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Abstract

Box columns are widely recognized for their satisfactory performance in structural applications; however, their complex fabrication, particularly with the use
of continuity plates, remains a significant drawback. The ConXtech® ConXL™ (referred to as ConXL) moment connection addresses this limitation, offering
advantages such as improved industrialization processes and construction quality. This study proposes an innovative enhancement to the ConXL
connection by incorporating a T-stub for application with unfilled box columns. The enhanced connection is analyzed through parametric and numerical
investigations, with a particular focus on its behavior under fire. The results indicate that all types of ConXL connections maintain stable hysteresis curves,
even at elevated temperatures of up to 600 °C. These connections achieve rotations exceeding 0.04 radians without forming plastic hinges, confirming their
suitability for use in special moment frames. Additionally, the incorporation of the T-stub significantly enhances the performance of the ConXL connection,
especially under high-temperature conditions. Comparative analysis revealed that the T-stub increased the connections' ultimate strength by factors of 1.08,
1.11, 1.10, and 1.87 at temperatures of 20, 200, 400, and 600 °C, respectively. Predictive equations for the behavior of the enhanced system are proposed,
offering a practical tool for structural design and analysis practitioners.
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Introduction

Box columns are frequently used as components of special
moment-resisting frames (SMRF) in regions with a high seismic risk.
These sections are typically fabricated from four welded plates. Their
large bending capacity about any axis makes these sections more
efficient than wide flange sections in flexural and compression mem-
bers such as beam columns!l. Additionally, the closed shape of box
columns provides high torsional stiffness, which decreases the need
for lateral bracing and mitigates the strength reduction typically
caused by column rotation(?l. The high ductility, energy dissipation,
and post-buckling strength of box sections further enhance their
suitability for use as columns of seismic moment-resisting frames.
Box columns also optimize material utilization and minimize the
costs associated with painting and surface maintenance through
their efficient designB. Goswami and Murty introduced an
improved I-beam configuration of a box column connection to over-
come the drawbacks of the flow path of discontinuous forces
observed in seismic steel moment frames. Their results indicated
that the mobilization of the nominal beam's plastic moment capac-
ity with sufficient strain hardening of the beam flanges could be
achieved in I|-beam-box column connections. Although their
concept addressed the major problem of the flow path of disconti-
nuity forces, it was not practical or economically viable. Similarly,
Ghobadi et al.®} demonstrated the promising performance of box
column connections with side stiffeners, though their practical fabri-
cation remained a challenge. Full-scale experimental tests and finite
element (FE) analyses reported inl67] showed that connections with
adequate stiffeners, designed according to fundamental seismic
principles, provided sufficient strength, stiffness, and rotational
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capacity. Additional research by Choi et al.l8l and Yang!®! has further
advanced the understanding of box columns and their connections.

Despite the abovementioned advantages, box columns present
certain challenges compared with other cross-sections. For instance,
accessing the interior of box columns for welding and connecting
the continuity plates is challenging, complicating welding inspec-
tions and increasing production costs. Furthermore, the presence of
two parallel webs in box columns results in different behaviors in
comparison with other wide-flange columns. These challenges have
led to extensive research into box column connections, aiming to
develop cost-effective solutions while ensuring appropriate seismic
performance. One notable outcome of those efforts was the intro-
duction of the ConXL connection in the ANSI/AISC 358-10 standard!'%
as a prequalified moment connection. Figures 1 and 2 illustrate the
ConXL connection.

The ConXL connection has attracted significant attention as a stan-
dardized, cost-effective, special moment biaxial connection for build-
ing applications. This connection incorporates wide-flange beams,
concrete-filled square Hollow Structural Section (HSS) or built-up
columns, high-strength bolts, a collar flange assembly, and a collar
corner assembly. It has been prequalified and codified by the Ameri-
can Institute of Steel Construction (AISC). Numerical studies by Reza-
eian et al.l'" and Shahidi et al.l'Zl examined the cyclic behavior of
the ConXL connection without concrete filling in the column. Their
results revealed that the seismic behavior of ConXL connections is
appropriate, with no significant local buckling observed in the
columns.

The seismic performance of metallic beam-column connections is
usually validated through experimental and numerical studies!'3141,
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Details of the ConXL connection with concrete infill, based on AISC 358-101"%. Figure constructed by the authors.
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Fig.2 Box column with ConXL connections, showing the details of the attached collar corner assemblies. Figure created by the authors.

