005 to 2006, PC1's values are negative,  indicating lower economic
development.  However,  after  2008, PC1  turns  positive  and  reaches
its peak in 2010 (11.650), suggesting economic recovery and growth
after the disaster. Similarly, PC2's values rise from −10.386 in 2005 to
8.464  in  2010,  reflecting  notable  demographic  adjustments  after
then disaster.  The 2008 Wenchuan Earthquake was a pivotal  event,
impacting both economic development and the population's mobil-
ity.  However,  the  data  indicate  a  rapid  economic  recovery,  with
continuous  population  adjustments,  reflecting  society's  resilience
and adaptation after the disaster.

Based  on  the  two PCs  obtained,  the formula  for  the SVI was
constructed by using an additive model as follows:

S VI = 0.7542×PC1+0.1321×PC2 (5)
where, SVI is  the  social  vulnerability  score,  and  the  contributions
(weights) of PC1 and PC2 are the explained variances of each principal
component.  By  inputting  the  data,  the SVI scores  for  2005–2010  are
obtained, as shown in Table 3.

Table 3 shows the SVI scores from 2005 to 2010, in which the level
of economic development has a greater impact on SVI. According to
the  data,  the SVI was  negative  from  2005  to  2007,  and  the  lowest
point occurred in 2005, with an SVI value of −10.815, indicating that
social  vulnerability  was  low  and  the  economic  level  was  weak  but
the population structure was relatively stable.  However,  after  2008,
the SVI turned  from  negative  to  positive  and  continued  to  rise,

 

Table 1.    Rotated component matrix.

Feature PC1 PC2

Population −0.419 −0.798
Population aged 0−14 −0.826 −0.492
Population aged 15−64 0.762 0.614
Population aged 64 and above −0.331 −0.832
Gender ratio 0.103 0.916
Urban per capita annual income 0.910 0.402
Rural per capita annual income 0.917 0.373
Housing consumption index compared with the
previous year

−0.760 0.443

Birth rate −0.451 −0.608
Government fiscal revenue 0.880 0.438
Population education ratio 0.767 0.609
GDP per capita 0.900 0.407
Consumption level 0.907 0.377
Agricultural land as a percentage of total land area −0.887 −0.305

 

Table 2.    Principal component scores for each year.

Year PC1 score PC2 score

2005 −12.520 −10.386
2006 −6.203 −1.458
2007 −2.0747 −0.175
2008 2.503 2.436
2009 6.644 1.121
2010 11.650 8.464

 

Table 3.    SVI scores by year.

Year SVI score

2005 −10.815
2006 −4.871
2007 −1.588
2008 2.209
2009 5.159
2010 9.905
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reaching  a  maximum  value  of  9.905  in  2010,  reflecting  the  rising
trend  of  social  vulnerability  after  the  Wenchuan  Earthquake.  This
change may be related to the post-earthquake economic recovery,
increased  population  mobility,  and  accelerated  urbanization,  indi-
cating  that  although  the  economy  had  gradually  grown  after  the
earthquake,  social  adaptation  still  faced  challenges.  Overall,  the
Wenchuan  Earthquake  is  a  key  node  in  the  change  in SVI.  Social
vulnerability after the earthquake did not decrease immediately, but
it  continued  to  rise  with  economic  development  and  population
changes,  indicating that  even when the economy recovers,  society
still needs time to adapt to the new structural changes.