The ConXL connection effectively addresses the issue of global
bucking in box column sections. Extensive research on box columns
and their connections has contributed to this achievement. Tsai
et al."l identified that conventional connections in box columns are
susceptible to damage, prompting the development of new connec-
tion designs with side stiffeners. Their experimental results demon-
strated stable hysteresis loops with no degradation in strength or
stiffness for the proposed connection. Similarly, Mirghaderi and
Mahmoud!"®! confirmed that the panel zone in box column connec-
tions exhibited yielding, influencing the overall behavior of the
system. This finding highlighted the necessity of strengthening such
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connections, when designed in compliance with seismic design
codes. The results reported inl'7I highlight that failure modes such as
the columns' hinge mechanism remain common under strong seis-
mic events, despite the regulation of bending moment by various
seismic codes in different countries. Furthermore, a study of the
Wenchuan Earthquake (China, 2008) underscored the significance of
bidirectional seismic action as a key factor contributing to failures of
the columns' hinge mechanism('8],

Most studies on the seismic performance of beam-column con-
nections conducted on three-dimensional (3D) beam-column con-
nections have focused on concrete structures!'9-2'], composite
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structures(22-24], or prestressed reinforced concrete structures/25-27],
However, a few relevant studies on steel beam-column connec-
tions have also been reported(2829], The results indicated that in
beam-column joints, the effects of biaxial loading cannot be
ignored in the analysis and design of spaced ductile moment-resist-
ing frames. Green et al.B% conducted a bidirectional load test study
of a spaced semi-rigid steel beam-column joint with a floor; how-
ever, they did not show any contrast with a unidirectional loading
test. Wang et al.?"l conducted a bidirectional test on a steel beam
with circular tubular column connections with an outer diaphragm
and found that bidirectional loading may reduce the connection
strength in the decoupled loading plane but increase the connec-
tion strength and ductility in the coupled loading plane.

Fire and post-fire scenarios significantly influence the structural
response of steel frames, primarily by degrading material properties
such as strength, stiffness, and ductility as a result of elevated tem-
peratures. These effects can result in reduced load-carrying capacity,
increased deformation, and potential failure of critical connections,
ultimately undermining their seismic response capacity. Although
extensive research has been conducted on the fire performance of
standard steel frame connections3233], there is a notable gap in the
literature concerning the behavior of ConXL connections under fire
and post-fire conditions. Despite their widespread use and robust
performance in seismic applications, the lack of studies analyzing
their structural response in these scenarios underscores the need for
comprehensive investigations to ensure their safety and reliability
under extreme thermal conditions.

A review of studies conducted on ConXL connections confirms
their robust performance under seismic actions. The design details
of these connections are included in regulations such as ANSI/AISC
341-22B34 for seismic design and ANSI/AISC 358-22035], where the
ConXL connection is prequalified for special and intermediate steel
moment frames for seismic applications. Despite the demonstrated
performance of the ConXL connection under seismic conditions, its
behavior under fire has not yet been comprehensively investigated.
Thus, its behavior under fire remains unknown, and completing a
comprehensive study is required. Additionally, no prior studies have
addressed the effects of variable temperatures on ConXL connec-
tions. This paper seeks to address this gap in the literature through a
comprehensive numerical investigation of the behavior of ConXL
connections under fire.

Materials and methods

Parametric study

FE models were used to analyze the performance of the ConXL
connection. Figure 3 illustrates the details of the different ConXL
connection models' configurations studied here. As shown in this
figure, three types of ConXL were examined. For each model, a
name was designed that consisted of four parts. The first part, C,
represents the ConXL. The second letter is related to the reduced
beam section (RBS), which indicates the model with (R) or without
(NR) an RBS. The third letter represents the T-stub, where T and NT
are used for models with and without a T-stub, respectively. Two
numbers as two parts are used at the end of name to represent the
thickness of the columns and the temperature applied to the model.
First, the model C-NR-NT was created according to the ANSI/AISC
341-22 standards®4. Then a RBS was incorporated in the beam to
create the C-R-NT model. Finally, a T-stub was added to the ConXL
as a proposed idea to improve the connection, thus resulting in the
C-NR-T model.

The beam and columns (width: 24 mm x 68 mm; cross-section:
406 mm x 406 mm) with thicknesses of 12 and 20 mm, respectively,
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ConXL with RBS (C-R-NT)

Fig. 3
study: (a) ConXL with an RBS (the C-R-NT model); (b) ConXL without an
RBS (C-NR-NT model); and (c) ConXL with a T-stub (C-NR-T model).

Types of ConXL connections considered in the parametric

were used for the simulation. The connection was designed accord-
ing to the AISC/ANSI 358-22 standardsBS. First, the models were
analyzed under cyclic loading (T, = 20 °C). Then, to consider the
behavior of the model, different temperatures, T, = i, were applied
and the models were analyzed under cyclic loading. For this consid-
eration, the temperatures of T, = 200, 400, and 600 °C were adopted.

According to ANSI/AISC 358-22B%], the beam and connections
were designed, based on the computed probable maximum

moment at the plastic hinge, M,,,, as presented in Eq. (1):

My = CpuRyFyZ, )
where, F, is the specified minimum yield stress of the yielding element;
Z, is the effective plastic section modulus of the section at the location
of the plastic hinge; R, represents the ratio of the material ultimate
stress, F,, to the expected material yield stress, F,; and C, is computed
as (F, + Fy) / (2F). In addition, the shear force at each plastic hinge
location, V,, is determined from a free-body diagram of the portion of
the beam between the plastic hinge locations, L. This calculation
assumes that the moment at the center of the plastic hinge is M, and
the gravity load, Vyp,yir,, acting on the beams between plastic hinges, is
as presented in Equation (2):

M,y
Vh=—+ Vgravity (2)
Ly
Finite element models and simulation technique
In this paper, to simulate the FE models, ABAQUS software was
used. To simulate all parts of the models, the C3D8R solid element
was used. This solid element is an eight-node brick element con-
taining a reduced integration aspect with hourglass control. The
tangential behavior with a friction coefficient of 0.4 was used for the
contact of the bolts. Normal behavior with hard contact was used
for other elements that were touching. For meshing the elements,
standard structural meshing with hexahedral mesh was utilized.
Accordingly, the mesh size was 2-20 mm for different elements.
For the beam, in the predicted location of plastic hinge formation,
a smaller mesh size was used than that in the beam length outside
the area of plastic hinge formation. A very small mesh size was
applied for the bolts and other components with short lengths.
Figure 4 illustrates the schematic view of the model with the
selected mesh sizes.
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Fig.4 A schematic view of the FE model, showing the meshing.

Boundary conditions and materials

In this paper, each system comprising two beams as a planar
state are considered, as shown in Fig. 5. According to ANSI/AISC
358-22B5], the acceptable rotation of connection is 0.04 rad. There-
fore, lateral loads are applied to the columns to achieve an inter-
story drift of 5% to consider the connection with a rotation of
0.04 rad and to understand the system's behavior under rotation
greater than the limitations of ANSI/AISC 358-22135],

To simplify the moment frame, it is assumed that the height and
length of the frame are equal to 3,500 and 7,768 mm, respectively.
The lateral loading is applied to the model as shown in Fig. 6,
according to the ANSI/AISC 358-22B351 specifications. A36 steel was
used for the beams and columns with a yield stress (F)), ultimate
stress (F,), and modulus of elasticity equal to 240 MPa, 370 MPa, and

Post fire
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200 GPa, respectively. On the basis of ASTMA574536], the bolts were
modeled using F, = 1,050 MPa and F, = 1,150 MPa. Finally, for the
collar system, material properties of F, = 390 MPa and F, = 510 MPa
were used according to ASTM A572 Gr50.

As an alternative, time-temperature curves from International
Organization for Standardization (ISO) 83437], and EN 1991: 1-2038]
(the Eurocode parametric fire curve) can be used to consider the
effects of fire. As shown in Fig. 7, ISO curves only have a heating
phase. These curves are commonly used for furnace-based testing
and are not influenced by ventilation or other factors that would
affect an actual fire. Accordingly, the ISO 834 standard®”! was used
in this paper. In contrast, Eurocode parametric curves include a cool-
ing phase and vary depending on the thermal inertia of the
enclosure (b), the openingfactor (0),and thefire'sloading density (g, ).