 Determination of the model's parameters
After  standardizing  the  abovementioned  indicators,  the  data

were  reorganized  to  match  origin–destination  migration  pairs.  The
parameters  of  the  modified  gravity  model  were  then  estimated
using the  ordinary  least  squares  (OLS)  method,  followed by  signifi-
cance  testing,  residual  analysis,  and  visualization  to  verify  the
robustness  and  explanatory  power  of  the  model.  The  resulting
model is as follows:

Floating population

= 1.331×10−6×
GDP−0.1033

i ×GDP1.159
j ×S VI0.002228

i

D0.01489
i j

(6)

The  GDP  of  the  origin  region  has  a  negative  impact  on  popula-
tion  migration,  meaning  that  the  larger  the  economic  scale  of  the
origin, the fewer people emigrate. In contrast, the GDP of the desti-
nation  region  has  a  positive  impact,  indicating  that  the  larger  the
economic  scale  of  the  destination,  the  more  people  migrate  in;
moreover, the p-values of parameter GDPi, GDPj are all less than 0.05,
indicating  that GDPi, GDPj has  a  significant  impact  on  population
mobility.  However,  the SVI of  the  origin  region  and  migration
distance do not have a significant impact on migration volume. This
is because the study focuses on migration within Sichuan Province,
where  migration  distances  are  relatively  short,  making  their  effect
on the choice of origin region negligible.  The insignificant effect of

the SVI can  be  mainly  attributed  to  the  study's  temporal  scope,
which spans the period before and after the Wenchuan Earthquake.
During  this  time,  the  most  critical  factor  influencing  the  choice
of  migration  destinations  was  the  extent  of  the  disaster's  impact.
Furthermore,  it  can  be  observed  that  more  developed  cities  (e.g.,
Chengdu)  tended  to  have  higher SVIs.  This  may  have  been  caused
by the larger populations in these cities, leading to their urban carry-
ing capacities being closer to their thresholds.

 Case and data analysis

 Case selection
The data used in this section were sourced from the China Earth-

quake  Administration,  which  collected  information  on  earthquakes
of  magnitude  5.0  and  above  that  occurred  in  China  and  the  sur-
rounding  regions  from  2011  to  2023.  The  aim  was  to  identify  the
areas that are the most vulnerable to earthquake events on the basis
of  the  collected  data.  In  total,  403  earthquake  monitoring  records
were  analyzed,  with  indicators  including magnitude,  time,  latitude,
longitude,  depth,  and the city  where the earthquake occurred.  The
world map in ArcGIS was used as the canvas, with the map of China
imported. Python programming was then used to generate an inter-
active  web-based  visualization  of  earthquake  timelines,  as  shown
in Fig. 2.

Figure  2 illustrates  the  distribution  of  seismic  events  in  China
and  its  surrounding  regions,  incorporating  population  density
information  to  visually  represent  the  spatial  distribution  of  earth-
quake  activity  and  its  potential  impact.  In  the  top  right  corner
of  the  map,  a  population  density  label  is  provided  for  each  square
kilometer,  with  the  background  color  of  the  map  representing
the population density. The darker the color, the higher the popula-
tion  density,  with  densely  populated  areas  located  along  the
eastern  coastal  regions  (e.g.,  the  Yangtze  River  Delta,  Pearl  River
Delta,  Beijing–Tianjin–Hebei)  and  sparsely  populated  areas  in  the
western  and  northern  regions  (e.g.,  Xinjiang,  Tibet,  and  Inner
Mongolia).

 

Fig. 2    Visualization of earthquake events from 2011 to 2023.
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The green and red circles on the map denote earthquake events
of different magnitudes. Earthquakes with a magnitude greater than
6.5  are  represented  by  red  circles;  those  with  a  magnitude  of  6.5
or  less  are  represented  by  green  circles.  The  size  of  the  circles  is
proportional  to  the  magnitude  of  the  earthquake:  the  larger  the
circle,  the  stronger  the  earthquake.  Geographically,  the  southwest-
ern region (including Sichuan, Yunnan, and Tibet) is one of the most
seismically  active  areas  in  China,  with  frequent  and  sometimes
high-magnitude earthquakes. The western regions (such as Xinjiang
and Qinghai) also experience a significant number of seismic events,
some  of  which  are  of  considerable  magnitude,  indicating  sub-
stantial  tectonic  activity.  The  southeastern  coastal  areas  (including
Taiwan, Fujian, and Guangdong) are also earthquake-prone, particu-
larly  Taiwan,  which  exhibits  very  frequent  seismic  activity,  indicat-
ing  a  higher  earthquake  risk.  In  contrast,  the  densely  populated
eastern  regions  (such  as  Beijing–Tianjin–Hebei  and  the  Yangtze
River Delta) experience fewer earthquakes but because of their high
level of urbanization, any seismic event in these areas could result in
significant consequences.