Displacement
Axial Force |
Actuator Force Q. <
—JHred _ B —
Box Column 1,750 mm
(406 x 406 mm)
2,100 mm 00 mm ;i 800 mm 2,100 mm

Lateral Bracing

Lateral Bracing
I 1,750 mm

3,884 mm

3,884 mm

Fig.5 Boundary conditions adopted for calibration of the initial FE model.

Page4of 11

Thongchom et al. Emergency Management Science and Technology 2025, 5: €023



Post fire

0.06

008 - - -

0.02 4 - == —m - e S-R4-HAF

=002 F - mmmmmmm e mm oo S

Interstorey Drift Angle, rad
o

=0.04 4 - m-m - m oo L 4-H]

-0.06

Number of Loading Step
Fig.6 Cyclic loading diagram based on ANSI/AISC 358-2203°1,

T T T T T p
1,000 | —____...-__-- _
-
"——
G -
o 800 —
~ = EC Parametric Fire Curve
o === |SO 834-1 Standard Fire Curve
2 600
©
S
[
Q. 400
£
@
=

200

1 1 1

0 20 40 60 80 100 120
Time (min)

Fig.7 The ISO standard fire curve and EC parametric fire curve applied
to the FE models.

Varying these parameters affects the peak fire temperature, the fire's
duration, and rate of heating and cooling. This cooling phase is
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Fig. 8 Comparing the test results presented in ConXtech!*'! against
the FE simulation's results.

important, as it results in thermal contraction, which can produce
large tensile forces that cause connections to fail(39:401,

Calibration and verification of the FE model

To calibrate and verify the FE numerical model, an experimental
test reported in*"l was selected and simulated using ABAQUS.
Accordingly, the test results and FE results are compared in Fig. 8. As
can be observed in this figure, the two hysteretic curves are in good
agreement. By achieving an acceptable error (less than 10% to
calculate the ultimate strength) in this model, other FE models will
be considered with confidence (because of the acceptable error) in
the accuracy of the results.

Results and discussion

Hysteresis curves
In Fig. 9, the hysteresis curves of the C-NR-T, C-NR-NT, and C-R-NT
FE models are compared for the different temperature values

g 700

g 500 =/

g =7

2 300 / W/ //

s - vy, /,,-j,,’//yr

2 £ 100 7 G,

s 2-100 s _?/,/4// 5
=R / ,

: 300 /// /7

3; =500 = ——C-NR-NT-12.5-20
E 00 —— C-NR-NT-12.5-200

——C-NR-NT-12.5-400
~——C-NR-NT-12.5-600

Drift ratio (%)

——C-R-NT-12.5-20

——C-R-NT-12.5-200
——C-R-NT-12.5-400
~——C-R-NT-12.5-600

Page5of 11



Emergency Management
Science and Technology

considered. As shown in this figure, as expected, fire affects the
response of the models. The rate of reduction is different from the
rate of the increase in temperature. At T, < 400 °C, no considerable
reduction is seen in the hysteresis curves. Moreover, by increasing
the temperature from ambient temperature to 400 °C, the rate of
reduction in hysteresis is much lower than the one observed for
T, = 600 °C. Accordingly, the rate of reduction and the effect of
the variable on the response of the models are investigated in the
next subsections. RBS (C-R-NT) connections cause a lower ultimate
strength than the other types of connection at all temperatures.

Yielding scenarios

The von Misses stresses of the ConXL connection components are
shown in Fig. 10 to consider the yielding and hinge formation over
the elements. To simplify the discussion of the results, only the
elements at ambient temperature and at T, = 600 °C are shown. As
illustrated in Fig. 10, for all types of elements, hinges form at the two
ends of the beams, as expected, to produce desirable performance.
The collar under ambient temperature for all types of connection
remains elastic, which confirms the suitable behavior of the ConXL.
For the conventional ConXL with and without an RBS, yielding
emerges on the panel zone of the columns, but the column can

Tu =20°C Tu=600 °C

06F, 07F, O08F, 09F, >F,

Fig. 10 The hinge formation of the elements.
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carry the load. A suitable hinge forms on the proposed ConXL,
where the hinge is formed at the end of T-stub, which is far from the
columns and collar. Moreover, no yielding occurred on the columns
at T, = 600 °C, and all types of connections show acceptable perfor-
mance. Although the connection has been designed for ambient
temperatures, negligible yielding occurs at the collar system around
the bolts. However, all bolts managed to yield but were not rup-
tured. The T-stub made the system have the yield as in ambient
system, which is considerable.