This indicates that even if highly destructive earthquakes are rare,
moderate earthquakes make up a significant part of seismic activity
and  can  still  cause  substantial  damage  to  buildings  and  infrastruc-
ture, and pose a threat to public safety, especially in densely popu-
lated  areas.  Therefore,  studying  the  impact  of  seismic  disasters  on
populations  is  crucial,  as  it  can help governments  and the relevant
departments make informed decisions in planning post-earthquake
urban recovery.

Among  all  the  seismic  events  listed,  the  Wenchuan  Earthquake
stands  as  one  of  the  most  severe  earthquakes  in  China  in  recent
decades. It caused immense loss of life and property and resulted in
the  displacement  of  millions  of  people.  This  disaster  forced  large
numbers of people to leave their original homes and migrate to less
affected areas nearby or economically prosperous cities,  exemplify-
ing the phenomenon of post-earthquake population migration. The
scale  of  migration  following  the  Wenchuan  Earthquake  was  enor-
mous, involving millions of affected individuals. Analyzing this event
allows  for  the  study  of  various  migration  patterns,  such  as  short-
term  emergency  migration,  long-term  economic  migration,  and
government-led  resettlement  initiatives.  Furthermore,  it  offers  an
opportunity  to  explore  the  migration  paths  of  different  social
groups  after  the  earthquake,  as  well  as  the  adaptation  challenges
they face upon relocating to new areas.

The  mass  population  movement  after  the  earthquake  not  only
affected  the  social  structure  of  the  affected  regions  but  also  had  a
profound impact on the economy, culture, and infrastructure of the
receiving  areas.  For  instance,  some  displaced  individuals  perma-
nently  migrated  to  large  cities  such  as  Chengdu  and  Chongqing,
contributing to labor mobility and urban expansion, whereas others
who remained in the affected areas helped drive the reconstruction
process. The study of the Wenchuan Earthquake provides an oppor-
tunity to examine how population migration influences changes in
urban–rural structures, community restructuring, labor markets, and
social integration.

After  the  Wenchuan  Earthquake,  the  Chinese  government,
research  institutions,  and  various  social  organizations  conducted
detailed  surveys  on  post-earthquake  migration.  These  investiga-
tions  generated  a  wealth  of  data,  including  the  scale  of  migration,
migration  directions,  resettlement  methods,  the  implementation
of government aid policies, and the economic and social adaptation
of the migrants. These abundant data sources provide a solid foun-
dation  for  further  research  and  enable  comparative  analyses,  such
as  assessing  the  effectiveness  of  different  migration  patterns  and
the  impact  of  various  resettlement  measures  on  the  subsequent
developments.

In  conclusion,  the Wenchuan Earthquake offers  a  rich case study
and  data  support  for  understanding  large-scale  population  migra-
tion  patterns,  the  socioeconomic  factors  influencing  migration,
and the long-term effects of social reconstruction after a disaster. By
thoroughly analyzing this event, valuable insights can be gained for
formulating  response  strategies  for  future  similar  disasters  and  for
providing  guidance  on  managing  post-disaster  population  migra-
tion on a global scale. As a result, this study selected the Wenchuan
Earthquake  as  the  case  study  for  examining  the  impact  of  earth-
quakes on population migration.

 Basic data on population migration
This study used various prefecture-level cities in Sichuan Province

as case studies,  with data from 2003 to 2013.  The key factors  influ-
encing  population  migration  included  the  resident  population;
registered  population;  migration  population  ratio;  GDP;  value-
added of  the primary,  secondary,  and tertiary  industries;  per  capita
regional GDP; the natural growth rate; the average wage of employ-
ees;  and  administrative  land  area.  Among  these,  the  migration
population ratio was calculated by using the following formula:

The migration population ratio =
Resident population

Registered population
(7)

The  remaining  data  are  sourced  from  the  National  Bureau  of

Statistics and the Sichuan Provincial Bureau of Statistics. The SVI for

each  prefecture-level  city  in  Sichuan  Province  from  2003  to  2013

was calculated using the methodology outlined earlier. Additionally,

latitude and longitude information for each prefecture-level city was

included in the dataset used for this analysis.
Figure  3 illustrates  the  temporal  evolution  of  the SVI across  vari-

ous  prefecture-level  cities  in  Sichuan  Province  from  2003  to  2013.
The  flow  lines  in  the  diagram  represent  the  relationship  between
the years and the cities in terms of the SVI, with the thickness of the
lines indicating the intensity of the index. The chords emanate from
the  year  nodes  and  flow  towards  the  city  nodes;  a  thicker  chord
signifies  a  higher SVI for  that  particular  city  in  the  given  year.
Notably,  Chengdu consistently  exhibited the highest SVI among all
cities throughout the period from 2003 to 2013.

 

Fig.  3    Changes  in SVI of  prefecture-level  cities  in  Sichuan  Province
from 2003 to 2013.
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 Model validation
Next,  the  relationships  among  the  floating  population,  the SVI,

and  inter-city  distance  were  analyzed  to  validate  the  rationality  of
the proposed model.

In Fig.  4,  the  blue  and  dark  blue  points  represent  different  data
samples,  illustrating  the  floating  population  under  varying SVI
values.  The  black  line  denotes  the  fitted  trend  line,  reflecting  the
overall  relationship  between SVI and  the  floating  population.  The
gray shaded area represents the confidence interval,  indicating the
uncertainty range of the trend line. As the SVI increases, the floating
population exhibits a declining trend,  suggesting that regions with
higher social vulnerability may experience reduced population mobi-
lity.  This  figure  demonstrates  a  negative  correlation  between SVI
and  the  floating  population,  implying  that  areas  with  elevated
social vulnerability, potentially caused by economic, social, or other
factors, tend to have less population movement.

In Fig.  5,  the blue points represent different data samples,  show-
ing  the  floating  population  at  varying  distances.  The  black  line
represents the trend line fitted by the gravity model, illustrating the
overall  relationship  between  distance  and  the  floating  population.
The  figure  reveals  that  the  floating  population  is  higher  at  shorter
distances  and  gradually  decreases  as  the  distance  increases,  align-
ing  with  the  expectations  of  the  gravity  model,  which  posits  that
migration decreases with greater distance. Within shorter distances
(0–200 km), the floating population exhibits significant fluctuations,
whereas  at  longer  distances  (beyond 400 km),  the floating popula-
tion stabilizes with minimal variation.

The  goodness  of  fit  was  used  to  evaluate  the  model's  perfor-
mance. The residual matrix was first calculated, followed by compu-
tation of  the total  sum of  squares and the residual  sum of  squares.
The results are presented in Table 4.

As shown in Table 4, the model's goodness of fit is approximately
0.9927,  indicating  that  the  modified  gravity  model  can  explain
approximately  99.27%  of  the  variability  in  the  data.  This  suggests
that the model exhibits excellent fit and predictive capability. Next,

a five-fold cross-validation was performed, in which the model was
refitted on the training set and evaluated on the test set in each fold.
The average R2 across the five folds was 0.8898,  indicating that the
model exhibits strong overall robustness and generalizability.

Consequently, the model was used to predict the floating popula-
tion  from  2014  to  2022.  The  results  indicate  that  Chengdu  and
Panzhihua  are  the  primary  cities  with  population  inflows,  whereas
other prefecture-level cities within the province are characterized by
population outflows, consistent with real-world observations.