The effect of the T-stub on the hysteresis curves of the
system

Figure 11 illustrates the hysteresis curves of the C-NR-NT and C-
NR-T models at different temperatures. As revealed in this figure, all
models present a stable hysteresis curve with no degradation in
strength and stiffness, and no pinching in the curves. For all speci-
mens, for rotations more than 0.04 rad, the moment is more than
80% of the plastic moment of the beam (Mpy,). As shown, although
there is no filler concrete or continuity plates in all specimens, they
all have acceptable seismic behavior and seismic post-fire behavior
under cyclic loading. Comparing the models with and without a
T-stub indicates that the T-stub improves the hysteresis curve of the
ConXL connection. The connections with the T-stub show a greater
rotation capacity than the conventional ConXL. The connection with
higher rotation capacity has higher ductility and stability. In addi-
tion, adding the T-stub improved the hysteresis. This represents an
improvement in the strength and energy dissipation, as will be
discussed in the following subsections.

Ultimate strength

In Table 1, the ultimate strength of the FE models is listed. The
results revealed that by increasing T, the capacity of the system is
reduced, but the rate of reduction for the conventional ConXL (with
and without RBS) and yjr proposed ConXL are different. When the T,
rises from the ambient temperature to 400 °C, the ultimate strength
is reduced by 7%, 6%, and 4%, respectively, for the conventional
ConXL with and without an RBS and the proposed ConXL. The
noticeable finding is that the T-stub has a considerable effect in the
T, = 600 °C scenario. At this temperature, the reduction in the ulti-
mate strength of the conventional ConXL (with and without an RBS)
is around 56%, but with a T-stub, it improved by 24%. Moreover, a
comparison of the results of the conventional ConXL (without an
RBS) and the proposed ConXL indicates that the T-stub causes an
increase in the ultimate strength of the system by 1.08, 1.11, 1.10,
and 1.87 times for T, = 20, 200, 400, and 600 °C, respectively. There-
fore, the T-stub has a considerable effect on the strength of the
system, especially at higher temperatures. Comparing the

Table 1. Comparing the ultimate strength of the models.

P, (kN) M (kN-m) _MTu:i Entodetwith ™ Entoder with res/

Models

MTu:ZO oc EModelwithout T EModel without RBS
C-NR-T-12.5-20 65233 1,141.6 1.00 1.08
C-NR-T-12.5-200 643.00 1,125.3 0.99 1.1
C-NR-T-12.5-400 623.23 1,090.7 0.96 1.10
C-NR-T-12.5-600 495.59 867.28 0.76 1.87
C-NR-NT-12.5-20 605.45 1,059.5 1.00
C-NR-NT-12.5-200 580.70 1,016.2 0.96
C-NR-NT-12.5-400 568.60 995.05 0.94
C-NR-NT-12.5-600 264.79 463.38 0.44
C-R-NT-12.5-20 53429 935 1.00 0.88
C-R-NT-12.5-200 506.37 886.15 0.95 0.87
C-R-NT-12.5-400 497.95 871.42 0.93 0.88
C-R-NT-12.5-600 231.32 404.81 043 0.87
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Fig. 11 ConXL connection hysteresis curves comparing the models.

conventional ConXL with and without an RBS reveals that with the
RBS, the ultimate strength is reduced by around 12% for all temper-
atures. Therefore, the RBS has a constant effect on the connection
for all temperatures. Referring to Fig. 11, it can be observed that the
moment capacity of all connections studied remains practically
constant under 400 °C and suffers a linear drop in capacity between
temperature ranges of 400-600 °C. To predict the behavior of the
system with the ConXL connection, Equations (3), (4), and (5) are
proposed. These equations help structural designers to create a
primary design and to predict the post-fire performance of the
system.