 Discussion

Building on the traditional gravity model, this study incorporated
GDP  and  the SVI to  analyze  the  determinants  of  intra-provincial
population  migration  in  Sichuan  following  the  2008  Wenchuan
Earthquake.  The  model's  results  indicate  that  GDP  exerts  a  signifi-
cant  positive  effect  on  migration,  whereas  the  impacts  of  distance
and SVI are relatively weak. This finding aligns with the classical logic
of  the  gravity  model,  namely  that  regions  with  higher  levels  of
economic development and shorter distances exert stronger migra-
tory  attraction.  However,  within  the  post-disaster  context,  such
results suggest the presence of more complex mechanisms shaped
by the joint influences of economic, social, and policy factors.

The  insignificant  effect  of  the SVI does  not  imply  that  social
factors were irrelevant to post-earthquake migration; rather, it  indi-
cates that their influence was likely overshadowed by strong policy
interventions.  In  the  aftermath  of  the  Wenchuan  Earthquake,  the
Chinese  government  rapidly  implemented  large-scale  housing
reconstruction  and  pairing  assistance  programs,  along  with  fiscal
subsidies,  employment  support,  and  resettlement  policies.  These

 

Table 4.    Results of model evaluation.

Index Sum of squares
for error (SSE)

Sum of squares
for total (SST)

Goodness of fit

Value 18,056.63 2,472,279 0.9927

 

Fig. 4    Relationship between SVI and the floating population.

 

Fig. 5    Relationship between migration and distance.
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top-down  institutional  measures  largely  guided  migration  flows,
shifting  migration  behavior  from  individual-driven  to  policy-driven
patterns. Consequently, the structural disparities originally captured
by  the  SVI,  such  as  differences  in  education,  income,  and  housing
conditions,  were  substantially  mitigated  through  governmental
intervention,  leading to their  statistical  insignificance in the model.
This  finding  echoes  evidence  from  international  cases  such  as  the
Great East Japan Earthquake and the 2010 Chilean tsunami, both of
which  demonstrated  the  moderating  role  of  institutional  interven-
tion in shaping post-disaster migration.

Moreover,  the  rapid  pace  of  economic  recovery  following  the
Wenchuan Earthquake further strengthened the dominance of GDP
as a determinant of migration. Cities such as Chengdu, Deyang, and
Mianyang  experienced  robust  economic  rebounds  through  infras-
tructure  reconstruction  and  industrial  revitalization.  The  sustained
growth in regional GDP enhanced the attractiveness of the destina-
tion areas while narrowing inter-regional gaps in social vulnerability.
The  observation  that  economic  recovery  outpaced  social  recon-
struction highlights the staged nature of post-disaster migration: in
the early recovery period, migration was primarily driven by govern-
ment  policies  and  restoration  of  the  infrastructure,  whereas  in
later  stages,  as  the  markets  stabilized,  economic  opportunities  and
market  forces  gradually  replaced  policy  interventions  as  the  main
drivers of population movements.

Theoretically,  this  study  contributes  to  the  literature  by  extend-
ing  the  gravity  model's  analytical  boundaries  by  including  the SVI.
Although traditional gravity models primarily focus on the effects of
economic  development  and  spatial  distance,  this  study  integrates
social  vulnerability  as  an  additional  explanatory  dimension,  con-
structing  a  comprehensive  analytical  framework  that  accounts  for
economic,  spatial,  and  institutional  factors  simultaneously.  This
theoretical expansion bridges the gap between quantitative migra-
tion  modeling  and  social  vulnerability  research,  providing  a  new
perspective  for  understanding  the  socioeconomic  mechanisms
underlying post-disaster migration.

 Conclusions

This study began by visualizing earthquakes of magnitude 5.0 and
above  that  occurred  in  China  from  2011  to  2023,  integrating  them
with  the  regional  population  density.  From  the  visualization,  the
Wenchuan  Earthquake  was  selected  as  the  case  study.  Building
upon  the  traditional  gravity  model  of  population  mobility,  a  modi-
fied gravity model was developed by incorporating the SVI.  The SVI
was based on Cutter's methodology, with optimized indicator selec-
tion,  to  derive  the SVI for  Sichuan  Province's  prefecture-level  cities
from  2003  to  2013.  The  model  was  validated  using  socioeconomic
data from Sichuan's prefecture-level cities, yielding a goodness of fit
of  0.9927,  indicating robust  model  performance.  Finally,  the model
was used to predict population mobility within Sichuan's prefecture-
level  cities  from  2014  to  2022.  The  results  identified  Chengdu  and
Panzhihua  as  the  primary  cities  with  population  outflows,  consis-
tent with empirical observations.

The  study's  innovations  are  threefold.  First,  it  calculated  the SVIs
for  Sichuan's  prefecture-level  cities  over  the  five  years  before  and
after  the  Wenchuan  Earthquake,  quantifying  the  socioeconomic
impacts of the earthquake on these regions, with optimized indica-
tor  selection.  Second,  it  used  the  GDP  and SVI of  the  origin  and
destination  cities  to  modify  the  traditional  gravity  model,  success-
fully explaining the primary factors influencing the choice of migra-
tion  destination.  Third,  it  dynamically  visualized  the  frequency  and
magnitude of earthquakes of magnitude 5.0 and above in China and
its  border  regions  from  2011  to  2023,  providing  a  foundation  for

studying  the  relationship  between  population  density  and  seismic
activity.

From a policy and practical standpoint, the findings suggest that
post-disaster population management should not rely solely on eco-
nomic stimulus or infrastructure reconstruction. Although economic
growth can attract population inflows in the short term, persistently
high  levels  of  social  vulnerability  may  still  lead  to  social  instability
and the risk of secondary migration. Therefore,  post-disaster recov-
ery  should  adhere  to  a  balanced  approach  that  emphasizes  both
economic revitalization and social  restoration.  On one hand, indus-
trial  revitalization  and job creation are  essential  for  sustaining eco-
nomic growth; on the other,  improving the equity and accessibility
of public services, education, and healthcare can help reduce social
vulnerability and strengthen community resilience. For local govern-
ments,  incorporating  social  vulnerability  assessments  into  disaster
risk  management  frameworks  can  help  identify  cities  with  strong
economic  dynamism  but  fragile  social  foundations,  thereby  enabl-
ing the design of differentiated recovery strategies that enhance the
coherence and long-term stability of post-disaster reconstruction.

Finally,  it  is  important  to  note  the  study's  limitations.  The  data
used  to  construct  the SVI and  modify  the  gravity  model  were
derived  from  the  socioeconomic  data  of  Sichuan's  prefecture-level
cities over the five years before and after the Wenchuan Earthquake.
Consequently,  the  results  are  significantly  influenced  by  the  earth-
quake's  impact,  and  the  study  is  limited  to  intra-provincial  migra-
tion.  Thus,  the  conclusions  are  more  applicable  to  intra-provincial
migration  phenomena  in  cities  affected  by  major  natural  disasters.
Moreover,  the  analysis  is  based  on  a  single  historical  case,  which
constrains the generalizability of the findings across different disas-
ter  contexts  and  temporal  settings.  Future  studies  will  explicitly
address this limitation by applying the proposed framework to more
recent  disaster  events  to  test  its  broader  applicability  and enhance
its  contemporary  relevance.  Additionally,  factors  influencing  popu-
lation  migration  extend  beyond  those  examined  in  this  study.
Future  research  could  expand  the  scope  to  inter-provincial  migra-
tion  and  incorporate  the  emotional  factors  of  migrants  to  further
refine the model.
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