Stiffness

As expected, by increasing the applied loading as well as the
temperature, the stiffness of any structures tends to be reduced. The
stiffness K of the FE models is listed in Table 2. At all tempera-
tures applied, the T-stub causes a 13% increase in K, and the RBS
connection causes a 4% decrease in the system's K. The results show
that the presence of a T-stub or RBS connection has the same trend
at all temperatures. Moreover, the presence of a T-stub or RBS
showed the same decreasing trend with increasing temperatures.
Referring to Table 2, it can be seen that by increasing the tempera-

Thongchom et al. Emergency Management Science and Technology 2025, 5: €023

ture from the ambient temperature to 200, 400, and 600 °C, the K of
all models decreases by around 10%, 30%, and 70%, respectively.
It confirms that the rate of reduction up to 400 °C is lower than that
at temperatures greater than 400 °C.

Comparing the results confirms that the reduction in elastic stiff-
ness is strongly affected by temperature changes rather than type of

Table2. Comparing the elastic stiffness of the models.

Models K (KN/mm) Kry=i Evodetwith ™ Enodet with res/
Tu=20°C Model without T =Model without RBS

C-NR-T-12.5-20 13,256 1.00 1.12

C-NR-T-12.5-200 12,034 0.91 1.13

C-NR-T-12.5-400 9,337.8 0.70 1.13

C-NR-T-12.5-600 4,102.0 0.31 1.13

C-NR-NT-12.5-20 11,850 1.00

C-NR-NT-12.5-200 10,621 0.90

C-NR-NT-12.5-400 8,266.5 0.70

C-NR-NT-12.5-600 3,630.5 0.31

C-R-NT-12.5-20 11,435 1.00 0.96

C-R-NT-12.5-200 10,246 0.90 0.96

C-R-NT-12.5-400 7,972.8 0.70 0.96

C-R-NT-12.5-600 3,498.1 0.31 0.96
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1,200 1
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0 100 200 300 400 500 600
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Fig. 12 Proposed equations to predict the capacity of the C-NR-T, C-

NR-NT, and

connection.

C-R-NT models.

For this reason, in Fig. 12, the K of the models is plotted

versus the applied temperature.

The proposed equations, Egs. (3) to (5), have been based on the
results of the paper and are useful for primary design. Subsequently,
after determining the configuration and predicting the behavior of
the structure, suitable analysis is required.

As shown

M =—0.00005 T,> +0.0062 T,> — 0.89 T, + 1141
ConXL (with T-stub, without RBS) 3)

M =—0.00005 T,> +0.0069 T,> - 1.16 Ty + 1059
ConXL (with T-stub, without RBS) “4)

M = —0.00005 T, +0.0065 T,> — 1.14 T, + 935
ConXL (with T-stub, without RBS) (3)

in Fig. 13, the rate of the reduction in stiffness is dissimi-

lar at different temperatures. Generally, the downward and

a

KN/mm

K

C

K (kKN/mm)

< 6,000
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1,000
0

0 2 | 6 8 10 12 14 16 I8
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Post fire

decreasing process of stiffness with a T-stub starts earlier than that
of the conventional ConXL. At ambient temperatures, both the

Table3. Comparing the energy dissipation of the models.

Models E (kN-m) _Ersi EEModeI with 7/ EEModel with RBs/
Tu=20°C Model without T Model without RBS

C-NR-T-12.5-20 270.78 1.00 1.10

C-NR-T-12.5-200 23442 0.87 1.39

C-NR-T-12.5-400 213.99 0.79 1.60

C-NR-T-12.5-600 69.20 0.26 1.13

C-NR-NT-12.5-20 245.25 1.00

C-NR-NT-12.5-200 169.14 0.69

C-NR-NT-12.5-400 134.14 0.55

C-NR-NT-12.5-600 61.37 0.25

C-R-NT-12.5-20 215.51 1.00 0.88

C-R-NT-12.5-200 157.23 0.73 0.93

C-R-NT-12.5-400 134.18 0.62 1.00

C-R-NT-12.5-600 60.78 0.28 0.99

(o))
1

1

g 1.5 A

= 1.4 1 The ettect of T-stub

.%1_3 J

212 -

8511

5§ |l —— - = — —— =

0.9 4

2038 4 The ettect of RBS

<

0.7 A

0 100 200 300 400 500 600

T, (°C)

Fig. 14 Comparing the energy dissipation capacity of the models in
the different temperature scenarios explored.

b 14,000 ——C-NR-NT-12.5-200
12,000 —(C-NR-T-12.5-200
" —— C-R-NT-12.5-200

10,000
8,000
6,000

K (KN/mm)

4,000
2,000

0 2 4 6 8 10 12 14 16 18

Cycle number

4,000 4 \"\

—— C-NR-NT-12.5-600
1,000 4 — C-NR-T-12.5-600

Cycle number

Fig. 13 Comparing the elastic stiffness of the C-NR-NT-12.5, C-NR-T-12.5, and C-R-NT-12.5 models at (a) T, = 0 °C, (b) T, =200 °C, (c) T, = 400 °C, and (d)

T,=600°C.
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Fig. 15 Comparing the energy dissipation of the C-NR-NT-12.5, C-NR-T-12.5, and C-R-NT-12.5 models at (a) T, = 20 °C, (b) T, =20 °C, (c) T, = 400 °C, (d)
T, = 600 °Cand the accumulated energy ratio of the C-NR-NT-12.5, C-NR-T-12.5, and C-R-NT-12.5 models at (e) T, = 0 °C, (f) T, = 200 °C, (g) T, = 400 °C, (h)

T, =600 °C.

conventional ConXL and the ConXI| with a T-stub show a reduction
in their rotation by 1.5%. At T, = 200 °C and T, > 200 °C, this range is
1.5% and 2% for the conventional ConXL and 2% and 3% for the
ConXL with a T-stub, respectively. Although the ConXL with a T-stub
has a greater stiffness than the conventional ConXL, it tends to
reduce sooner than the conventional ConXL.

Thongchom et al. Emergency Management Science and Technology 2025, 5: €023

Energy dissipation

The energy dissipation E of the analyzed models is listed in Table 3.
Comparing the results listed in Table 3 indicated that the T-stub
provides an enhancement in the energy dissipation E of the connec-
tions. With the T-stub, E improves by 10%-60%, which is significant.
This finding is plotted in Fig. 14, where the vertical axis represents
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the ratio of the E of the compared models to the E of the C-NR-NT
model. A noticeable finding is that an RBS affects the E of the system
under ambient temperatures and has a negligible impact on the E of
the system at high temperatures.

In Fig. 15, the energy dissipation of the models versus the cycle
number is plotted. According to the figure, the rate of E is dissimilar
at different temperatures, whereas the ConXL connections with and
without an RBS have a similar rate. At ambient temperatures, both
the conventional ConXL and the ConXl with a T-stub initially have an
energy dissipation of 1.5%, which coincides with the reduction in
stiffness. Correspondingly, at T, = 200 °C and T, > 200 °C, this range
is 1.5% and 2% for the conventional ConXL and the ConXL with a
T-stub, and 2% and 3%, respectively.

Conclusions

This paper investigated the behavior of the ConXL connection,
including an innovative enhancement to improve its seismic and
performance under fire after seismic loading was applied, using
parametric and numerical analyses.

(1) Although ConXL connections at ambient tempratures, with or
without an RBS and with a T-stub, showed stable performance with-
out a loss of stiffness or strength, even unfilled with concrete. At
600 °C, they exceeded 0.04 radians of rotational capacity without
plastic hinges, meeting AISC's special moment frame standards.

(2) The temperature affects the response of the connections. At
400 °C, strength dropped by 7%, 6%, and 4% for the conventional
ConXL with an RBS, that without an RBS, and the T-stub-enhanced
ConXL, respectively. At 600 °C, the conventional ConXL lost ~56% of
its strength, whereas the T-stub-enhanced system lost 24%.

(3) The T-stub-enhanced ConXL connection demonstrates supe-
rior performance under heat, particularly in its energy dissipation
characteristics. At room temperature, both the conventional and
T-stub-enhanced connections started dissipating energy at the
same degree of rotation (1.5%).

(4) As temperatures rose above 200 °C, the T-stub-enhanced con-
nection required a higher rotation (3%) to start dissipating energy
compared with the conventional one (2%). This indicates that the
enhanced connection is more robust and maintains its stiffness for
longer under elevated temperatures, highlighting its advantage for
practical high-temperature applications.

(5) To complete and expand the recent study, it is recommended
to consider the T-stub's economical aspects in comparison with
other models under ambient and high temperatures.
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